"""Implementation of enumerated types. This module provides the `Enum` class, which can be used to construct enumerated types. Those types are defined by providing an *exhaustive set or list* of possible, named values for a variable of that type. Enumerated variables of the same type are usually compared between them for equality and sometimes for order, but are not usually operated upon. Enumerated values have an associated *name* and *concrete value*. Every name is unique and so are concrete values. An enumerated variable always takes the concrete value, not its name. Usually, the concrete value is not used directly, and frequently it is entirely irrelevant. For the same reason, an enumerated variable is not usually compared with concrete values out of its enumerated type. For that kind of use, standard variables and constants are more adequate. """ __docformat__ = 'reStructuredText' """The format of documentation strings in this module.""" class Enum: """Enumerated type. Each instance of this class represents an enumerated type. The values of the type must be declared *exhaustively* and named with *strings*, and they might be given explicit concrete values, though this is not compulsory. Once the type is defined, it can not be modified. There are three ways of defining an enumerated type. Each one of them corresponds to the type of the only argument in the constructor of Enum: - *Sequence of names*: each enumerated value is named using a string, and its order is determined by its position in the sequence; the concrete value is assigned automatically:: >>> boolEnum = Enum(['True', 'False']) - *Mapping of names*: each enumerated value is named by a string and given an explicit concrete value. All of the concrete values must be different, or a ValueError will be raised:: >>> priority = Enum({'red': 20, 'orange': 10, 'green': 0}) >>> colors = Enum({'red': 1, 'blue': 1}) Traceback (most recent call last): ... ValueError: enumerated values contain duplicate concrete values: 1 - *Enumerated type*: in that case, a copy of the original enumerated type is created. Both enumerated types are considered equal:: >>> prio2 = Enum(priority) >>> priority == prio2 True Please note that names starting with _ are not allowed, since they are reserved for internal usage:: >>> prio2 = Enum(['_xx']) Traceback (most recent call last): ... ValueError: name of enumerated value can not start with ``_``: '_xx' The concrete value of an enumerated value is obtained by getting its name as an attribute of the Enum instance (see __getattr__()) or as an item (see __getitem__()). This allows comparisons between enumerated values and assigning them to ordinary Python variables:: >>> redv = priority.red >>> redv == priority['red'] True >>> redv > priority.green True >>> priority.red == priority.orange False The name of the enumerated value corresponding to a concrete value can also be obtained by using the __call__() method of the enumerated type. In this way you get the symbolic name to use it later with __getitem__():: >>> priority(redv) 'red' >>> priority.red == priority[priority(priority.red)] True (If you ask, the __getitem__() method is not used for this purpose to avoid ambiguity in the case of using strings as concrete values.) """ def __init__(self, enum): mydict = self.__dict__ mydict['_names'] = {} mydict['_values'] = {} if isinstance(enum, list) or isinstance(enum, tuple): for (value, name) in enumerate(enum): # values become 0, 1, 2... self._check_and_set_pair(name, value) elif isinstance(enum, dict): for (name, value) in enum.items(): self._check_and_set_pair(name, value) elif isinstance(enum, Enum): for (name, value) in enum._names.items(): self._check_and_set_pair(name, value) else: raise TypeError("""\ enumerations can only be created from \ sequences, mappings and other enumerations""") def _check_and_set_pair(self, name, value): """Check validity of enumerated value and insert it into type.""" names = self._names values = self._values if not isinstance(name, str): raise TypeError( f"name of enumerated value is not a string: {name!r}") if name.startswith('_'): raise ValueError( "name of enumerated value can not start with ``_``: %r" % name) # This check is only necessary with a sequence base object. if name in names: raise ValueError( "enumerated values contain duplicate names: %r" % name) # This check is only necessary with a mapping base object. if value in values: raise ValueError( "enumerated values contain duplicate concrete values: %r" % value) names[name] = value values[value] = name self.__dict__[name] = value def __getitem__(self, name): """Get the concrete value of the enumerated value with that name. The name of the enumerated value must be a string. If there is no value with that name in the enumeration, a KeyError is raised. Examples -------- Let ``enum`` be an enumerated type defined as: >>> enum = Enum({'T0': 0, 'T1': 2, 'T2': 5}) then: >>> enum['T1'] 2 >>> enum['foo'] Traceback (most recent call last): ... KeyError: "no enumerated value with that name: 'foo'" """ try: return self._names[name] except KeyError: raise KeyError(f"no enumerated value with that name: {name!r}") def __setitem__(self, name, value): """This operation is forbidden.""" raise IndexError("operation not allowed") def __delitem__(self, name): """This operation is forbidden.""" raise IndexError("operation not allowed") def __getattr__(self, name): """Get the concrete value of the enumerated value with that name. The name of the enumerated value must be a string. If there is no value with that name in the enumeration, an AttributeError is raised. Examples -------- Let ``enum`` be an enumerated type defined as: >>> enum = Enum({'T0': 0, 'T1': 2, 'T2': 5}) then: >>> enum.T1 2 >>> enum.foo Traceback (most recent call last): ... AttributeError: no enumerated value with that name: 'foo' """ try: return self[name] except KeyError as ke: raise AttributeError(*ke.args) def __setattr__(self, name, value): """This operation is forbidden.""" raise AttributeError("operation not allowed") def __delattr__(self, name): """This operation is forbidden.""" raise AttributeError("operation not allowed") def __contains__(self, name): """Is there an enumerated value with that name in the type? If the enumerated type has an enumerated value with that name, True is returned. Otherwise, False is returned. The name must be a string. This method does *not* check for concrete values matching a value in an enumerated type. For that, please use the :meth:`Enum.__call__` method. Examples -------- Let ``enum`` be an enumerated type defined as: >>> enum = Enum({'T0': 0, 'T1': 2, 'T2': 5}) then: >>> 'T1' in enum True >>> 'foo' in enum False >>> 0 in enum Traceback (most recent call last): ... TypeError: name of enumerated value is not a string: 0 >>> enum.T1 in enum # Be careful with this! Traceback (most recent call last): ... TypeError: name of enumerated value is not a string: 2 """ if not isinstance(name, str): raise TypeError( f"name of enumerated value is not a string: {name!r}") return name in self._names def __call__(self, value, *default): """Get the name of the enumerated value with that concrete value. If there is no value with that concrete value in the enumeration and a second argument is given as a default, this is returned. Else, a ValueError is raised. This method can be used for checking that a concrete value belongs to the set of concrete values in an enumerated type. Examples -------- Let ``enum`` be an enumerated type defined as: >>> enum = Enum({'T0': 0, 'T1': 2, 'T2': 5}) then: >>> enum(5) 'T2' >>> enum(42, None) is None True >>> enum(42) Traceback (most recent call last): ... ValueError: no enumerated value with that concrete value: 42 """ try: return self._values[value] except KeyError: if len(default) > 0: return default[0] raise ValueError( f"no enumerated value with that concrete value: {value!r}") def __len__(self): """Return the number of enumerated values in the enumerated type. Examples -------- >>> len(Enum(['e%d' % i for i in range(10)])) 10 """ return len(self._names) def __iter__(self): """Iterate over the enumerated values. Enumerated values are returned as (name, value) pairs *in no particular order*. Examples -------- >>> enumvals = {'red': 4, 'green': 2, 'blue': 1} >>> enum = Enum(enumvals) >>> enumdict = dict([(name, value) for (name, value) in enum]) >>> enumvals == enumdict True """ yield from self._names.items() def __eq__(self, other): """Is the other enumerated type equivalent to this one? Two enumerated types are equivalent if they have exactly the same enumerated values (i.e. with the same names and concrete values). Examples -------- Let ``enum*`` be enumerated types defined as: >>> enum1 = Enum({'T0': 0, 'T1': 2}) >>> enum2 = Enum(enum1) >>> enum3 = Enum({'T1': 2, 'T0': 0}) >>> enum4 = Enum({'T0': 0, 'T1': 2, 'T2': 5}) >>> enum5 = Enum({'T0': 0}) >>> enum6 = Enum({'T0': 10, 'T1': 20}) then: >>> enum1 == enum1 True >>> enum1 == enum2 == enum3 True >>> enum1 == enum4 False >>> enum5 == enum1 False >>> enum1 == enum6 False Comparing enumerated types with other kinds of objects produces a false result: >>> enum1 == {'T0': 0, 'T1': 2} False >>> enum1 == ['T0', 'T1'] False >>> enum1 == 2 False """ if not isinstance(other, Enum): return False return self._names == other._names def __ne__(self, other): """Is the `other` enumerated type different from this one? Two enumerated types are different if they don't have exactly the same enumerated values (i.e. with the same names and concrete values). Examples -------- Let ``enum*`` be enumerated types defined as: >>> enum1 = Enum({'T0': 0, 'T1': 2}) >>> enum2 = Enum(enum1) >>> enum3 = Enum({'T1': 2, 'T0': 0}) >>> enum4 = Enum({'T0': 0, 'T1': 2, 'T2': 5}) >>> enum5 = Enum({'T0': 0}) >>> enum6 = Enum({'T0': 10, 'T1': 20}) then: >>> enum1 != enum1 False >>> enum1 != enum2 != enum3 False >>> enum1 != enum4 True >>> enum5 != enum1 True >>> enum1 != enum6 True """ return not self.__eq__(other) # XXX: API incompatible change for PyTables 3 line # Overriding __eq__ blocks inheritance of __hash__ in 3.x # def __hash__(self): # return hash((self.__class__, tuple(self._names.items()))) def __repr__(self): """Return the canonical string representation of the enumeration. The output of this method can be evaluated to give a new enumeration object that will compare equal to this one. Examples -------- >>> repr(Enum({'name': 10})) "Enum({'name': 10})" """ return 'Enum(%s)' % self._names def _test(): import doctest return doctest.testmod() if __name__ == '__main__': _test()