#ifndef __JDETECTOR__JPMTPARAMETERSTOOLKIT__ #define __JDETECTOR__JPMTPARAMETERSTOOLKIT__ #include <limits> #include "JDetector/JPMTParameters.hh" #include "JDetector/JPMTAnalogueSignalProcessor.hh" #include "JLang/JException.hh" #include "JLang/JThrow.hh" /** * \author mdejong * \file * Auxiliary methods to convert hit probability to QE and vice versa. */ namespace JDETECTOR {} namespace JPP { using namespace JDETECTOR; } namespace JDETECTOR { using JLANG::JValueOutOfRange; /** * Get model dependent probability that a one photo-electron hit survives the simulation of the PMT assuming QE = 1. * * \param parameters PMT parameters * \return probability */ inline double getSurvivalProbability(const JPMTParameters& parameters) { JPMTParameters data = parameters; const int NPE = 1; data.QE = 1.0; return JPMTAnalogueSignalProcessor(data).getSurvivalProbability(NPE); } /** * Get ratio of hit probabilities for given QE and expectation value of the number of photo-electrons.\n * The ratio corresponds to the hit probability with given QE divided by that with QE = 1.\n * The expectation value is defined for a two-fold (or higher) coincidence. * * \param QE QE * \param mu expectation value * \return ratio */ inline double getHitProbability(const double QE, const double mu) { if (mu > 0.0) return (1.0 - exp(-QE*mu)) / (1.0 - exp(-mu)); else return QE; } /** * Get maximal ratio of hit probabilities for given QE and expectation value of the number of photo-electrons.\n * The ratio corresponds to the hit probability with infinite QE divided by that with QE = 1.\n * The expectation value is defined for a two-fold (or higher) coincidence. * * \param mu expectation value * \return ratio */ inline double getMaximalHitProbability(const double mu) { using namespace std; if (mu > 0.0) return 1.0 / (1.0 - exp(-mu)); else return numeric_limits<double>::max(); } /** * Get QE for given ratio of hit probabilities and expectation value of the number of photo-electrons.\n * The ratio corresponds to the hit probability with given QE divided by that with QE = 1.\n * The expectation value is defined for a two-fold (or higher) coincidence. * * \param R ratio * \param mu expectation value * \return QE */ inline double getQE(const double R, const double mu) { if (R < getMaximalHitProbability(mu)) { if (mu > 0.0) return -log(1.0 - R*(1.0 - exp(-mu))) / mu; else return R; } else { THROW(JValueOutOfRange, "Inconsistent arguments at method getQE(" << R << "," << mu <<")"); } } } #endif