///////////////////////////////////////////////////////////////////////////// // // (C) Copyright Ion Gaztanaga 2007-2012 // // Distributed under the Boost Software License, Version 1.0. // (See accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) // // See http://www.boost.org/libs/intrusive for documentation. // ///////////////////////////////////////////////////////////////////////////// #ifndef BOOST_INTRUSIVE_SG_SET_HPP #define BOOST_INTRUSIVE_SG_SET_HPP #include #include #include #include #include #include namespace boost { namespace intrusive { //! The class template sg_set is an intrusive container, that mimics most of //! the interface of std::set as described in the C++ standard. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<> and //! \c compare<>. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif class sg_set_impl { /// @cond typedef sgtree_impl tree_type; //! This class is //! movable BOOST_MOVABLE_BUT_NOT_COPYABLE(sg_set_impl) typedef tree_type implementation_defined; /// @endcond public: typedef typename implementation_defined::value_type value_type; typedef typename implementation_defined::value_traits value_traits; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::key_compare key_compare; typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::reverse_iterator reverse_iterator; typedef typename implementation_defined::const_reverse_iterator const_reverse_iterator; typedef typename implementation_defined::insert_commit_data insert_commit_data; typedef typename implementation_defined::node_traits node_traits; typedef typename implementation_defined::node node; typedef typename implementation_defined::node_ptr node_ptr; typedef typename implementation_defined::const_node_ptr const_node_ptr; typedef typename implementation_defined::node_algorithms node_algorithms; /// @cond private: tree_type tree_; /// @endcond public: //! Effects: Constructs an empty sg_set. //! //! Complexity: Constant. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor of the value_compare object throws. explicit sg_set_impl( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(cmp, v_traits) {} //! Requires: Dereferencing iterator must yield an lvalue of type value_type. //! cmp must be a comparison function that induces a strict weak ordering. //! //! Effects: Constructs an empty sg_set and inserts elements from //! [b, e). //! //! Complexity: Linear in N if [b, e) is already sorted using //! comp and otherwise N * log N, where N is std::distance(last, first). //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the value_compare object throws. template sg_set_impl( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(true, b, e, cmp, v_traits) {} //! Effects: to-do //! sg_set_impl(BOOST_RV_REF(sg_set_impl) x) : tree_(::boost::move(x.tree_)) {} //! Effects: to-do //! sg_set_impl& operator=(BOOST_RV_REF(sg_set_impl) x) { tree_ = ::boost::move(x.tree_); return *this; } //! Effects: Detaches all elements from this. The objects in the sg_set //! are not deleted (i.e. no destructors are called). //! //! Complexity: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! Throws: Nothing. ~sg_set_impl() {} //! Effects: Returns an iterator pointing to the beginning of the sg_set. //! //! Complexity: Constant. //! //! Throws: Nothing. iterator begin() { return tree_.begin(); } //! Effects: Returns a const_iterator pointing to the beginning of the sg_set. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator begin() const { return tree_.begin(); } //! Effects: Returns a const_iterator pointing to the beginning of the sg_set. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator cbegin() const { return tree_.cbegin(); } //! Effects: Returns an iterator pointing to the end of the sg_set. //! //! Complexity: Constant. //! //! Throws: Nothing. iterator end() { return tree_.end(); } //! Effects: Returns a const_iterator pointing to the end of the sg_set. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator end() const { return tree_.end(); } //! Effects: Returns a const_iterator pointing to the end of the sg_set. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator cend() const { return tree_.cend(); } //! Effects: Returns a reverse_iterator pointing to the beginning of the //! reversed sg_set. //! //! Complexity: Constant. //! //! Throws: Nothing. reverse_iterator rbegin() { return tree_.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed sg_set. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator rbegin() const { return tree_.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed sg_set. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator crbegin() const { return tree_.crbegin(); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed sg_set. //! //! Complexity: Constant. //! //! Throws: Nothing. reverse_iterator rend() { return tree_.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed sg_set. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator rend() const { return tree_.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed sg_set. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator crend() const { return tree_.crend(); } //! Precondition: end_iterator must be a valid end iterator //! of sg_set. //! //! Effects: Returns a const reference to the sg_set associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static sg_set_impl &container_from_end_iterator(iterator end_iterator) { return *detail::parent_from_member ( &tree_type::container_from_end_iterator(end_iterator) , &sg_set_impl::tree_); } //! Precondition: end_iterator must be a valid end const_iterator //! of sg_set. //! //! Effects: Returns a const reference to the sg_set associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static const sg_set_impl &container_from_end_iterator(const_iterator end_iterator) { return *detail::parent_from_member ( &tree_type::container_from_end_iterator(end_iterator) , &sg_set_impl::tree_); } //! Precondition: it must be a valid iterator of set. //! //! Effects: Returns a reference to the set associated to the iterator //! //! Throws: Nothing. //! //! Complexity: Logarithmic. static sg_set_impl &container_from_iterator(iterator it) { return *detail::parent_from_member ( &tree_type::container_from_iterator(it) , &sg_set_impl::tree_); } //! Precondition: it must be a valid const_iterator of set. //! //! Effects: Returns a const reference to the set associated to the iterator //! //! Throws: Nothing. //! //! Complexity: Logarithmic. static const sg_set_impl &container_from_iterator(const_iterator it) { return *detail::parent_from_member ( &tree_type::container_from_iterator(it) , &sg_set_impl::tree_); } //! Effects: Returns the key_compare object used by the sg_set. //! //! Complexity: Constant. //! //! Throws: If key_compare copy-constructor throws. key_compare key_comp() const { return tree_.value_comp(); } //! Effects: Returns the value_compare object used by the sg_set. //! //! Complexity: Constant. //! //! Throws: If value_compare copy-constructor throws. value_compare value_comp() const { return tree_.value_comp(); } //! Effects: Returns true if the container is empty. //! //! Complexity: Constant. //! //! Throws: Nothing. bool empty() const { return tree_.empty(); } //! Effects: Returns the number of elements stored in the sg_set. //! //! Complexity: Linear to elements contained in *this if, //! constant-time size option is enabled. Constant-time otherwise. //! //! Throws: Nothing. size_type size() const { return tree_.size(); } //! Effects: Swaps the contents of two sets. //! //! Complexity: Constant. //! //! Throws: If the swap() call for the comparison functor //! found using ADL throws. Strong guarantee. void swap(sg_set_impl& other) { tree_.swap(other.tree_); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! Cloner should yield to nodes equivalent to the original nodes. //! //! Effects: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. Copies the predicate from the source container. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! Complexity: Linear to erased plus inserted elements. //! //! Throws: If cloner throws or predicate copy assignment throws. Basic guarantee. template void clone_from(const sg_set_impl &src, Cloner cloner, Disposer disposer) { tree_.clone_from(src.tree_, cloner, disposer); } //! Requires: value must be an lvalue //! //! Effects: Tries to inserts value into the sg_set. //! //! Returns: If the value //! is not already present inserts it and returns a pair containing the //! iterator to the new value and true. If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. //! //! Complexity: Average complexity for insert element is at //! most logarithmic. //! //! Throws: If the internal value_compare ordering function throws. Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. std::pair insert(reference value) { return tree_.insert_unique(value); } //! Requires: value must be an lvalue //! //! Effects: Tries to to insert x into the sg_set, using "hint" //! as a hint to where it will be inserted. //! //! Returns: An iterator that points to the position where the //! new element was inserted into the sg_set. //! //! Complexity: Logarithmic in general, but it's amortized //! constant time if t is inserted immediately before hint. //! //! Throws: If the internal value_compare ordering function throws. Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert(const_iterator hint, reference value) { return tree_.insert_unique(hint, value); } //! Requires: key_value_comp must be a comparison function that induces //! the same strict weak ordering as value_compare. The difference is that //! key_value_comp compares an arbitrary key with the contained values. //! //! Effects: Checks if a value can be inserted in the sg_set, using //! a user provided key instead of the value itself. //! //! Returns: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //! Complexity: Average complexity is at most logarithmic. //! //! Throws: If the key_value_comp ordering function throws. Strong guarantee. //! //! Notes: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! node that is used to impose the order is much cheaper to construct //! than the value_type and this function offers the possibility to use that //! part to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. This gives a total //! logarithmic complexity to the insertion: check(O(log(N)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the sg_set. template std::pair insert_check (const KeyType &key, KeyValueCompare key_value_comp, insert_commit_data &commit_data) { return tree_.insert_unique_check(key, key_value_comp, commit_data); } //! Requires: key_value_comp must be a comparison function that induces //! the same strict weak ordering as value_compare. The difference is that //! key_value_comp compares an arbitrary key with the contained values. //! //! Effects: Checks if a value can be inserted in the sg_set, using //! a user provided key instead of the value itself, using "hint" //! as a hint to where it will be inserted. //! //! Returns: If there is an equivalent value //! returns a pair containing an iterator to the already present value //! and false. If the value can be inserted returns true in the returned //! pair boolean and fills "commit_data" that is meant to be used with //! the "insert_commit" function. //! //! Complexity: Logarithmic in general, but it's amortized //! constant time if t is inserted immediately before hint. //! //! Throws: If the key_value_comp ordering function throws. Strong guarantee. //! //! Notes: This function is used to improve performance when constructing //! a value_type is expensive: if there is an equivalent value //! the constructed object must be discarded. Many times, the part of the //! constructing that is used to impose the order is much cheaper to construct //! than the value_type and this function offers the possibility to use that key //! to check if the insertion will be successful. //! //! If the check is successful, the user can construct the value_type and use //! "insert_commit" to insert the object in constant-time. This can give a total //! constant-time complexity to the insertion: check(O(1)) + commit(O(1)). //! //! "commit_data" remains valid for a subsequent "insert_commit" only if no more //! objects are inserted or erased from the sg_set. template std::pair insert_check (const_iterator hint, const KeyType &key ,KeyValueCompare key_value_comp, insert_commit_data &commit_data) { return tree_.insert_unique_check(hint, key, key_value_comp, commit_data); } //! Requires: value must be an lvalue of type value_type. commit_data //! must have been obtained from a previous call to "insert_check". //! No objects should have been inserted or erased from the sg_set between //! the "insert_check" that filled "commit_data" and the call to "insert_commit". //! //! Effects: Inserts the value in the sg_set using the information obtained //! from the "commit_data" that a previous "insert_check" filled. //! //! Returns: An iterator to the newly inserted object. //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Notes: This function has only sense if a "insert_check" has been //! previously executed to fill "commit_data". No value should be inserted or //! erased between the "insert_check" and "insert_commit" calls. iterator insert_commit(reference value, const insert_commit_data &commit_data) { return tree_.insert_unique_commit(value, commit_data); } //! Requires: Dereferencing iterator must yield an lvalue //! of type value_type. //! //! Effects: Inserts a range into the sg_set. //! //! Complexity: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //! Throws: If the internal value_compare ordering function throws. Basic guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. template void insert(Iterator b, Iterator e) { tree_.insert_unique(b, e); } //! Requires: value must be an lvalue, "pos" must be //! a valid iterator (or end) and must be the succesor of value //! once inserted according to the predicate. "value" must not be equal to any //! inserted key according to the predicate. //! //! Effects: Inserts x into the tree before "pos". //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Note: This function does not check preconditions so if "pos" is not //! the successor of "value" or "value" is not unique tree ordering and uniqueness //! invariants will be broken respectively. //! This is a low-level function to be used only for performance reasons //! by advanced users. iterator insert_before(const_iterator pos, reference value) { return tree_.insert_before(pos, value); } //! Requires: value must be an lvalue, and it must be greater than //! any inserted key according to the predicate. //! //! Effects: Inserts x into the tree in the last position. //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Note: This function does not check preconditions so if value is //! less than or equal to the greatest inserted key tree ordering invariant will be broken. //! This function is slightly more efficient than using "insert_before". //! This is a low-level function to be used only for performance reasons //! by advanced users. void push_back(reference value) { tree_.push_back(value); } //! Requires: value must be an lvalue, and it must be less //! than any inserted key according to the predicate. //! //! Effects: Inserts x into the tree in the first position. //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Note: This function does not check preconditions so if value is //! greater than or equal to the the mimum inserted key tree ordering or uniqueness //! invariants will be broken. //! This function is slightly more efficient than using "insert_before". //! This is a low-level function to be used only for performance reasons //! by advanced users. void push_front(reference value) { tree_.push_front(value); } //! Effects: Erases the element pointed to by pos. //! //! Complexity: Average complexity is constant time. //! //! Returns: An iterator to the element after the erased element. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(const_iterator i) { return tree_.erase(i); } //! Effects: Erases the range pointed to by b end e. //! //! Complexity: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! Returns: An iterator to the element after the erased elements. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(const_iterator b, const_iterator e) { return tree_.erase(b, e); } //! Effects: Erases all the elements with the given value. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size()) + this->count(value)). //! //! Throws: If the internal value_compare ordering function throws. Basic guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return tree_.erase(value); } //! Effects: Erases all the elements that compare equal with //! the given key and the given comparison functor. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + this->count(key, comp)). //! //! Throws: If the comp ordering function throws. Basic guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template size_type erase(const KeyType& key, KeyValueCompare comp /// @cond , typename detail::enable_if_c::value >::type * = 0 /// @endcond ) { return tree_.erase(key, comp); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the element pointed to by pos. //! Disposer::operator()(pointer) is called for the removed element. //! //! Complexity: Average complexity for erase element is constant time. //! //! Returns: An iterator to the element after the erased element. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template iterator erase_and_dispose(const_iterator i, Disposer disposer) { return tree_.erase_and_dispose(i, disposer); } #if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template iterator erase_and_dispose(iterator i, Disposer disposer) { return this->erase_and_dispose(const_iterator(i), disposer); } #endif //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Complexity: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! Returns: An iterator to the element after the erased elements. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template iterator erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer) { return tree_.erase_and_dispose(b, e, disposer); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Throws: If the internal value_compare ordering function throws. //! //! Complexity: O(log(size() + this->count(value)). Basic guarantee. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template size_type erase_and_dispose(const_reference value, Disposer disposer) { return tree_.erase_and_dispose(value, disposer); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given key. //! according to the comparison functor "comp". //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + this->count(key, comp)). //! //! Throws: If comp ordering function throws. Basic guarantee. //! //! Note: Invalidates the iterators //! to the erased elements. template size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer /// @cond , typename detail::enable_if_c::value >::type * = 0 /// @endcond ) { return tree_.erase_and_dispose(key, comp, disposer); } //! Effects: Erases all the elements of the container. //! //! Complexity: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { return tree_.clear(); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements of the container. //! //! Complexity: Linear to the number of elements on the container. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template void clear_and_dispose(Disposer disposer) { return tree_.clear_and_dispose(disposer); } //! Effects: Returns the number of contained elements with the given key //! //! Complexity: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //! Throws: If the internal value_compare ordering function throws. size_type count(const_reference value) const { return tree_.find(value) != end(); } //! Effects: Returns the number of contained elements with the same key //! compared with the given comparison functor. //! //! Complexity: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //! Throws: If comp ordering function throws. template size_type count(const KeyType& key, KeyValueCompare comp) const { return tree_.find(key, comp) != end(); } //! Effects: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. iterator lower_bound(const_reference value) { return tree_.lower_bound(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Returns an iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template iterator lower_bound(const KeyType& key, KeyValueCompare comp) { return tree_.lower_bound(key, comp); } //! Effects: Returns a const iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. const_iterator lower_bound(const_reference value) const { return tree_.lower_bound(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Returns a const_iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template const_iterator lower_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.lower_bound(key, comp); } //! Effects: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. iterator upper_bound(const_reference value) { return tree_.upper_bound(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Returns an iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template iterator upper_bound(const KeyType& key, KeyValueCompare comp) { return tree_.upper_bound(key, comp); } //! Effects: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. const_iterator upper_bound(const_reference value) const { return tree_.upper_bound(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Returns a const_iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template const_iterator upper_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.upper_bound(key, comp); } //! Effects: Finds an iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. iterator find(const_reference value) { return tree_.find(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Finds an iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template iterator find(const KeyType& key, KeyValueCompare comp) { return tree_.find(key, comp); } //! Effects: Finds a const_iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. const_iterator find(const_reference value) const { return tree_.find(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Finds a const_iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template const_iterator find(const KeyType& key, KeyValueCompare comp) const { return tree_.find(key, comp); } //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. std::pair equal_range(const_reference value) { return tree_.equal_range(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template std::pair equal_range(const KeyType& key, KeyValueCompare comp) { return tree_.equal_range(key, comp); } //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. std::pair equal_range(const_reference value) const { return tree_.equal_range(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template std::pair equal_range(const KeyType& key, KeyValueCompare comp) const { return tree_.equal_range(key, comp); } //! Requires: 'lower_value' must not be greater than 'upper_value'. If //! 'lower_value' == 'upper_value', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise //! //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If the predicate throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_value and upper_value. std::pair bounded_range (const_reference lower_value, const_reference upper_value, bool left_closed, bool right_closed) { return tree_.bounded_range(lower_value, upper_value, left_closed, right_closed); } //! Requires: KeyValueCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key, comp) if left_closed, upper_bound(lower_key, comp) otherwise //! //! second = upper_bound(upper_key, comp) if right_closed, lower_bound(upper_key, comp) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_key and upper_key. template std::pair bounded_range (const KeyType& lower_key, const KeyType& upper_key, KeyValueCompare comp, bool left_closed, bool right_closed) { return tree_.bounded_range(lower_key, upper_key, comp, left_closed, right_closed); } //! Requires: 'lower_value' must not be greater than 'upper_value'. If //! 'lower_value' == 'upper_value', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise //! //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If the predicate throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_value and upper_value. std::pair bounded_range(const_reference lower_value, const_reference upper_value, bool left_closed, bool right_closed) const { return tree_.bounded_range(lower_value, upper_value, left_closed, right_closed); } //! Requires: KeyValueCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key, comp) if left_closed, upper_bound(lower_key, comp) otherwise //! //! second = upper_bound(upper_key, comp) if right_closed, lower_bound(upper_key, comp) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_key and upper_key. template std::pair bounded_range (const KeyType& lower_key, const KeyType& upper_key, KeyValueCompare comp, bool left_closed, bool right_closed) const { return tree_.bounded_range(lower_key, upper_key, comp, left_closed, right_closed); } //! Requires: value must be an lvalue and shall be in a sg_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid iterator i belonging to the sg_set //! that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This static function is available only if the value traits //! is stateless. static iterator s_iterator_to(reference value) { return tree_type::s_iterator_to(value); } //! Requires: value must be an lvalue and shall be in a sg_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_iterator i belonging to the //! sg_set that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This static function is available only if the value traits //! is stateless. static const_iterator s_iterator_to(const_reference value) { return tree_type::s_iterator_to(value); } //! Requires: value must be an lvalue and shall be in a sg_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid iterator i belonging to the sg_set //! that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. iterator iterator_to(reference value) { return tree_.iterator_to(value); } //! Requires: value must be an lvalue and shall be in a sg_set of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_iterator i belonging to the //! sg_set that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator iterator_to(const_reference value) const { return tree_.iterator_to(value); } //! Requires: value shall not be in a sg_set/sg_multiset. //! //! Effects: init_node puts the hook of a value in a well-known default //! state. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: This function puts the hook in the well-known default state //! used by auto_unlink and safe hooks. static void init_node(reference value) { tree_type::init_node(value); } //! Effects: Unlinks the leftmost node from the tree. //! //! Complexity: Average complexity is constant time. //! //! Throws: Nothing. //! //! Notes: This function breaks the tree and the tree can //! only be used for more unlink_leftmost_without_rebalance calls. //! This function is normally used to achieve a step by step //! controlled destruction of the tree. pointer unlink_leftmost_without_rebalance() { return tree_.unlink_leftmost_without_rebalance(); } //! Requires: replace_this must be a valid iterator of *this //! and with_this must not be inserted in any tree. //! //! Effects: Replaces replace_this in its position in the //! tree with with_this. The tree does not need to be rebalanced. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This function will break container ordering invariants if //! with_this is not equivalent to *replace_this according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing or comparison is needed. void replace_node(iterator replace_this, reference with_this) { tree_.replace_node(replace_this, with_this); } //! Effects: Rebalances the tree. //! //! Throws: Nothing. //! //! Complexity: Linear. void rebalance() { tree_.rebalance(); } //! Requires: old_root is a node of a tree. //! //! Effects: Rebalances the subtree rooted at old_root. //! //! Returns: The new root of the subtree. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements in the subtree. iterator rebalance_subtree(iterator root) { return tree_.rebalance_subtree(root); } //! Returns: The balance factor (alpha) used in this tree //! //! Throws: Nothing. //! //! Complexity: Constant. float balance_factor() const { return tree_.balance_factor(); } //! Requires: new_alpha must be a value between 0.5 and 1.0 //! //! Effects: Establishes a new balance factor (alpha) and rebalances //! the tree if the new balance factor is stricter (less) than the old factor. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements in the subtree. void balance_factor(float new_alpha) { tree_.balance_factor(new_alpha); } /// @cond friend bool operator==(const sg_set_impl &x, const sg_set_impl &y) { return x.tree_ == y.tree_; } friend bool operator<(const sg_set_impl &x, const sg_set_impl &y) { return x.tree_ < y.tree_; } /// @endcond }; #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator!= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const sg_set_impl &x, const sg_set_impl &y) #else (const sg_set_impl &x, const sg_set_impl &y) #endif { return !(x == y); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator> #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const sg_set_impl &x, const sg_set_impl &y) #else (const sg_set_impl &x, const sg_set_impl &y) #endif { return y < x; } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator<= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const sg_set_impl &x, const sg_set_impl &y) #else (const sg_set_impl &x, const sg_set_impl &y) #endif { return !(y < x); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator>= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const sg_set_impl &x, const sg_set_impl &y) #else (const sg_set_impl &x, const sg_set_impl &y) #endif { return !(x < y); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline void swap #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (sg_set_impl &x, sg_set_impl &y) #else (sg_set_impl &x, sg_set_impl &y) #endif { x.swap(y); } //! Helper metafunction to define a \c sg_set that yields to the same type when the //! same options (either explicitly or implicitly) are used. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif struct make_sg_set { /// @cond typedef sg_set_impl < typename make_sgtree_opt::type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif class sg_set : public make_sg_set::type { typedef typename make_sg_set ::type Base; BOOST_MOVABLE_BUT_NOT_COPYABLE(sg_set) public: typedef typename Base::value_compare value_compare; typedef typename Base::value_traits value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same::value)); sg_set( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(cmp, v_traits) {} template sg_set( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(b, e, cmp, v_traits) {} sg_set(BOOST_RV_REF(sg_set) x) : Base(::boost::move(static_cast(x))) {} sg_set& operator=(BOOST_RV_REF(sg_set) x) { this->Base::operator=(::boost::move(static_cast(x))); return *this; } static sg_set &container_from_end_iterator(iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } static const sg_set &container_from_end_iterator(const_iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } static sg_set &container_from_iterator(iterator it) { return static_cast(Base::container_from_iterator(it)); } static const sg_set &container_from_iterator(const_iterator it) { return static_cast(Base::container_from_iterator(it)); } }; #endif //! The class template sg_multiset is an intrusive container, that mimics most of //! the interface of std::sg_multiset as described in the C++ standard. //! //! The template parameter \c T is the type to be managed by the container. //! The user can specify additional options and if no options are provided //! default options are used. //! //! The container supports the following options: //! \c base_hook<>/member_hook<>/value_traits<>, //! \c constant_time_size<>, \c size_type<> and //! \c compare<>. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif class sg_multiset_impl { /// @cond typedef sgtree_impl tree_type; //Non-copyable and non-assignable BOOST_MOVABLE_BUT_NOT_COPYABLE(sg_multiset_impl) typedef tree_type implementation_defined; /// @endcond public: typedef typename implementation_defined::value_type value_type; typedef typename implementation_defined::value_traits value_traits; typedef typename implementation_defined::pointer pointer; typedef typename implementation_defined::const_pointer const_pointer; typedef typename implementation_defined::reference reference; typedef typename implementation_defined::const_reference const_reference; typedef typename implementation_defined::difference_type difference_type; typedef typename implementation_defined::size_type size_type; typedef typename implementation_defined::value_compare value_compare; typedef typename implementation_defined::key_compare key_compare; typedef typename implementation_defined::iterator iterator; typedef typename implementation_defined::const_iterator const_iterator; typedef typename implementation_defined::reverse_iterator reverse_iterator; typedef typename implementation_defined::const_reverse_iterator const_reverse_iterator; typedef typename implementation_defined::insert_commit_data insert_commit_data; typedef typename implementation_defined::node_traits node_traits; typedef typename implementation_defined::node node; typedef typename implementation_defined::node_ptr node_ptr; typedef typename implementation_defined::const_node_ptr const_node_ptr; typedef typename implementation_defined::node_algorithms node_algorithms; /// @cond private: tree_type tree_; /// @endcond public: //! Effects: Constructs an empty sg_multiset. //! //! Complexity: Constant. //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the value_compare object throws. explicit sg_multiset_impl( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(cmp, v_traits) {} //! Requires: Dereferencing iterator must yield an lvalue of type value_type. //! cmp must be a comparison function that induces a strict weak ordering. //! //! Effects: Constructs an empty sg_multiset and inserts elements from //! [b, e). //! //! Complexity: Linear in N if [b, e) is already sorted using //! comp and otherwise N * log N, where N is the distance between first and last //! //! Throws: If value_traits::node_traits::node //! constructor throws (this does not happen with predefined Boost.Intrusive hooks) //! or the copy constructor/operator() of the value_compare object throws. template sg_multiset_impl( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : tree_(false, b, e, cmp, v_traits) {} //! Effects: to-do //! sg_multiset_impl(BOOST_RV_REF(sg_multiset_impl) x) : tree_(::boost::move(x.tree_)) {} //! Effects: to-do //! sg_multiset_impl& operator=(BOOST_RV_REF(sg_multiset_impl) x) { tree_ = ::boost::move(x.tree_); return *this; } //! Effects: Detaches all elements from this. The objects in the sg_multiset //! are not deleted (i.e. no destructors are called). //! //! Complexity: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! Throws: Nothing. ~sg_multiset_impl() {} //! Effects: Returns an iterator pointing to the beginning of the sg_multiset. //! //! Complexity: Constant. //! //! Throws: Nothing. iterator begin() { return tree_.begin(); } //! Effects: Returns a const_iterator pointing to the beginning of the sg_multiset. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator begin() const { return tree_.begin(); } //! Effects: Returns a const_iterator pointing to the beginning of the sg_multiset. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator cbegin() const { return tree_.cbegin(); } //! Effects: Returns an iterator pointing to the end of the sg_multiset. //! //! Complexity: Constant. //! //! Throws: Nothing. iterator end() { return tree_.end(); } //! Effects: Returns a const_iterator pointing to the end of the sg_multiset. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator end() const { return tree_.end(); } //! Effects: Returns a const_iterator pointing to the end of the sg_multiset. //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator cend() const { return tree_.cend(); } //! Effects: Returns a reverse_iterator pointing to the beginning of the //! reversed sg_multiset. //! //! Complexity: Constant. //! //! Throws: Nothing. reverse_iterator rbegin() { return tree_.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed sg_multiset. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator rbegin() const { return tree_.rbegin(); } //! Effects: Returns a const_reverse_iterator pointing to the beginning //! of the reversed sg_multiset. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator crbegin() const { return tree_.crbegin(); } //! Effects: Returns a reverse_iterator pointing to the end //! of the reversed sg_multiset. //! //! Complexity: Constant. //! //! Throws: Nothing. reverse_iterator rend() { return tree_.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed sg_multiset. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator rend() const { return tree_.rend(); } //! Effects: Returns a const_reverse_iterator pointing to the end //! of the reversed sg_multiset. //! //! Complexity: Constant. //! //! Throws: Nothing. const_reverse_iterator crend() const { return tree_.crend(); } //! Precondition: end_iterator must be a valid end iterator //! of sg_multiset. //! //! Effects: Returns a const reference to the sg_multiset associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static sg_multiset_impl &container_from_end_iterator(iterator end_iterator) { return *detail::parent_from_member ( &tree_type::container_from_end_iterator(end_iterator) , &sg_multiset_impl::tree_); } //! Precondition: end_iterator must be a valid end const_iterator //! of sg_multiset. //! //! Effects: Returns a const reference to the sg_multiset associated to the end iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static const sg_multiset_impl &container_from_end_iterator(const_iterator end_iterator) { return *detail::parent_from_member ( &tree_type::container_from_end_iterator(end_iterator) , &sg_multiset_impl::tree_); } //! Precondition: it must be a valid iterator of multiset. //! //! Effects: Returns a const reference to the multiset associated to the iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static sg_multiset_impl &container_from_iterator(iterator it) { return *detail::parent_from_member ( &tree_type::container_from_iterator(it) , &sg_multiset_impl::tree_); } //! Precondition: it must be a valid const_iterator of multiset. //! //! Effects: Returns a const reference to the multiset associated to the iterator //! //! Throws: Nothing. //! //! Complexity: Constant. static const sg_multiset_impl &container_from_iterator(const_iterator it) { return *detail::parent_from_member ( &tree_type::container_from_iterator(it) , &sg_multiset_impl::tree_); } //! Effects: Returns the key_compare object used by the sg_multiset. //! //! Complexity: Constant. //! //! Throws: If key_compare copy-constructor throws. key_compare key_comp() const { return tree_.value_comp(); } //! Effects: Returns the value_compare object used by the sg_multiset. //! //! Complexity: Constant. //! //! Throws: If value_compare copy-constructor throws. value_compare value_comp() const { return tree_.value_comp(); } //! Effects: Returns true if the container is empty. //! //! Complexity: Constant. //! //! Throws: Nothing. bool empty() const { return tree_.empty(); } //! Effects: Returns the number of elements stored in the sg_multiset. //! //! Complexity: Linear to elements contained in *this if, //! constant-time size option is enabled. Constant-time otherwise. //! //! Throws: Nothing. size_type size() const { return tree_.size(); } //! Effects: Swaps the contents of two sg_multisets. //! //! Complexity: Constant. //! //! Throws: If the swap() call for the comparison functor //! found using ADL throws. Strong guarantee. void swap(sg_multiset_impl& other) { tree_.swap(other.tree_); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! Cloner should yield to nodes equivalent to the original nodes. //! //! Effects: Erases all the elements from *this //! calling Disposer::operator()(pointer), clones all the //! elements from src calling Cloner::operator()(const_reference ) //! and inserts them on *this. Copies the predicate from the source container. //! //! If cloner throws, all cloned elements are unlinked and disposed //! calling Disposer::operator()(pointer). //! //! Complexity: Linear to erased plus inserted elements. //! //! Throws: If cloner throws or predicate copy assignment throws. Basic guarantee. template void clone_from(const sg_multiset_impl &src, Cloner cloner, Disposer disposer) { tree_.clone_from(src.tree_, cloner, disposer); } //! Requires: value must be an lvalue //! //! Effects: Inserts value into the sg_multiset. //! //! Returns: An iterator that points to the position where the new //! element was inserted. //! //! Complexity: Average complexity for insert element is at //! most logarithmic. //! //! Throws: If the internal value_compare ordering function throws. Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert(reference value) { return tree_.insert_equal(value); } //! Requires: value must be an lvalue //! //! Effects: Inserts x into the sg_multiset, using pos as a hint to //! where it will be inserted. //! //! Returns: An iterator that points to the position where the new //! element was inserted. //! //! Complexity: Logarithmic in general, but it is amortized //! constant time if t is inserted immediately before hint. //! //! Throws: If the internal value_compare ordering function throws. Strong guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. iterator insert(const_iterator hint, reference value) { return tree_.insert_equal(hint, value); } //! Requires: Dereferencing iterator must yield an lvalue //! of type value_type. //! //! Effects: Inserts a range into the sg_multiset. //! //! Returns: An iterator that points to the position where the new //! element was inserted. //! //! Complexity: Insert range is in general O(N * log(N)), where N is the //! size of the range. However, it is linear in N if the range is already sorted //! by value_comp(). //! //! Throws: If the internal value_compare ordering function throws. Basic guarantee. //! //! Note: Does not affect the validity of iterators and references. //! No copy-constructors are called. template void insert(Iterator b, Iterator e) { tree_.insert_equal(b, e); } //! Requires: value must be an lvalue, "pos" must be //! a valid iterator (or end) and must be the succesor of value //! once inserted according to the predicate //! //! Effects: Inserts x into the tree before "pos". //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Note: This function does not check preconditions so if "pos" is not //! the successor of "value" tree ordering invariant will be broken. //! This is a low-level function to be used only for performance reasons //! by advanced users. iterator insert_before(const_iterator pos, reference value) { return tree_.insert_before(pos, value); } //! Requires: value must be an lvalue, and it must be no less //! than the greatest inserted key //! //! Effects: Inserts x into the tree in the last position. //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Note: This function does not check preconditions so if value is //! less than the greatest inserted key tree ordering invariant will be broken. //! This function is slightly more efficient than using "insert_before". //! This is a low-level function to be used only for performance reasons //! by advanced users. void push_back(reference value) { tree_.push_back(value); } //! Requires: value must be an lvalue, and it must be no greater //! than the minimum inserted key //! //! Effects: Inserts x into the tree in the first position. //! //! Complexity: Constant time. //! //! Throws: Nothing. //! //! Note: This function does not check preconditions so if value is //! greater than the minimum inserted key tree ordering invariant will be broken. //! This function is slightly more efficient than using "insert_before". //! This is a low-level function to be used only for performance reasons //! by advanced users. void push_front(reference value) { tree_.push_front(value); } //! Effects: Erases the element pointed to by pos. //! //! Complexity: Average complexity is constant time. //! //! Returns: An iterator to the element after the erased element. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(const_iterator i) { return tree_.erase(i); } //! Effects: Erases the range pointed to by b end e. //! //! Returns: An iterator to the element after the erased elements. //! //! Complexity: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. iterator erase(const_iterator b, const_iterator e) { return tree_.erase(b, e); } //! Effects: Erases all the elements with the given value. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + this->count(value)). //! //! Throws: If the internal value_compare ordering function throws. Basic guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. size_type erase(const_reference value) { return tree_.erase(value); } //! Effects: Erases all the elements that compare equal with //! the given key and the given comparison functor. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + this->count(key, comp)). //! //! Throws: If comp ordering function throws. Basic guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template size_type erase(const KeyType& key, KeyValueCompare comp /// @cond , typename detail::enable_if_c::value >::type * = 0 /// @endcond ) { return tree_.erase(key, comp); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Returns: An iterator to the element after the erased element. //! //! Effects: Erases the element pointed to by pos. //! Disposer::operator()(pointer) is called for the removed element. //! //! Complexity: Average complexity for erase element is constant time. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template iterator erase_and_dispose(const_iterator i, Disposer disposer) { return tree_.erase_and_dispose(i, disposer); } #if !defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template iterator erase_and_dispose(iterator i, Disposer disposer) { return this->erase_and_dispose(const_iterator(i), disposer); } #endif //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Returns: An iterator to the element after the erased elements. //! //! Effects: Erases the range pointed to by b end e. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Complexity: Average complexity for erase range is at most //! O(log(size() + N)), where N is the number of elements in the range. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators //! to the erased elements. template iterator erase_and_dispose(const_iterator b, const_iterator e, Disposer disposer) { return tree_.erase_and_dispose(b, e, disposer); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given value. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + this->count(value)). //! //! Throws: If the internal value_compare ordering function throws. Basic guarantee. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template size_type erase_and_dispose(const_reference value, Disposer disposer) { return tree_.erase_and_dispose(value, disposer); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements with the given key. //! according to the comparison functor "comp". //! Disposer::operator()(pointer) is called for the removed elements. //! //! Returns: The number of erased elements. //! //! Complexity: O(log(size() + this->count(key, comp)). //! //! Throws: If comp ordering function throws. Basic guarantee. //! //! Note: Invalidates the iterators //! to the erased elements. template size_type erase_and_dispose(const KeyType& key, KeyValueCompare comp, Disposer disposer /// @cond , typename detail::enable_if_c::value >::type * = 0 /// @endcond ) { return tree_.erase_and_dispose(key, comp, disposer); } //! Effects: Erases all the elements of the container. //! //! Complexity: Linear to the number of elements on the container. //! if it's a safe-mode or auto-unlink value_type. Constant time otherwise. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. void clear() { return tree_.clear(); } //! Requires: Disposer::operator()(pointer) shouldn't throw. //! //! Effects: Erases all the elements of the container. //! //! Complexity: Linear to the number of elements on the container. //! Disposer::operator()(pointer) is called for the removed elements. //! //! Throws: Nothing. //! //! Note: Invalidates the iterators (but not the references) //! to the erased elements. No destructors are called. template void clear_and_dispose(Disposer disposer) { return tree_.clear_and_dispose(disposer); } //! Effects: Returns the number of contained elements with the given key //! //! Complexity: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //! Throws: If the internal value_compare ordering function throws. size_type count(const_reference value) const { return tree_.count(value); } //! Effects: Returns the number of contained elements with the same key //! compared with the given comparison functor. //! //! Complexity: Logarithmic to the number of elements contained plus lineal //! to number of objects with the given key. //! //! Throws: If comp ordering function throws. template size_type count(const KeyType& key, KeyValueCompare comp) const { return tree_.count(key, comp); } //! Effects: Returns an iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. iterator lower_bound(const_reference value) { return tree_.lower_bound(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Returns an iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template iterator lower_bound(const KeyType& key, KeyValueCompare comp) { return tree_.lower_bound(key, comp); } //! Effects: Returns a const iterator to the first element whose //! key is not less than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. const_iterator lower_bound(const_reference value) const { return tree_.lower_bound(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Returns a const_iterator to the first element whose //! key according to the comparison functor is not less than k or //! end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template const_iterator lower_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.lower_bound(key, comp); } //! Effects: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. iterator upper_bound(const_reference value) { return tree_.upper_bound(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Returns an iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template iterator upper_bound(const KeyType& key, KeyValueCompare comp) { return tree_.upper_bound(key, comp); } //! Effects: Returns an iterator to the first element whose //! key is greater than k or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. const_iterator upper_bound(const_reference value) const { return tree_.upper_bound(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Returns a const_iterator to the first element whose //! key according to the comparison functor is greater than key or //! end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template const_iterator upper_bound(const KeyType& key, KeyValueCompare comp) const { return tree_.upper_bound(key, comp); } //! Effects: Finds an iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. iterator find(const_reference value) { return tree_.find(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Finds an iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template iterator find(const KeyType& key, KeyValueCompare comp) { return tree_.find(key, comp); } //! Effects: Finds a const_iterator to the first element whose value is //! "value" or end() if that element does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. const_iterator find(const_reference value) const { return tree_.find(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Finds a const_iterator to the first element whose key is //! "key" according to the comparison functor or end() if that element //! does not exist. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template const_iterator find(const KeyType& key, KeyValueCompare comp) const { return tree_.find(key, comp); } //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. std::pair equal_range(const_reference value) { return tree_.equal_range(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template std::pair equal_range(const KeyType& key, KeyValueCompare comp) { return tree_.equal_range(key, comp); } //! Effects: Finds a range containing all elements whose key is k or //! an empty range that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: If the internal value_compare ordering function throws. std::pair equal_range(const_reference value) const { return tree_.equal_range(value); } //! Requires: comp must imply the same element order as //! value_compare. Usually key is the part of the value_type //! that is used in the ordering functor. //! //! Effects: Finds a range containing all elements whose key is k //! according to the comparison functor or an empty range //! that indicates the position where those elements would be //! if they there is no elements with key k. //! //! Complexity: Logarithmic. //! //! Throws: If comp ordering function throws. //! //! Note: This function is used when constructing a value_type //! is expensive and the value_type can be compared with a cheaper //! key type. Usually this key is part of the value_type. template std::pair equal_range(const KeyType& key, KeyValueCompare comp) const { return tree_.equal_range(key, comp); } //! Requires: 'lower_value' must not be greater than 'upper_value'. If //! 'lower_value' == 'upper_value', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise //! //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If the predicate throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_value and upper_value. std::pair bounded_range (const_reference lower_value, const_reference upper_value, bool left_closed, bool right_closed) { return tree_.bounded_range(lower_value, upper_value, left_closed, right_closed); } //! Requires: KeyValueCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key, comp) if left_closed, upper_bound(lower_key, comp) otherwise //! //! second = upper_bound(upper_key, comp) if right_closed, lower_bound(upper_key, comp) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_key and upper_key. template std::pair bounded_range (const KeyType& lower_key, const KeyType& upper_key, KeyValueCompare comp, bool left_closed, bool right_closed) { return tree_.bounded_range(lower_key, upper_key, comp, left_closed, right_closed); } //! Requires: 'lower_value' must not be greater than 'upper_value'. If //! 'lower_value' == 'upper_value', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key) if left_closed, upper_bound(lower_key) otherwise //! //! second = upper_bound(upper_key) if right_closed, lower_bound(upper_key) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If the predicate throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_value and upper_value. std::pair bounded_range(const_reference lower_value, const_reference upper_value, bool left_closed, bool right_closed) const { return tree_.bounded_range(lower_value, upper_value, left_closed, right_closed); } //! Requires: KeyValueCompare is a function object that induces a strict weak //! ordering compatible with the strict weak ordering used to create the //! the tree. //! 'lower_key' must not be greater than 'upper_key' according to 'comp'. If //! 'lower_key' == 'upper_key', ('left_closed' || 'right_closed') must be false. //! //! Effects: Returns an a pair with the following criteria: //! //! first = lower_bound(lower_key, comp) if left_closed, upper_bound(lower_key, comp) otherwise //! //! second = upper_bound(upper_key, comp) if right_closed, lower_bound(upper_key, comp) otherwise //! //! Complexity: Logarithmic. //! //! Throws: If "comp" throws. //! //! Note: This function can be more efficient than calling upper_bound //! and lower_bound for lower_key and upper_key. template std::pair bounded_range (const KeyType& lower_key, const KeyType& upper_key, KeyValueCompare comp, bool left_closed, bool right_closed) const { return tree_.bounded_range(lower_key, upper_key, comp, left_closed, right_closed); } //! Requires: value must be an lvalue and shall be in a sg_multiset of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid iterator i belonging to the sg_multiset //! that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This static function is available only if the value traits //! is stateless. static iterator s_iterator_to(reference value) { return tree_type::s_iterator_to(value); } //! Requires: value must be an lvalue and shall be in a sg_multiset of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_iterator i belonging to the //! sg_multiset that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This static function is available only if the value traits //! is stateless. static const_iterator s_iterator_to(const_reference value) { return tree_type::s_iterator_to(value); } //! Requires: value must be an lvalue and shall be in a sg_multiset of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid iterator i belonging to the sg_multiset //! that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. iterator iterator_to(reference value) { return tree_.iterator_to(value); } //! Requires: value must be an lvalue and shall be in a sg_multiset of //! appropriate type. Otherwise the behavior is undefined. //! //! Effects: Returns: a valid const_iterator i belonging to the //! sg_multiset that points to the value //! //! Complexity: Constant. //! //! Throws: Nothing. const_iterator iterator_to(const_reference value) const { return tree_.iterator_to(value); } //! Requires: value shall not be in a sg_multiset/sg_multiset. //! //! Effects: init_node puts the hook of a value in a well-known default //! state. //! //! Throws: Nothing. //! //! Complexity: Constant time. //! //! Note: This function puts the hook in the well-known default state //! used by auto_unlink and safe hooks. static void init_node(reference value) { tree_type::init_node(value); } //! Effects: Unlinks the leftmost node from the tree. //! //! Complexity: Average complexity is constant time. //! //! Throws: Nothing. //! //! Notes: This function breaks the tree and the tree can //! only be used for more unlink_leftmost_without_rebalance calls. //! This function is normally used to achieve a step by step //! controlled destruction of the tree. pointer unlink_leftmost_without_rebalance() { return tree_.unlink_leftmost_without_rebalance(); } //! Requires: replace_this must be a valid iterator of *this //! and with_this must not be inserted in any tree. //! //! Effects: Replaces replace_this in its position in the //! tree with with_this. The tree does not need to be rebalanced. //! //! Complexity: Constant. //! //! Throws: Nothing. //! //! Note: This function will break container ordering invariants if //! with_this is not equivalent to *replace_this according to the //! ordering rules. This function is faster than erasing and inserting //! the node, since no rebalancing or comparison is needed. void replace_node(iterator replace_this, reference with_this) { tree_.replace_node(replace_this, with_this); } //! Effects: Rebalances the tree. //! //! Throws: Nothing. //! //! Complexity: Linear. void rebalance() { tree_.rebalance(); } //! Requires: old_root is a node of a tree. //! //! Effects: Rebalances the subtree rooted at old_root. //! //! Returns: The new root of the subtree. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements in the subtree. iterator rebalance_subtree(iterator root) { return tree_.rebalance_subtree(root); } //! Returns: The balance factor (alpha) used in this tree //! //! Throws: Nothing. //! //! Complexity: Constant. float balance_factor() const { return tree_.balance_factor(); } //! Requires: new_alpha must be a value between 0.5 and 1.0 //! //! Effects: Establishes a new balance factor (alpha) and rebalances //! the tree if the new balance factor is stricter (less) than the old factor. //! //! Throws: Nothing. //! //! Complexity: Linear to the elements in the subtree. void balance_factor(float new_alpha) { tree_.balance_factor(new_alpha); } /// @cond friend bool operator==(const sg_multiset_impl &x, const sg_multiset_impl &y) { return x.tree_ == y.tree_; } friend bool operator<(const sg_multiset_impl &x, const sg_multiset_impl &y) { return x.tree_ < y.tree_; } /// @endcond }; #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator!= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const sg_multiset_impl &x, const sg_multiset_impl &y) #else (const sg_multiset_impl &x, const sg_multiset_impl &y) #endif { return !(x == y); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator> #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const sg_multiset_impl &x, const sg_multiset_impl &y) #else (const sg_multiset_impl &x, const sg_multiset_impl &y) #endif { return y < x; } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator<= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const sg_multiset_impl &x, const sg_multiset_impl &y) #else (const sg_multiset_impl &x, const sg_multiset_impl &y) #endif { return !(y < x); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline bool operator>= #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (const sg_multiset_impl &x, const sg_multiset_impl &y) #else (const sg_multiset_impl &x, const sg_multiset_impl &y) #endif { return !(x < y); } #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) template #else template #endif inline void swap #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) (sg_multiset_impl &x, sg_multiset_impl &y) #else (sg_multiset_impl &x, sg_multiset_impl &y) #endif { x.swap(y); } //! Helper metafunction to define a \c sg_multiset that yields to the same type when the //! same options (either explicitly or implicitly) are used. #if defined(BOOST_INTRUSIVE_DOXYGEN_INVOKED) || defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif struct make_sg_multiset { /// @cond typedef sg_multiset_impl < typename make_sgtree_opt::type > implementation_defined; /// @endcond typedef implementation_defined type; }; #ifndef BOOST_INTRUSIVE_DOXYGEN_INVOKED #if !defined(BOOST_INTRUSIVE_VARIADIC_TEMPLATES) template #else template #endif class sg_multiset : public make_sg_multiset::type { typedef typename make_sg_multiset ::type Base; BOOST_MOVABLE_BUT_NOT_COPYABLE(sg_multiset) public: typedef typename Base::value_compare value_compare; typedef typename Base::value_traits value_traits; typedef typename Base::iterator iterator; typedef typename Base::const_iterator const_iterator; //Assert if passed value traits are compatible with the type BOOST_STATIC_ASSERT((detail::is_same::value)); sg_multiset( const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(cmp, v_traits) {} template sg_multiset( Iterator b, Iterator e , const value_compare &cmp = value_compare() , const value_traits &v_traits = value_traits()) : Base(b, e, cmp, v_traits) {} sg_multiset(BOOST_RV_REF(sg_multiset) x) : Base(::boost::move(static_cast(x))) {} sg_multiset& operator=(BOOST_RV_REF(sg_multiset) x) { this->Base::operator=(::boost::move(static_cast(x))); return *this; } static sg_multiset &container_from_end_iterator(iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } static const sg_multiset &container_from_end_iterator(const_iterator end_iterator) { return static_cast(Base::container_from_end_iterator(end_iterator)); } static sg_multiset &container_from_iterator(iterator it) { return static_cast(Base::container_from_iterator(it)); } static const sg_multiset &container_from_iterator(const_iterator it) { return static_cast(Base::container_from_iterator(it)); } }; #endif } //namespace intrusive } //namespace boost #include #endif //BOOST_INTRUSIVE_SG_SET_HPP