// @(#)root/minuit:$Id$ // Author: L. Moneta Wed Oct 25 16:28:55 2006 /********************************************************************** * * * Copyright (c) 2006 LCG ROOT Math Team, CERN/PH-SFT * * * * * **********************************************************************/ // Header file for class TLinearMinimizer #ifndef ROOT_TLinearMinimizer #define ROOT_TLinearMinimizer #include "Math/Minimizer.h" #include "Rtypes.h" #include class TLinearFitter; /** TLinearMinimizer class: minimizer implementation based on TMinuit. */ class TLinearMinimizer : public ROOT::Math::Minimizer { public: /** Default constructor */ TLinearMinimizer (int type = 0); /** Constructor from a char * (used by PM) */ TLinearMinimizer ( const char * type ); /** Destructor (no operations) */ virtual ~TLinearMinimizer (); private: // usually copying is non trivial, so we make this unaccessible /** Copy constructor */ TLinearMinimizer(const TLinearMinimizer &); /** Assignment operator */ TLinearMinimizer & operator = (const TLinearMinimizer & rhs); public: /// set the fit model function virtual void SetFunction(const ROOT::Math::IMultiGenFunction & func); /// set the function to minimize virtual void SetFunction(const ROOT::Math::IMultiGradFunction & func); /// set free variable (dummy impl. ) virtual bool SetVariable(unsigned int , const std::string & , double , double ) { return false; } /// set fixed variable (override if minimizer supports them ) virtual bool SetFixedVariable(unsigned int /* ivar */, const std::string & /* name */, double /* val */); /// method to perform the minimization virtual bool Minimize(); /// return minimum function value virtual double MinValue() const { return fMinVal; } /// return expected distance reached from the minimum virtual double Edm() const { return 0; } /// return pointer to X values at the minimum virtual const double * X() const { return &fParams.front(); } /// return pointer to gradient values at the minimum virtual const double * MinGradient() const { return 0; } // not available in Minuit2 /// number of function calls to reach the minimum virtual unsigned int NCalls() const { return 0; } /// this is <= Function().NDim() which is the total /// number of variables (free+ constrained ones) virtual unsigned int NDim() const { return fDim; } /// number of free variables (real dimension of the problem) /// this is <= Function().NDim() which is the total virtual unsigned int NFree() const { return fNFree; } /// minimizer provides error and error matrix virtual bool ProvidesError() const { return true; } /// return errors at the minimum virtual const double * Errors() const { return (fErrors.empty()) ? 0 : &fErrors.front(); } /** return covariance matrices elements if the variable is fixed the matrix is zero The ordering of the variables is the same as in errors */ virtual double CovMatrix(unsigned int i, unsigned int j) const { return (fCovar.empty()) ? 0 : fCovar[i + fDim* j]; } /// return covariance matrix status virtual int CovMatrixStatus() const { if (fCovar.size() == 0) return 0; return (fStatus ==0) ? 3 : 1; } /// return reference to the objective function ///virtual const ROOT::Math::IGenFunction & Function() const; protected: private: bool fRobust; unsigned int fDim; unsigned int fNFree; double fMinVal; std::vector fParams; std::vector fErrors; std::vector fCovar; const ROOT::Math::IMultiGradFunction * fObjFunc; TLinearFitter * fFitter; ClassDef(TLinearMinimizer,1) //Implementation of the Minimizer interface using TLinearFitter }; #endif /* ROOT_TLinearMinimizer */