// Copyright (C) 2001 Vladimir Prus // Copyright (C) 2001 Jeremy Siek // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // NOTE: this final is generated by libs/graph/doc/transitive_closure.w #ifndef BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP #define BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP #include #include // for std::min and std::max #include #include #include #include #include #include #include #include #include namespace boost { namespace detail { inline void union_successor_sets(const std::vector< std::size_t >& s1, const std::vector< std::size_t >& s2, std::vector< std::size_t >& s3) { BOOST_USING_STD_MIN(); for (std::size_t k = 0; k < s1.size(); ++k) s3[k] = min BOOST_PREVENT_MACRO_SUBSTITUTION(s1[k], s2[k]); } } // namespace detail namespace detail { template < typename TheContainer, typename ST = std::size_t, typename VT = typename TheContainer::value_type > struct subscript_t { typedef ST argument_type; typedef VT& result_type; subscript_t(TheContainer& c) : container(&c) {} VT& operator()(const ST& i) const { return (*container)[i]; } protected: TheContainer* container; }; template < typename TheContainer > subscript_t< TheContainer > subscript(TheContainer& c) { return subscript_t< TheContainer >(c); } } // namespace detail template < typename Graph, typename GraphTC, typename G_to_TC_VertexMap, typename VertexIndexMap > void transitive_closure(const Graph& g, GraphTC& tc, G_to_TC_VertexMap g_to_tc_map, VertexIndexMap index_map) { if (num_vertices(g) == 0) return; typedef typename graph_traits< Graph >::vertex_descriptor vertex; typedef typename graph_traits< Graph >::vertex_iterator vertex_iterator; typedef typename property_traits< VertexIndexMap >::value_type size_type; typedef typename graph_traits< Graph >::adjacency_iterator adjacency_iterator; BOOST_CONCEPT_ASSERT((VertexListGraphConcept< Graph >)); BOOST_CONCEPT_ASSERT((AdjacencyGraphConcept< Graph >)); BOOST_CONCEPT_ASSERT((VertexMutableGraphConcept< GraphTC >)); BOOST_CONCEPT_ASSERT((EdgeMutableGraphConcept< GraphTC >)); BOOST_CONCEPT_ASSERT( (ReadablePropertyMapConcept< VertexIndexMap, vertex >)); typedef size_type cg_vertex; std::vector< cg_vertex > component_number_vec(num_vertices(g)); iterator_property_map< cg_vertex*, VertexIndexMap, cg_vertex, cg_vertex& > component_number(&component_number_vec[0], index_map); int num_scc = strong_components(g, component_number, vertex_index_map(index_map)); std::vector< std::vector< vertex > > components; build_component_lists(g, num_scc, component_number, components); typedef boost::adjacency_list< boost::vecS, boost::vecS, boost::directedS > CG_t; CG_t CG(num_scc); for (cg_vertex s = 0; s < components.size(); ++s) { std::vector< cg_vertex > adj; for (size_type i = 0; i < components[s].size(); ++i) { vertex u = components[s][i]; adjacency_iterator v, v_end; for (boost::tie(v, v_end) = adjacent_vertices(u, g); v != v_end; ++v) { cg_vertex t = component_number[*v]; if (s != t) // Avoid loops in the condensation graph adj.push_back(t); } } std::sort(adj.begin(), adj.end()); typename std::vector< cg_vertex >::iterator di = std::unique(adj.begin(), adj.end()); if (di != adj.end()) adj.erase(di, adj.end()); for (typename std::vector< cg_vertex >::const_iterator i = adj.begin(); i != adj.end(); ++i) { add_edge(s, *i, CG); } } std::vector< cg_vertex > topo_order; std::vector< cg_vertex > topo_number(num_vertices(CG)); topological_sort(CG, std::back_inserter(topo_order), vertex_index_map(identity_property_map())); std::reverse(topo_order.begin(), topo_order.end()); size_type n = 0; for (typename std::vector< cg_vertex >::iterator iter = topo_order.begin(); iter != topo_order.end(); ++iter) topo_number[*iter] = n++; std::vector< std::vector< cg_vertex > > CG_vec(num_vertices(CG)); for (size_type i = 0; i < num_vertices(CG); ++i) { using namespace boost::placeholders; typedef typename boost::graph_traits< CG_t >::adjacency_iterator cg_adj_iter; std::pair< cg_adj_iter, cg_adj_iter > pr = adjacent_vertices(i, CG); CG_vec[i].assign(pr.first, pr.second); std::sort(CG_vec[i].begin(), CG_vec[i].end(), boost::bind(std::less< cg_vertex >(), boost::bind(detail::subscript(topo_number), _1), boost::bind(detail::subscript(topo_number), _2))); } std::vector< std::vector< cg_vertex > > chains; { std::vector< cg_vertex > in_a_chain(CG_vec.size()); for (typename std::vector< cg_vertex >::iterator i = topo_order.begin(); i != topo_order.end(); ++i) { cg_vertex v = *i; if (!in_a_chain[v]) { chains.resize(chains.size() + 1); std::vector< cg_vertex >& chain = chains.back(); for (;;) { chain.push_back(v); in_a_chain[v] = true; typename std::vector< cg_vertex >::const_iterator next #ifdef __cpp_lib_not_fn = std::find_if(CG_vec[v].begin(), CG_vec[v].end(), std::not_fn(detail::subscript(in_a_chain))); #else = std::find_if(CG_vec[v].begin(), CG_vec[v].end(), std::not1(detail::subscript(in_a_chain))); #endif if (next != CG_vec[v].end()) v = *next; else break; // end of chain, dead-end } } } } std::vector< size_type > chain_number(CG_vec.size()); std::vector< size_type > pos_in_chain(CG_vec.size()); for (size_type i = 0; i < chains.size(); ++i) for (size_type j = 0; j < chains[i].size(); ++j) { cg_vertex v = chains[i][j]; chain_number[v] = i; pos_in_chain[v] = j; } cg_vertex inf = (std::numeric_limits< cg_vertex >::max)(); std::vector< std::vector< cg_vertex > > successors( CG_vec.size(), std::vector< cg_vertex >(chains.size(), inf)); for (typename std::vector< cg_vertex >::reverse_iterator i = topo_order.rbegin(); i != topo_order.rend(); ++i) { cg_vertex u = *i; typename std::vector< cg_vertex >::const_iterator adj, adj_last; for (adj = CG_vec[u].begin(), adj_last = CG_vec[u].end(); adj != adj_last; ++adj) { cg_vertex v = *adj; if (topo_number[v] < successors[u][chain_number[v]]) { // Succ(u) = Succ(u) U Succ(v) detail::union_successor_sets( successors[u], successors[v], successors[u]); // Succ(u) = Succ(u) U {v} successors[u][chain_number[v]] = topo_number[v]; } } } for (size_type i = 0; i < CG_vec.size(); ++i) CG_vec[i].clear(); for (size_type i = 0; i < CG_vec.size(); ++i) for (size_type j = 0; j < chains.size(); ++j) { size_type topo_num = successors[i][j]; if (topo_num < inf) { cg_vertex v = topo_order[topo_num]; for (size_type k = pos_in_chain[v]; k < chains[j].size(); ++k) CG_vec[i].push_back(chains[j][k]); } } // Add vertices to the transitive closure graph { vertex_iterator i, i_end; for (boost::tie(i, i_end) = vertices(g); i != i_end; ++i) g_to_tc_map[*i] = add_vertex(tc); } // Add edges between all the vertices in two adjacent SCCs typename std::vector< std::vector< cg_vertex > >::const_iterator si, si_end; for (si = CG_vec.begin(), si_end = CG_vec.end(); si != si_end; ++si) { cg_vertex s = si - CG_vec.begin(); typename std::vector< cg_vertex >::const_iterator i, i_end; for (i = CG_vec[s].begin(), i_end = CG_vec[s].end(); i != i_end; ++i) { cg_vertex t = *i; for (size_type k = 0; k < components[s].size(); ++k) for (size_type l = 0; l < components[t].size(); ++l) add_edge(g_to_tc_map[components[s][k]], g_to_tc_map[components[t][l]], tc); } } // Add edges connecting all vertices in a SCC for (size_type i = 0; i < components.size(); ++i) if (components[i].size() > 1) for (size_type k = 0; k < components[i].size(); ++k) for (size_type l = 0; l < components[i].size(); ++l) { vertex u = components[i][k], v = components[i][l]; add_edge(g_to_tc_map[u], g_to_tc_map[v], tc); } // Find loopbacks in the original graph. // Need to add it to transitive closure. { vertex_iterator i, i_end; for (boost::tie(i, i_end) = vertices(g); i != i_end; ++i) { adjacency_iterator ab, ae; for (boost::tie(ab, ae) = adjacent_vertices(*i, g); ab != ae; ++ab) { if (*ab == *i) if (components[component_number[*i]].size() == 1) add_edge(g_to_tc_map[*i], g_to_tc_map[*i], tc); } } } } template < typename Graph, typename GraphTC > void transitive_closure(const Graph& g, GraphTC& tc) { if (num_vertices(g) == 0) return; typedef typename property_map< Graph, vertex_index_t >::const_type VertexIndexMap; VertexIndexMap index_map = get(vertex_index, g); typedef typename graph_traits< GraphTC >::vertex_descriptor tc_vertex; std::vector< tc_vertex > to_tc_vec(num_vertices(g)); iterator_property_map< tc_vertex*, VertexIndexMap, tc_vertex, tc_vertex& > g_to_tc_map(&to_tc_vec[0], index_map); transitive_closure(g, tc, g_to_tc_map, index_map); } namespace detail { template < typename Graph, typename GraphTC, typename G_to_TC_VertexMap, typename VertexIndexMap > void transitive_closure_dispatch(const Graph& g, GraphTC& tc, G_to_TC_VertexMap g_to_tc_map, VertexIndexMap index_map) { typedef typename graph_traits< GraphTC >::vertex_descriptor tc_vertex; typename std::vector< tc_vertex >::size_type n = is_default_param(g_to_tc_map) ? num_vertices(g) : 1; std::vector< tc_vertex > to_tc_vec(n); transitive_closure(g, tc, choose_param(g_to_tc_map, make_iterator_property_map( to_tc_vec.begin(), index_map, to_tc_vec[0])), index_map); } } // namespace detail template < typename Graph, typename GraphTC, typename P, typename T, typename R > void transitive_closure( const Graph& g, GraphTC& tc, const bgl_named_params< P, T, R >& params) { if (num_vertices(g) == 0) return; detail::transitive_closure_dispatch(g, tc, get_param(params, orig_to_copy_t()), choose_const_pmap(get_param(params, vertex_index), g, vertex_index)); } template < typename G > void warshall_transitive_closure(G& g) { typedef typename graph_traits< G >::vertex_iterator vertex_iterator; BOOST_CONCEPT_ASSERT((AdjacencyMatrixConcept< G >)); BOOST_CONCEPT_ASSERT((EdgeMutableGraphConcept< G >)); // Matrix form: // for k // for i // if A[i,k] // for j // A[i,j] = A[i,j] | A[k,j] vertex_iterator ki, ke, ii, ie, ji, je; for (boost::tie(ki, ke) = vertices(g); ki != ke; ++ki) for (boost::tie(ii, ie) = vertices(g); ii != ie; ++ii) if (edge(*ii, *ki, g).second) for (boost::tie(ji, je) = vertices(g); ji != je; ++ji) if (!edge(*ii, *ji, g).second && edge(*ki, *ji, g).second) { add_edge(*ii, *ji, g); } } template < typename G > void warren_transitive_closure(G& g) { using namespace boost; typedef typename graph_traits< G >::vertex_iterator vertex_iterator; BOOST_CONCEPT_ASSERT((AdjacencyMatrixConcept< G >)); BOOST_CONCEPT_ASSERT((EdgeMutableGraphConcept< G >)); // Make sure second loop will work if (num_vertices(g) == 0) return; // for i = 2 to n // for k = 1 to i - 1 // if A[i,k] // for j = 1 to n // A[i,j] = A[i,j] | A[k,j] vertex_iterator ic, ie, jc, je, kc, ke; for (boost::tie(ic, ie) = vertices(g), ++ic; ic != ie; ++ic) for (boost::tie(kc, ke) = vertices(g); *kc != *ic; ++kc) if (edge(*ic, *kc, g).second) for (boost::tie(jc, je) = vertices(g); jc != je; ++jc) if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) { add_edge(*ic, *jc, g); } // for i = 1 to n - 1 // for k = i + 1 to n // if A[i,k] // for j = 1 to n // A[i,j] = A[i,j] | A[k,j] for (boost::tie(ic, ie) = vertices(g), --ie; ic != ie; ++ic) for (kc = ic, ke = ie, ++kc; kc != ke; ++kc) if (edge(*ic, *kc, g).second) for (boost::tie(jc, je) = vertices(g); jc != je; ++jc) if (!edge(*ic, *jc, g).second && edge(*kc, *jc, g).second) { add_edge(*ic, *jc, g); } } } // namespace boost #endif // BOOST_GRAPH_TRANSITIVE_CLOSURE_HPP