/////////////////////////////////////////////////////////////// // Copyright 2012 John Maddock. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_ #ifndef BOOST_MP_CPP_INT_HPP #define BOOST_MP_CPP_INT_HPP #include #include #include #include #include #include #include #include #include #include #include #include #include #include namespace boost{ namespace multiprecision{ namespace backends{ #ifdef BOOST_MSVC // warning C4127: conditional expression is constant #pragma warning(push) #pragma warning(disable:4127 4351 4293 4996 4307 4702) #endif template >::type > struct cpp_int_backend; template struct cpp_int_base; // // Traits class determines the maximum and minimum precision values: // template struct max_precision; template struct max_precision > { static const unsigned value = is_void::value ? static_unsigned_max::value : (((MaxBits >= MinBits) && MaxBits) ? MaxBits : UINT_MAX); }; template struct min_precision; template struct min_precision > { static const unsigned value = (is_void::value ? static_unsigned_max::value : MinBits); }; // // Traits class determines whether the number of bits precision requested could fit in a native type, // we call this a "trivial" cpp_int: // template struct is_trivial_cpp_int { static const bool value = false; }; template struct is_trivial_cpp_int > { typedef cpp_int_backend self; static const bool value = is_void::value && (max_precision::value <= (sizeof(double_limb_type) * CHAR_BIT) - (SignType == signed_packed ? 1 : 0)); }; template struct is_trivial_cpp_int > { static const bool value = true; }; } // namespace backends // // Traits class to determine whether a cpp_int_backend is signed or not: // template struct is_unsigned_number > : public mpl::bool_<(SignType == unsigned_magnitude) || (SignType == unsigned_packed)>{}; namespace backends{ // // Traits class determines whether T should be implicitly convertible to U, or // whether the constructor should be made explicit. The latter happens if we // are losing the sign, or have fewer digits precision in the target type: // template struct is_implicit_cpp_int_conversion; template struct is_implicit_cpp_int_conversion, cpp_int_backend > { typedef cpp_int_backend t1; typedef cpp_int_backend t2; static const bool value = (is_signed_number::value || !is_signed_number::value) && (max_precision::value <= max_precision::value); }; // // Traits class to determine whether operations on a cpp_int may throw: // template struct is_non_throwing_cpp_int : public mpl::false_{}; template struct is_non_throwing_cpp_int > : public mpl::true_ {}; // // Traits class, determines whether the cpp_int is fixed precision or not: // template struct is_fixed_precision; template struct is_fixed_precision > : public mpl::bool_ >::value != UINT_MAX> {}; namespace detail{ inline void verify_new_size(unsigned new_size, unsigned min_size, const mpl::int_&) { if(new_size < min_size) BOOST_THROW_EXCEPTION(std::overflow_error("Unable to allocate sufficient storage for the value of the result: value overflows the maximum allowable magnitude.")); } inline void verify_new_size(unsigned /*new_size*/, unsigned /*min_size*/, const mpl::int_&){} template inline void verify_limb_mask(bool b, U limb, U mask, const mpl::int_&) { // When we mask out "limb" with "mask", do we loose bits? If so it's an overflow error: if(b && (limb & ~mask)) BOOST_THROW_EXCEPTION(std::overflow_error("Overflow in cpp_int arithmetic: there is insufficient precision in the target type to hold all of the bits of the result.")); } template inline void verify_limb_mask(bool /*b*/, U /*limb*/, U /*mask*/, const mpl::int_&){} } // // Now define the various data layouts that are possible as partial specializations of the base class, // starting with the default arbitrary precision signed integer type: // template struct cpp_int_base : private Allocator::template rebind::other { typedef typename Allocator::template rebind::other allocator_type; typedef typename allocator_type::pointer limb_pointer; typedef typename allocator_type::const_pointer const_limb_pointer; typedef mpl::int_ checked_type; // // Interface invariants: // BOOST_STATIC_ASSERT(!is_void::value); private: struct limb_data { unsigned capacity; limb_pointer data; }; public: BOOST_STATIC_CONSTANT(unsigned, limb_bits = sizeof(limb_type) * CHAR_BIT); BOOST_STATIC_CONSTANT(limb_type, max_limb_value = ~static_cast(0u)); BOOST_STATIC_CONSTANT(limb_type, sign_bit_mask = 1u << (limb_bits - 1)); BOOST_STATIC_CONSTANT(unsigned, internal_limb_count = MinBits ? MinBits / limb_bits + (MinBits % limb_bits ? 1 : 0) : sizeof(limb_data) / sizeof(limb_type)); BOOST_STATIC_CONSTANT(bool, variable = true); private: union data_type { limb_data ld; limb_type la[internal_limb_count]; limb_type first; double_limb_type double_first; BOOST_CONSTEXPR data_type() : first(0) {} BOOST_CONSTEXPR data_type(limb_type i) : first(i) {} BOOST_CONSTEXPR data_type(signed_limb_type i) : first(i < 0 ? -i : i) {} #ifdef BOOST_LITTLE_ENDIAN BOOST_CONSTEXPR data_type(double_limb_type i) : double_first(i) {} BOOST_CONSTEXPR data_type(signed_double_limb_type i) : double_first(i < 0 ? -i : i) {} #endif }; data_type m_data; unsigned m_limbs; bool m_sign, m_internal; public: // // Direct construction: // BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(limb_type i)BOOST_NOEXCEPT : m_data(i), m_limbs(1), m_sign(false), m_internal(true) { } BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(signed_limb_type i)BOOST_NOEXCEPT : m_data(i), m_limbs(1), m_sign(i < 0), m_internal(true) { } #if defined(BOOST_LITTLE_ENDIAN) BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(double_limb_type i)BOOST_NOEXCEPT : m_data(i), m_limbs(i > max_limb_value ? 2 : 1), m_sign(false), m_internal(true) { } BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(signed_double_limb_type i)BOOST_NOEXCEPT : m_data(i), m_limbs(i < 0 ? (-i > max_limb_value ? 2 : 1) : (i > max_limb_value ? 2 : 1)), m_sign(i < 0), m_internal(true) { } #endif // // Helper functions for getting at our internal data, and manipulating storage: // BOOST_MP_FORCEINLINE allocator_type& allocator() BOOST_NOEXCEPT { return *this; } BOOST_MP_FORCEINLINE const allocator_type& allocator()const BOOST_NOEXCEPT { return *this; } BOOST_MP_FORCEINLINE unsigned size()const BOOST_NOEXCEPT { return m_limbs; } BOOST_MP_FORCEINLINE limb_pointer limbs() BOOST_NOEXCEPT { return m_internal ? m_data.la : m_data.ld.data; } BOOST_MP_FORCEINLINE const_limb_pointer limbs()const BOOST_NOEXCEPT { return m_internal ? m_data.la : m_data.ld.data; } BOOST_MP_FORCEINLINE unsigned capacity()const BOOST_NOEXCEPT { return m_internal ? internal_limb_count : m_data.ld.capacity; } BOOST_MP_FORCEINLINE bool sign()const BOOST_NOEXCEPT { return m_sign; } void sign(bool b) BOOST_NOEXCEPT { m_sign = b; // Check for zero value: if(m_sign && (m_limbs == 1)) { if(limbs()[0] == 0) m_sign = false; } } void resize(unsigned new_size, unsigned min_size) { static const unsigned max_limbs = MaxBits / (CHAR_BIT * sizeof(limb_type)) + (MaxBits % (CHAR_BIT * sizeof(limb_type)) ? 1 : 0); // We never resize beyond MaxSize: if(new_size > max_limbs) new_size = max_limbs; detail::verify_new_size(new_size, min_size, checked_type()); // See if we have enough capacity already: unsigned cap = capacity(); if(new_size > cap) { // Allocate a new buffer and copy everything over: cap = (std::min)((std::max)(cap * 4, new_size), max_limbs); limb_pointer pl = allocator().allocate(cap); std::copy(limbs(), limbs() + size(), pl); if(!m_internal) allocator().deallocate(limbs(), capacity()); else m_internal = false; m_limbs = new_size; m_data.ld.capacity = cap; m_data.ld.data = pl; } else { m_limbs = new_size; } } BOOST_MP_FORCEINLINE void normalize() BOOST_NOEXCEPT { limb_pointer p = limbs(); while((m_limbs-1) && !p[m_limbs - 1])--m_limbs; } BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base() BOOST_NOEXCEPT : m_data(), m_limbs(1), m_sign(false), m_internal(true) {} BOOST_MP_FORCEINLINE cpp_int_base(const cpp_int_base& o) : allocator_type(o), m_limbs(0), m_internal(true) { resize(o.size(), o.size()); std::copy(o.limbs(), o.limbs() + o.size(), limbs()); m_sign = o.m_sign; } #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES cpp_int_base(cpp_int_base&& o) : allocator_type(static_cast(o)), m_limbs(o.m_limbs), m_sign(o.m_sign), m_internal(o.m_internal) { if(m_internal) { std::copy(o.limbs(), o.limbs() + o.size(), limbs()); } else { m_data.ld = o.m_data.ld; o.m_limbs = 0; o.m_internal = true; } } cpp_int_base& operator = (cpp_int_base&& o) BOOST_NOEXCEPT { if(!m_internal) allocator().deallocate(m_data.ld.data, m_data.ld.capacity); *static_cast(this) = static_cast(o); m_limbs = o.m_limbs; m_sign = o.m_sign; m_internal = o.m_internal; if(m_internal) { std::copy(o.limbs(), o.limbs() + o.size(), limbs()); } else { m_data.ld = o.m_data.ld; o.m_limbs = 0; o.m_internal = true; } return *this; } #endif BOOST_MP_FORCEINLINE ~cpp_int_base() BOOST_NOEXCEPT { if(!m_internal) allocator().deallocate(limbs(), capacity()); } void assign(const cpp_int_base& o) { if(this != &o) { static_cast(*this) = static_cast(o); m_limbs = 0; resize(o.size(), o.size()); std::copy(o.limbs(), o.limbs() + o.size(), limbs()); m_sign = o.m_sign; } } BOOST_MP_FORCEINLINE void negate() BOOST_NOEXCEPT { m_sign = !m_sign; // Check for zero value: if(m_sign && (m_limbs == 1)) { if(limbs()[0] == 0) m_sign = false; } } BOOST_MP_FORCEINLINE bool isneg()const BOOST_NOEXCEPT { return m_sign; } BOOST_MP_FORCEINLINE void do_swap(cpp_int_base& o) BOOST_NOEXCEPT { std::swap(m_data, o.m_data); std::swap(m_sign, o.m_sign); std::swap(m_internal, o.m_internal); std::swap(m_limbs, o.m_limbs); } }; #ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION template const unsigned cpp_int_base::limb_bits; template const limb_type cpp_int_base::max_limb_value; template const limb_type cpp_int_base::sign_bit_mask; template const unsigned cpp_int_base::internal_limb_count; template const bool cpp_int_base::variable; #endif template struct cpp_int_base : private Allocator::template rebind::other { // // There is currently no support for unsigned arbitrary precision arithmetic, largely // because it's not clear what subtraction should do: // BOOST_STATIC_ASSERT_MSG(((sizeof(Allocator) == 0) && !is_void::value), "There is curently no support for unsigned arbitrary precision integers."); }; // // Fixed precision (i.e. no allocator), signed-magnitude type with limb-usage count: // template struct cpp_int_base { typedef limb_type* limb_pointer; typedef const limb_type* const_limb_pointer; typedef mpl::int_ checked_type; // // Interface invariants: // BOOST_STATIC_ASSERT_MSG(MinBits > sizeof(double_limb_type) * CHAR_BIT, "Template parameter MinBits is inconsistent with the parameter trivial - did you mistakingly try to override the trivial parameter?"); public: BOOST_STATIC_CONSTANT(unsigned, limb_bits = sizeof(limb_type) * CHAR_BIT); BOOST_STATIC_CONSTANT(limb_type, max_limb_value = ~static_cast(0u)); BOOST_STATIC_CONSTANT(limb_type, sign_bit_mask = 1u << (limb_bits - 1)); BOOST_STATIC_CONSTANT(unsigned, internal_limb_count = MinBits / limb_bits + (MinBits % limb_bits ? 1 : 0)); BOOST_STATIC_CONSTANT(bool, variable = false); BOOST_STATIC_CONSTANT(limb_type, upper_limb_mask = MinBits % limb_bits ? (limb_type(1) << (MinBits % limb_bits)) -1 : (~limb_type(0))); BOOST_STATIC_ASSERT_MSG(internal_limb_count >= 2, "A fixed precision integer type must have at least 2 limbs"); private: union data_type{ limb_type m_data[internal_limb_count]; limb_type m_first_limb; double_limb_type m_double_first_limb; BOOST_CONSTEXPR data_type() : m_first_limb(0) {} BOOST_CONSTEXPR data_type(limb_type i) : m_first_limb(i) {} BOOST_CONSTEXPR data_type(double_limb_type i) : m_double_first_limb(i) {} } m_wrapper; boost::uint16_t m_limbs; bool m_sign; public: // // Direct construction: // BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(limb_type i)BOOST_NOEXCEPT : m_wrapper(i), m_limbs(1), m_sign(false) {} BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(signed_limb_type i)BOOST_NOEXCEPT : m_wrapper(limb_type(i < 0 ? -i : i)), m_limbs(1), m_sign(i < 0) {} #if defined(BOOST_LITTLE_ENDIAN) BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(double_limb_type i)BOOST_NOEXCEPT : m_wrapper(i), m_limbs(i > max_limb_value ? 2 : 1), m_sign(false) {} BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(signed_double_limb_type i)BOOST_NOEXCEPT : m_wrapper(double_limb_type(i < 0 ? -i : i)), m_limbs(i < 0 ? (-i > max_limb_value ? 2 : 1) : (i > max_limb_value ? 2 : 1)), m_sign(i < 0) {} #endif // // Helper functions for getting at our internal data, and manipulating storage: // BOOST_MP_FORCEINLINE unsigned size()const BOOST_NOEXCEPT { return m_limbs; } BOOST_MP_FORCEINLINE limb_pointer limbs() BOOST_NOEXCEPT { return m_wrapper.m_data; } BOOST_MP_FORCEINLINE const_limb_pointer limbs()const BOOST_NOEXCEPT { return m_wrapper.m_data; } BOOST_MP_FORCEINLINE bool sign()const BOOST_NOEXCEPT { return m_sign; } BOOST_MP_FORCEINLINE void sign(bool b) BOOST_NOEXCEPT { m_sign = b; // Check for zero value: if(m_sign && (m_limbs == 1)) { if(limbs()[0] == 0) m_sign = false; } } BOOST_MP_FORCEINLINE void resize(unsigned new_size, unsigned min_size) BOOST_NOEXCEPT_IF((Checked == unchecked)) { m_limbs = static_cast((std::min)(new_size, internal_limb_count)); detail::verify_new_size(m_limbs, min_size, checked_type()); } BOOST_MP_FORCEINLINE void normalize() BOOST_NOEXCEPT_IF((Checked == unchecked)) { limb_pointer p = limbs(); detail::verify_limb_mask(m_limbs == internal_limb_count, p[internal_limb_count-1], upper_limb_mask, checked_type()); p[internal_limb_count-1] &= upper_limb_mask; while((m_limbs-1) && !p[m_limbs - 1])--m_limbs; if((m_limbs == 1) && (!*p)) m_sign = false; // zero is always unsigned } BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base() : m_wrapper(limb_type(0u)), m_limbs(1), m_sign(false) {} BOOST_MP_FORCEINLINE cpp_int_base(const cpp_int_base& o) BOOST_NOEXCEPT : m_limbs(o.m_limbs), m_sign(o.m_sign) { std::copy(o.limbs(), o.limbs() + o.size(), limbs()); } //~cpp_int_base() BOOST_NOEXCEPT {} void assign(const cpp_int_base& o) BOOST_NOEXCEPT { if(this != &o) { resize(o.size(), o.size()); std::copy(o.limbs(), o.limbs() + o.size(), limbs()); m_sign = o.m_sign; } } BOOST_MP_FORCEINLINE void negate() BOOST_NOEXCEPT { m_sign = !m_sign; // Check for zero value: if(m_sign && (m_limbs == 1)) { if(limbs()[0] == 0) m_sign = false; } } BOOST_MP_FORCEINLINE bool isneg()const BOOST_NOEXCEPT { return m_sign; } BOOST_MP_FORCEINLINE void do_swap(cpp_int_base& o) BOOST_NOEXCEPT { for(unsigned i = 0; i < (std::max)(size(), o.size()); ++i) std::swap(m_wrapper.m_data[i], o.m_wrapper.m_data[i]); std::swap(m_sign, o.m_sign); std::swap(m_limbs, o.m_limbs); } }; #ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION template const unsigned cpp_int_base::limb_bits; template const limb_type cpp_int_base::max_limb_value; template const limb_type cpp_int_base::sign_bit_mask; template const unsigned cpp_int_base::internal_limb_count; template const bool cpp_int_base::variable; #endif // // Fixed precision (i.e. no allocator), unsigned type with limb-usage count: // template struct cpp_int_base { typedef limb_type* limb_pointer; typedef const limb_type* const_limb_pointer; typedef mpl::int_ checked_type; // // Interface invariants: // BOOST_STATIC_ASSERT_MSG(MinBits > sizeof(double_limb_type) * CHAR_BIT, "Template parameter MinBits is inconsistent with the parameter trivial - did you mistakingly try to override the trivial parameter?"); public: BOOST_STATIC_CONSTANT(unsigned, limb_bits = sizeof(limb_type) * CHAR_BIT); BOOST_STATIC_CONSTANT(limb_type, max_limb_value = ~static_cast(0u)); BOOST_STATIC_CONSTANT(limb_type, sign_bit_mask = 1u << (limb_bits - 1)); BOOST_STATIC_CONSTANT(unsigned, internal_limb_count = MinBits / limb_bits + (MinBits % limb_bits ? 1 : 0)); BOOST_STATIC_CONSTANT(bool, variable = false); BOOST_STATIC_CONSTANT(limb_type, upper_limb_mask = MinBits % limb_bits ? (limb_type(1) << (MinBits % limb_bits)) -1 : (~limb_type(0))); BOOST_STATIC_ASSERT_MSG(internal_limb_count >= 2, "A fixed precision integer type must have at least 2 limbs"); private: union data_type{ limb_type m_data[internal_limb_count]; limb_type m_first_limb; double_limb_type m_double_first_limb; BOOST_CONSTEXPR data_type() : m_first_limb(0) {} BOOST_CONSTEXPR data_type(limb_type i) : m_first_limb(i) {} BOOST_CONSTEXPR data_type(double_limb_type i) : m_double_first_limb(i) {} } m_wrapper; limb_type m_limbs; public: // // Direct construction: // BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(limb_type i)BOOST_NOEXCEPT : m_wrapper(i), m_limbs(1) {} BOOST_MP_FORCEINLINE cpp_int_base(signed_limb_type i)BOOST_NOEXCEPT_IF((Checked == unchecked)) : m_wrapper(limb_type(i < 0 ? -i : i)), m_limbs(1) { if(i < 0) negate(); } #ifdef BOOST_LITTLE_ENDIAN BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(double_limb_type i)BOOST_NOEXCEPT : m_wrapper(i), m_limbs(i > max_limb_value ? 2 : 1) {} BOOST_MP_FORCEINLINE cpp_int_base(signed_double_limb_type i)BOOST_NOEXCEPT_IF((Checked == unchecked)) : m_wrapper(double_limb_type(i < 0 ? -i : i)), m_limbs(i < 0 ? (-i > max_limb_value ? 2 : 1) : (i > max_limb_value ? 2 : 1)) { if(i < 0) negate(); } #endif // // Helper functions for getting at our internal data, and manipulating storage: // BOOST_MP_FORCEINLINE unsigned size()const BOOST_NOEXCEPT { return m_limbs; } BOOST_MP_FORCEINLINE limb_pointer limbs() BOOST_NOEXCEPT { return m_wrapper.m_data; } BOOST_MP_FORCEINLINE const_limb_pointer limbs()const BOOST_NOEXCEPT { return m_wrapper.m_data; } BOOST_MP_FORCEINLINE BOOST_CONSTEXPR bool sign()const BOOST_NOEXCEPT { return false; } BOOST_MP_FORCEINLINE void sign(bool b) BOOST_NOEXCEPT_IF((Checked == unchecked)) { if(b) negate(); } BOOST_MP_FORCEINLINE void resize(unsigned new_size, unsigned min_size) BOOST_NOEXCEPT_IF((Checked == unchecked)) { m_limbs = (std::min)(new_size, internal_limb_count); detail::verify_new_size(m_limbs, min_size, checked_type()); } BOOST_MP_FORCEINLINE void normalize() BOOST_NOEXCEPT_IF((Checked == unchecked)) { limb_pointer p = limbs(); detail::verify_limb_mask(m_limbs == internal_limb_count, p[internal_limb_count-1], upper_limb_mask, checked_type()); p[internal_limb_count-1] &= upper_limb_mask; while((m_limbs-1) && !p[m_limbs - 1])--m_limbs; } BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base() BOOST_NOEXCEPT : m_wrapper(limb_type(0u)), m_limbs(1) {} BOOST_MP_FORCEINLINE cpp_int_base(const cpp_int_base& o) BOOST_NOEXCEPT : m_limbs(o.m_limbs) { std::copy(o.limbs(), o.limbs() + o.size(), limbs()); } //~cpp_int_base() BOOST_NOEXCEPT {} BOOST_MP_FORCEINLINE void assign(const cpp_int_base& o) BOOST_NOEXCEPT { if(this != &o) { resize(o.size(), o.size()); std::copy(o.limbs(), o.limbs() + o.size(), limbs()); } } private: void check_negate(const mpl::int_&) { BOOST_THROW_EXCEPTION(std::range_error("Attempt to negate an unsigned number.")); } void check_negate(const mpl::int_&){} public: void negate() BOOST_NOEXCEPT_IF((Checked == unchecked)) { // Not so much a negate as a complement - this gets called when subtraction // would result in a "negative" number: unsigned i; if((m_limbs == 1) && (m_wrapper.m_data[0] == 0)) return; // negating zero is always zero, and always OK. check_negate(checked_type()); for(i = m_limbs; i < internal_limb_count; ++i) m_wrapper.m_data[i] = 0; m_limbs = internal_limb_count; for(i = 0; i < internal_limb_count; ++i) m_wrapper.m_data[i] = ~m_wrapper.m_data[i]; normalize(); eval_increment(static_cast& >(*this)); } BOOST_MP_FORCEINLINE BOOST_CONSTEXPR bool isneg()const BOOST_NOEXCEPT { return false; } BOOST_MP_FORCEINLINE void do_swap(cpp_int_base& o) BOOST_NOEXCEPT { for(unsigned i = 0; i < (std::max)(size(), o.size()); ++i) std::swap(m_wrapper.m_data[i], o.m_wrapper.m_data[i]); std::swap(m_limbs, o.m_limbs); } }; #ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION template const unsigned cpp_int_base::limb_bits; template const limb_type cpp_int_base::max_limb_value; template const limb_type cpp_int_base::sign_bit_mask; template const unsigned cpp_int_base::internal_limb_count; template const bool cpp_int_base::variable; #endif // // Traits classes to figure out a native type with N bits, these vary from boost::uint_t only // because some platforms have native integer types longer than long long, "really long long" anyone?? // template struct trivial_limb_type_imp { typedef double_limb_type type; }; template struct trivial_limb_type_imp { typedef typename boost::uint_t::least type; }; template struct trivial_limb_type : public trivial_limb_type_imp {}; // // Backend for fixed precision signed-magnitude type which will fit entirely inside a "double_limb_type": // template struct cpp_int_base { typedef typename trivial_limb_type::type local_limb_type; typedef local_limb_type* limb_pointer; typedef const local_limb_type* const_limb_pointer; typedef mpl::int_ checked_type; protected: BOOST_STATIC_CONSTANT(unsigned, limb_bits = sizeof(local_limb_type) * CHAR_BIT); BOOST_STATIC_CONSTANT(local_limb_type, limb_mask = (MinBits < limb_bits) ? local_limb_type((local_limb_type(~local_limb_type(0))) >> (limb_bits - MinBits)) : local_limb_type(~local_limb_type(0))); private: local_limb_type m_data; bool m_sign; // // Interface invariants: // BOOST_STATIC_ASSERT_MSG(MinBits <= sizeof(double_limb_type) * CHAR_BIT, "Template parameter MinBits is inconsistent with the parameter trivial - did you mistakingly try to override the trivial parameter?"); protected: template typename disable_if_c::is_specialized && (std::numeric_limits::digits <= (int)MinBits)>::type check_in_range(T val, const mpl::int_&) { BOOST_MP_USING_ABS typedef typename common_type::type common_type; if(static_cast(abs(val)) > static_cast(limb_mask)) BOOST_THROW_EXCEPTION(std::range_error("The argument to a cpp_int constructor exceeded the largest value it can represent.")); } template void check_in_range(T, const mpl::int_&){} template void check_in_range(T val) { check_in_range(val, checked_type()); } public: // // Direct construction: // template BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(SI i, typename enable_if_c::value && (Checked == unchecked) >::type const* = 0) BOOST_NOEXCEPT_IF((Checked == unchecked)) : m_data(i < 0 ? static_cast(-i) : static_cast(i)), m_sign(i < 0) {} template BOOST_MP_FORCEINLINE cpp_int_base(SI i, typename enable_if_c::value && (Checked == checked) >::type const* = 0) BOOST_NOEXCEPT_IF((Checked == unchecked)) : m_data(i < 0 ? static_cast(-i) : static_cast(i)), m_sign(i < 0) { check_in_range(i); } template BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(UI i, typename enable_if_c::value && (Checked == unchecked)>::type const* = 0) BOOST_NOEXCEPT_IF((Checked == unchecked)) : m_data(static_cast(i)), m_sign(false) {} template BOOST_MP_FORCEINLINE cpp_int_base(UI i, typename enable_if_c::value && (Checked == checked)>::type const* = 0) BOOST_NOEXCEPT_IF((Checked == unchecked)) : m_data(static_cast(i)), m_sign(false) { check_in_range(i); } template BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(F i, typename enable_if_c::value && (Checked == unchecked)>::type const* = 0) BOOST_NOEXCEPT_IF((Checked == unchecked)) : m_data(static_cast(std::fabs(i))), m_sign(i < 0) {} template BOOST_MP_FORCEINLINE cpp_int_base(F i, typename enable_if_c::value && (Checked == checked)>::type const* = 0) BOOST_NOEXCEPT_IF((Checked == unchecked)) : m_data(static_cast(std::fabs(i))), m_sign(i < 0) { check_in_range(i); } // // Helper functions for getting at our internal data, and manipulating storage: // BOOST_MP_FORCEINLINE BOOST_CONSTEXPR unsigned size()const BOOST_NOEXCEPT { return 1; } BOOST_MP_FORCEINLINE limb_pointer limbs() BOOST_NOEXCEPT { return &m_data; } BOOST_MP_FORCEINLINE const_limb_pointer limbs()const BOOST_NOEXCEPT { return &m_data; } BOOST_MP_FORCEINLINE bool sign()const BOOST_NOEXCEPT { return m_sign; } BOOST_MP_FORCEINLINE void sign(bool b) BOOST_NOEXCEPT { m_sign = b; // Check for zero value: if(m_sign && !m_data) { m_sign = false; } } BOOST_MP_FORCEINLINE void resize(unsigned new_size, unsigned min_size) { detail::verify_new_size(2, min_size, checked_type()); } BOOST_MP_FORCEINLINE void normalize() BOOST_NOEXCEPT_IF((Checked == unchecked)) { if(!m_data) m_sign = false; // zero is always unsigned detail::verify_limb_mask(true, m_data, limb_mask, checked_type()); m_data &= limb_mask; } BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base() : m_data(0), m_sign(false) {} BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(const cpp_int_base& o) BOOST_NOEXCEPT : m_data(o.m_data), m_sign(o.m_sign) {} //~cpp_int_base() BOOST_NOEXCEPT {} BOOST_MP_FORCEINLINE void assign(const cpp_int_base& o) BOOST_NOEXCEPT { m_data = o.m_data; m_sign = o.m_sign; } BOOST_MP_FORCEINLINE void negate() BOOST_NOEXCEPT { m_sign = !m_sign; // Check for zero value: if(m_data == 0) { m_sign = false; } } BOOST_MP_FORCEINLINE bool isneg()const BOOST_NOEXCEPT { return m_sign; } BOOST_MP_FORCEINLINE void do_swap(cpp_int_base& o) BOOST_NOEXCEPT { std::swap(m_sign, o.m_sign); std::swap(m_data, o.m_data); } }; // // Backend for unsigned fixed precision (i.e. no allocator) type which will fit entirely inside a "double_limb_type": // template struct cpp_int_base { typedef typename trivial_limb_type::type local_limb_type; typedef local_limb_type* limb_pointer; typedef const local_limb_type* const_limb_pointer; private: BOOST_STATIC_CONSTANT(unsigned, limb_bits = sizeof(local_limb_type) * CHAR_BIT); BOOST_STATIC_CONSTANT(local_limb_type, limb_mask = (~local_limb_type(0)) >> (limb_bits - MinBits)); local_limb_type m_data; typedef mpl::int_ checked_type; // // Interface invariants: // BOOST_STATIC_ASSERT_MSG(MinBits <= sizeof(double_limb_type) * CHAR_BIT, "Template parameter MinBits is inconsistent with the parameter trivial - did you mistakingly try to override the trivial parameter?"); protected: template typename disable_if_c::is_specialized && (std::numeric_limits::digits <= (int)MinBits)>::type check_in_range(T val, const mpl::int_&, const mpl::false_&) { typedef typename common_type::type common_type; if(static_cast(val) > limb_mask) BOOST_THROW_EXCEPTION(std::range_error("The argument to a cpp_int constructor exceeded the largest value it can represent.")); } template void check_in_range(T val, const mpl::int_&, const mpl::true_&) { typedef typename common_type::type common_type; if(static_cast(val) > limb_mask) BOOST_THROW_EXCEPTION(std::range_error("The argument to a cpp_int constructor exceeded the largest value it can represent.")); if(val < 0) BOOST_THROW_EXCEPTION(std::range_error("The argument to an unsigned cpp_int constructor was negative.")); } template BOOST_MP_FORCEINLINE void check_in_range(T, const mpl::int_&, const mpl::bool_&){} template BOOST_MP_FORCEINLINE void check_in_range(T val) { check_in_range(val, checked_type(), is_signed()); } public: // // Direct construction: // template BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(SI i, typename enable_if_c::value && (Checked == unchecked) >::type const* = 0) BOOST_NOEXCEPT_IF((Checked == unchecked)) : m_data(i < 0 ? 1 + ~static_cast(-i) : static_cast(i)) {} template BOOST_MP_FORCEINLINE cpp_int_base(SI i, typename enable_if_c::value && (Checked == checked) >::type const* = 0) BOOST_NOEXCEPT_IF((Checked == unchecked)) : m_data(i < 0 ? 1 + ~static_cast(-i) : static_cast(i)) { check_in_range(i); } template BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(UI i, typename enable_if_c::value && (Checked == unchecked) >::type const* = 0) BOOST_NOEXCEPT_IF((Checked == unchecked)) : m_data(static_cast(i)) {} template BOOST_MP_FORCEINLINE cpp_int_base(UI i, typename enable_if_c::value && (Checked == checked) >::type const* = 0) BOOST_NOEXCEPT_IF((Checked == unchecked)) : m_data(static_cast(i)) { check_in_range(i); } template BOOST_MP_FORCEINLINE cpp_int_base(F i, typename enable_if >::type const* = 0) BOOST_NOEXCEPT_IF((Checked == unchecked)) : m_data(static_cast(std::fabs(i))) { check_in_range(i); if(i < 0) negate(); } // // Helper functions for getting at our internal data, and manipulating storage: // BOOST_MP_FORCEINLINE BOOST_CONSTEXPR unsigned size()const BOOST_NOEXCEPT { return 1; } BOOST_MP_FORCEINLINE limb_pointer limbs() BOOST_NOEXCEPT { return &m_data; } BOOST_MP_FORCEINLINE const_limb_pointer limbs()const BOOST_NOEXCEPT { return &m_data; } BOOST_MP_FORCEINLINE BOOST_CONSTEXPR bool sign()const BOOST_NOEXCEPT { return false; } BOOST_MP_FORCEINLINE void sign(bool b) BOOST_NOEXCEPT_IF((Checked == unchecked)) { if(b) negate(); } BOOST_MP_FORCEINLINE void resize(unsigned new_size, unsigned min_size) { detail::verify_new_size(2, min_size, checked_type()); } BOOST_MP_FORCEINLINE void normalize() BOOST_NOEXCEPT_IF((Checked == unchecked)) { detail::verify_limb_mask(true, m_data, limb_mask, checked_type()); m_data &= limb_mask; } BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base() : m_data(0) {} BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_base(const cpp_int_base& o) BOOST_NOEXCEPT : m_data(o.m_data) {} //~cpp_int_base() BOOST_NOEXCEPT {} BOOST_MP_FORCEINLINE void assign(const cpp_int_base& o) BOOST_NOEXCEPT { m_data = o.m_data; } BOOST_MP_FORCEINLINE void negate() BOOST_NOEXCEPT_IF((Checked == unchecked)) { if(Checked == checked) { BOOST_THROW_EXCEPTION(std::range_error("Attempt to negate an unsigned type.")); } m_data = ~m_data; ++m_data; } BOOST_MP_FORCEINLINE BOOST_CONSTEXPR bool isneg()const BOOST_NOEXCEPT { return false; } BOOST_MP_FORCEINLINE void do_swap(cpp_int_base& o) BOOST_NOEXCEPT { std::swap(m_data, o.m_data); } }; // // Traits class, lets us know whether type T can be directly converted to the base type, // used to enable/disable constructors etc: // template struct is_allowed_cpp_int_base_conversion : public mpl::if_c< is_same::value || is_same::value #ifdef BOOST_LITTLE_ENDIAN || is_same::value || is_same::value #endif || (is_trivial_cpp_int::value && is_arithmetic::value), mpl::true_, mpl::false_ >::type {}; // // Now the actual backend, normalising parameters passed to the base class: // template struct cpp_int_backend : public cpp_int_base< min_precision >::value, max_precision >::value, SignType, Checked, Allocator, is_trivial_cpp_int >::value> { typedef cpp_int_backend self_type; typedef cpp_int_base< min_precision::value, max_precision::value, SignType, Checked, Allocator, is_trivial_cpp_int::value> base_type; typedef mpl::bool_::value> trivial_tag; public: typedef typename mpl::if_< trivial_tag, mpl::list< signed char, short, int, long, long long, signed_double_limb_type>, mpl::list >::type signed_types; typedef typename mpl::if_< trivial_tag, mpl::list, mpl::list >::type unsigned_types; typedef typename mpl::if_< trivial_tag, mpl::list, mpl::list >::type float_types; typedef mpl::int_ checked_type; BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_backend() BOOST_NOEXCEPT{} BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_backend(const cpp_int_backend& o) BOOST_NOEXCEPT_IF(boost::is_void::value) : base_type(o) {} #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_backend(cpp_int_backend&& o) BOOST_NOEXCEPT : base_type(static_cast(o)) {} #endif // // Direct construction from arithmetic type: // template BOOST_MP_FORCEINLINE BOOST_CONSTEXPR cpp_int_backend(Arg i, typename enable_if_c::value >::type const* = 0)BOOST_NOEXCEPT_IF((Checked == unchecked) && boost::is_void::value) : base_type(i) {} private: template void do_assign(const cpp_int_backend& other, mpl::true_ const&, mpl::true_ const &) { // Assigning trivial type to trivial type: this->check_in_range(*other.limbs()); *this->limbs() = static_cast(*other.limbs()); this->sign(other.sign()); this->normalize(); } template void do_assign(const cpp_int_backend& other, mpl::true_ const&, mpl::false_ const &) { // non-trivial to trivial narrowing conversion: double_limb_type v = *other.limbs(); if(other.size() > 1) { v |= static_cast(other.limbs()[1]) << bits_per_limb; if((Checked == checked) && (other.size() > 2)) { BOOST_THROW_EXCEPTION(std::range_error("Assignment of a cpp_int that is out of range for the target type.")); } } *this = v; this->sign(other.sign()); this->normalize(); } template void do_assign(const cpp_int_backend& other, mpl::false_ const&, mpl::true_ const &) { // trivial to non-trivial, treat the trivial argument as if it were an unsigned arithmetic type, then set the sign afterwards: *this = static_cast< typename boost::multiprecision::detail::canonical< typename cpp_int_backend::local_limb_type, cpp_int_backend >::type >(*other.limbs()); this->sign(other.sign()); } template void do_assign(const cpp_int_backend& other, mpl::false_ const&, mpl::false_ const &) { // regular non-trivial to non-trivial assign: this->resize(other.size(), other.size()); std::copy(other.limbs(), other.limbs() + (std::min)(other.size(), this->size()), this->limbs()); this->sign(other.sign()); this->normalize(); } public: template cpp_int_backend( const cpp_int_backend& other, typename enable_if_c, self_type>::value>::type* = 0) : base_type() { do_assign( other, mpl::bool_::value>(), mpl::bool_ >::value>()); } template explicit cpp_int_backend( const cpp_int_backend& other, typename disable_if_c, self_type>::value>::type* = 0) : base_type() { do_assign( other, mpl::bool_::value>(), mpl::bool_ >::value>()); } template cpp_int_backend& operator=( const cpp_int_backend& other) { do_assign( other, mpl::bool_::value>(), mpl::bool_ >::value>()); return *this; } #if 0 template cpp_int_backend(const cpp_int_backend& other, typename enable_if_c >::value >::type* = 0) : base_type() { *this = static_cast< typename boost::multiprecision::detail::canonical< typename cpp_int_backend::local_limb_type, cpp_int_backend >::type >(*other.limbs()); this->sign(other.sign()); } template typename enable_if_c >::value, cpp_int_backend&>::type operator=(const cpp_int_backend& other) { *this = static_cast< typename boost::multiprecision::detail::canonical< typename cpp_int_backend::local_limb_type, cpp_int_backend >::type >(*other.limbs()); this->sign(other.sign()); return *this; } template cpp_int_backend(const cpp_int_backend& other, typename enable_if_c< ((is_signed_number >::value || !is_signed_number >::value) && (!is_void::value || (is_void::value && (MinBits >= MinBits2))) && !is_trivial_cpp_int >::value && !is_trivial_cpp_int >::value) >::type* = 0) : base_type() { this->resize(other.size(), other_size()); std::copy(other.limbs(), other.limbs() + (std::min)(other.size(), this->size()), this->limbs()); this->sign(other.sign()); } template explicit cpp_int_backend(const cpp_int_backend& other, typename enable_if_c< (!((is_signed_number >::value || !is_signed_number >::value) && (!is_void::value || (is_void::value && (MinBits >= MinBits2)))) && !is_trivial_cpp_int >::value && is_trivial_cpp_int >::value) >::type* = 0) : base_type() { double_limb_type v = *other.limbs(); if(other.size() > 1) v |= static_cast(other.limbs()[1]) << bits_per_limb; *this = v; this->sign(other.sign()); } template explicit cpp_int_backend(const cpp_int_backend& other, typename enable_if_c< (!((is_signed_number >::value || !is_signed_number >::value)) && (!is_void::value || (is_void::value && (MinBits >= MinBits2))) && !is_trivial_cpp_int >::value && !is_trivial_cpp_int >::value) >::type* = 0) : base_type() { this->resize(other.size(), other.size()); std::copy(other.limbs(), other.limbs() + (std::min)(other.size(), this->size()), this->limbs()); this->sign(other.sign()); } template explicit cpp_int_backend(const cpp_int_backend& other, typename enable_if_c< (!((is_signed_number >::value || !is_signed_number >::value)) && (!is_void::value || (is_void::value && (MinBits >= MinBits2))) && !is_trivial_cpp_int >::value && is_trivial_cpp_int >::value) >::type* = 0) : base_type() { double_limb_type v = *other.limbs(); if(other.size() > 1) v |= static_cast(other.limbs()[1]) << bits_per_limb; *this = v; this->sign(other.sign()); } template typename enable_if_c<(!is_trivial_cpp_int >::value && !is_trivial_cpp_int >::value), cpp_int_backend&>::type operator=(const cpp_int_backend& other) { this->resize(other.size(), other.size()); std::copy(other.limbs(), other.limbs() + (std::min)(other.size(), this->size()), this->limbs()); this->sign(other.sign()); return *this; } template typename enable_if_c<(!is_trivial_cpp_int >::value && is_trivial_cpp_int >::value), cpp_int_backend&>::type operator=(const cpp_int_backend& other) { double_limb_type v = *other.limbs(); if(other.size() > 1) v |= static_cast(other.limbs()[1]) << bits_per_limb; *this = v; this->sign(other.sign()); } #endif BOOST_MP_FORCEINLINE cpp_int_backend& operator = (const cpp_int_backend& o) BOOST_NOEXCEPT_IF((Checked == unchecked) && boost::is_void::value) { this->assign(o); return *this; } #ifndef BOOST_NO_CXX11_RVALUE_REFERENCES BOOST_MP_FORCEINLINE cpp_int_backend& operator = (cpp_int_backend&& o) BOOST_NOEXCEPT_IF(boost::is_void::value) { *static_cast(this) = static_cast(o); return *this; } #endif private: template typename enable_if >::type do_assign_arithmetic(A val, const mpl::true_&) { this->check_in_range(val); *this->limbs() = static_cast(val); this->normalize(); } template typename disable_if >::type do_assign_arithmetic(A val, const mpl::true_&) { this->check_in_range(val); *this->limbs() = (val < 0) ? static_cast(-val) : static_cast(val); this->sign(val < 0); this->normalize(); } BOOST_MP_FORCEINLINE void do_assign_arithmetic(limb_type i, const mpl::false_&) BOOST_NOEXCEPT { this->resize(1, 1); *this->limbs() = i; this->sign(false); } BOOST_MP_FORCEINLINE void do_assign_arithmetic(signed_limb_type i, const mpl::false_&) BOOST_NOEXCEPT_IF((Checked == unchecked)) { this->resize(1, 1); *this->limbs() = static_cast(std::abs(i)); this->sign(i < 0); } void do_assign_arithmetic(double_limb_type i, const mpl::false_&) { BOOST_STATIC_ASSERT(sizeof(i) == 2 * sizeof(limb_type)); BOOST_STATIC_ASSERT(base_type::internal_limb_count >= 2); typename base_type::limb_pointer p = this->limbs(); *p = static_cast(i); p[1] = static_cast(i >> base_type::limb_bits); this->resize(p[1] ? 2 : 1, p[1] ? 2 : 1); this->sign(false); } void do_assign_arithmetic(signed_double_limb_type i, const mpl::false_&) { BOOST_STATIC_ASSERT(sizeof(i) == 2 * sizeof(limb_type)); BOOST_STATIC_ASSERT(base_type::internal_limb_count >= 2); bool s = false; if(i < 0) { s = true; i = -i; } else this->sign(false); typename base_type::limb_pointer p = this->limbs(); *p = static_cast(i); p[1] = static_cast(i >> base_type::limb_bits); this->resize(p[1] ? 2 : 1, p[1] ? 2 : 1); this->sign(s); } void do_assign_arithmetic(long double a, const mpl::false_&) { using default_ops::eval_add; using default_ops::eval_subtract; using std::frexp; using std::ldexp; using std::floor; if (a == 0) { *this = static_cast(0u); } if (a == 1) { *this = static_cast(1u); } BOOST_ASSERT(!(boost::math::isinf)(a)); BOOST_ASSERT(!(boost::math::isnan)(a)); int e; long double f, term; *this = static_cast(0u); f = frexp(a, &e); static const limb_type shift = std::numeric_limits::digits; while(f) { // extract int sized bits from f: f = ldexp(f, shift); term = floor(f); e -= shift; eval_left_shift(*this, shift); if(term > 0) eval_add(*this, static_cast(term)); else eval_subtract(*this, static_cast(-term)); f -= term; } if(e > 0) eval_left_shift(*this, e); else if(e < 0) eval_right_shift(*this, -e); } public: template BOOST_MP_FORCEINLINE cpp_int_backend& operator = (Arithmetic val) { do_assign_arithmetic(val, trivial_tag()); return *this; } private: void do_assign_string(const char* s, const mpl::true_&) { std::size_t n = s ? std::strlen(s) : 0; *this->limbs() = 0; unsigned radix = 10; bool isneg = false; if(n && (*s == '-')) { --n; ++s; isneg = true; } if(n && (*s == '0')) { if((n > 1) && ((s[1] == 'x') || (s[1] == 'X'))) { radix = 16; s +=2; n -= 2; } else { radix = 8; n -= 1; } } if(n) { unsigned val; while(*s) { if(*s >= '0' && *s <= '9') val = *s - '0'; else if(*s >= 'a' && *s <= 'f') val = 10 + *s - 'a'; else if(*s >= 'A' && *s <= 'F') val = 10 + *s - 'A'; else val = radix + 1; if(val >= radix) { BOOST_THROW_EXCEPTION(std::runtime_error("Unexpected content found while parsing character string.")); } *this->limbs() = detail::checked_multiply(*this->limbs(), static_cast(radix), checked_type()); *this->limbs() = detail::checked_add(*this->limbs(), static_cast(val), checked_type()); ++s; } } if(isneg) this->negate(); } void do_assign_string(const char* s, const mpl::false_&) { using default_ops::eval_multiply; using default_ops::eval_add; std::size_t n = s ? std::strlen(s) : 0; *this = static_cast(0u); unsigned radix = 10; bool isneg = false; if(n && (*s == '-')) { --n; ++s; isneg = true; } if(n && (*s == '0')) { if((n > 1) && ((s[1] == 'x') || (s[1] == 'X'))) { radix = 16; s +=2; n -= 2; } else { radix = 8; n -= 1; } } if(n) { if(radix == 8 || radix == 16) { unsigned shift = radix == 8 ? 3 : 4; unsigned block_count = base_type::limb_bits / shift; unsigned block_shift = shift * block_count; limb_type val, block; while(*s) { block = 0; for(unsigned i = 0; (i < block_count); ++i) { if(*s >= '0' && *s <= '9') val = *s - '0'; else if(*s >= 'a' && *s <= 'f') val = 10 + *s - 'a'; else if(*s >= 'A' && *s <= 'F') val = 10 + *s - 'A'; else val = base_type::max_limb_value; if(val >= radix) { BOOST_THROW_EXCEPTION(std::runtime_error("Unexpected content found while parsing character string.")); } block <<= shift; block |= val; if(!*++s) { // final shift is different: block_shift = (i + 1) * shift; break; } } eval_left_shift(*this, block_shift); this->limbs()[0] |= block; } } else { // Base 10, we extract blocks of size 10^9 at a time, that way // the number of multiplications is kept to a minimum: limb_type block_mult = max_block_10; while(*s) { limb_type block = 0; for(unsigned i = 0; i < digits_per_block_10; ++i) { limb_type val; if(*s >= '0' && *s <= '9') val = *s - '0'; else BOOST_THROW_EXCEPTION(std::runtime_error("Unexpected character encountered in input.")); block *= 10; block += val; if(!*++s) { block_mult = block_multiplier(i); break; } } eval_multiply(*this, block_mult); eval_add(*this, block); } } } if(isneg) this->negate(); } public: cpp_int_backend& operator = (const char* s) { do_assign_string(s, trivial_tag()); return *this; } BOOST_MP_FORCEINLINE void swap(cpp_int_backend& o) BOOST_NOEXCEPT { this->do_swap(o); } private: std::string do_get_trivial_string(std::ios_base::fmtflags f, const mpl::false_&)const { if(this->sign() && (((f & std::ios_base::hex) == std::ios_base::hex) || ((f & std::ios_base::oct) == std::ios_base::oct))) BOOST_THROW_EXCEPTION(std::runtime_error("Base 8 or 16 printing of negative numbers is not supported.")); std::stringstream ss; ss.flags(f & ~std::ios_base::showpos); ss << *this->limbs(); std::string result; if(this->sign()) result += '-'; else if(f & std::ios_base::showpos) result += '+'; result += ss.str(); return result; } std::string do_get_trivial_string(std::ios_base::fmtflags f, const mpl::true_&)const { // Even though we have only one limb, we can't do IO on it :-( int base = 10; if((f & std::ios_base::oct) == std::ios_base::oct) base = 8; else if((f & std::ios_base::hex) == std::ios_base::hex) base = 16; std::string result; unsigned Bits = sizeof(typename base_type::local_limb_type) * CHAR_BIT; if(base == 8 || base == 16) { if(this->sign()) BOOST_THROW_EXCEPTION(std::runtime_error("Base 8 or 16 printing of negative numbers is not supported.")); limb_type shift = base == 8 ? 3 : 4; limb_type mask = static_cast((1u << shift) - 1); typename base_type::local_limb_type v = *this->limbs(); result.assign(Bits / shift + (Bits % shift ? 1 : 0), '0'); int pos = result.size() - 1; for(unsigned i = 0; i < Bits / shift; ++i) { char c = '0' + static_cast(v & mask); if(c > '9') c += 'A' - '9' - 1; result[pos--] = c; v >>= shift; } if(Bits % shift) { mask = static_cast((1u << (Bits % shift)) - 1); char c = '0' + static_cast(v & mask); if(c > '9') c += 'A' - '9'; result[pos] = c; } // // Get rid of leading zeros: // std::string::size_type n = result.find_first_not_of('0'); if(!result.empty() && (n == std::string::npos)) n = result.size() - 1; result.erase(0, n); if(f & std::ios_base::showbase) { const char* pp = base == 8 ? "0" : "0x"; result.insert(0, pp); } } else { result.assign(Bits / 3 + 1, '0'); int pos = result.size() - 1; typename base_type::local_limb_type v(*this->limbs()); bool neg = false; if(this->sign()) { neg = true; } while(v) { result[pos] = (v % 10) + '0'; --pos; v /= 10; } unsigned n = result.find_first_not_of('0'); result.erase(0, n); if(result.empty()) result = "0"; if(neg) result.insert(0, 1, '-'); else if(f & std::ios_base::showpos) result.insert(0, 1, '+'); } return result; } std::string do_get_string(std::ios_base::fmtflags f, const mpl::true_&)const { #ifdef BOOST_MP_NO_DOUBLE_LIMB_TYPE_IO return do_get_trivial_string(f, mpl::bool_::value>()); #else return do_get_trivial_string(f, mpl::bool_()); #endif } std::string do_get_string(std::ios_base::fmtflags f, const mpl::false_&)const { using default_ops::eval_get_sign; int base = 10; if((f & std::ios_base::oct) == std::ios_base::oct) base = 8; else if((f & std::ios_base::hex) == std::ios_base::hex) base = 16; std::string result; unsigned Bits = this->size() * base_type::limb_bits; if(base == 8 || base == 16) { if(this->sign()) BOOST_THROW_EXCEPTION(std::runtime_error("Base 8 or 16 printing of negative numbers is not supported.")); limb_type shift = base == 8 ? 3 : 4; limb_type mask = static_cast((1u << shift) - 1); cpp_int_backend t(*this); result.assign(Bits / shift + (Bits % shift ? 1 : 0), '0'); int pos = result.size() - 1; for(unsigned i = 0; i < Bits / shift; ++i) { char c = '0' + static_cast(t.limbs()[0] & mask); if(c > '9') c += 'A' - '9' - 1; result[pos--] = c; eval_right_shift(t, shift); } if(Bits % shift) { mask = static_cast((1u << (Bits % shift)) - 1); char c = '0' + static_cast(t.limbs()[0] & mask); if(c > '9') c += 'A' - '9'; result[pos] = c; } // // Get rid of leading zeros: // std::string::size_type n = result.find_first_not_of('0'); if(!result.empty() && (n == std::string::npos)) n = result.size() - 1; result.erase(0, n); if(f & std::ios_base::showbase) { const char* pp = base == 8 ? "0" : "0x"; result.insert(0, pp); } } else { result.assign(Bits / 3 + 1, '0'); int pos = result.size() - 1; cpp_int_backend t(*this); cpp_int_backend r; bool neg = false; if(t.sign()) { t.negate(); neg = true; } if(this->size() == 1) { result = boost::lexical_cast(t.limbs()[0]); } else { cpp_int_backend block10; block10 = max_block_10; while(eval_get_sign(t) != 0) { cpp_int_backend t2; divide_unsigned_helper(&t2, t, block10, r); t = t2; limb_type v = r.limbs()[0]; for(unsigned i = 0; i < digits_per_block_10; ++i) { char c = '0' + v % 10; v /= 10; result[pos] = c; if(pos-- == 0) break; } } } unsigned n = result.find_first_not_of('0'); result.erase(0, n); if(result.empty()) result = "0"; if(neg) result.insert(0, 1, '-'); else if(f & std::ios_base::showpos) result.insert(0, 1, '+'); } return result; } public: std::string str(std::streamsize /*digits*/, std::ios_base::fmtflags f)const { return do_get_string(f, trivial_tag()); } template int compare_imp(const cpp_int_backend& o, const mpl::false_&, const mpl::false_&)const BOOST_NOEXCEPT { if(this->sign() != o.sign()) return this->sign() ? -1 : 1; // Only do the compare if the same sign: int result = compare_unsigned(o); if(this->sign()) result = -result; return result; } template int compare_imp(const cpp_int_backend& o, const mpl::true_&, const mpl::false_&)const { cpp_int_backend t(*this); return t.compare(o); } template int compare_imp(const cpp_int_backend& o, const mpl::false_&, const mpl::true_&)const { cpp_int_backend t(o); return compare(t); } template int compare_imp(const cpp_int_backend& o, const mpl::true_&, const mpl::true_&)const BOOST_NOEXCEPT { if(this->sign()) { if(o.sign()) { return *this->limbs() < *o.limbs() ? 1 : (*this->limbs() > *o.limbs() ? -1 : 0); } else return -1; } else { if(o.sign()) return 1; return *this->limbs() < *o.limbs() ? -1 : (*this->limbs() > *o.limbs() ? 1 : 0); } } template int compare(const cpp_int_backend& o)const BOOST_NOEXCEPT { typedef mpl::bool_ >::value> t1; typedef mpl::bool_ >::value> t2; return compare_imp(o, t1(), t2()); } template int compare_unsigned(const cpp_int_backend& o)const BOOST_NOEXCEPT { if(this->size() != o.size()) { return this->size() > o.size() ? 1 : -1; } typename base_type::const_limb_pointer pa = this->limbs(); typename base_type::const_limb_pointer pb = o.limbs(); for(int i = this->size() - 1; i >= 0; --i) { if(pa[i] != pb[i]) return pa[i] > pb[i] ? 1 : -1; } return 0; } template BOOST_MP_FORCEINLINE typename enable_if, int>::type compare(Arithmetic i)const { // braindead version: cpp_int_backend t; t = i; return compare(t); } }; } // namespace backends namespace detail{ template struct double_precision_type; template struct double_precision_type > { typedef typename mpl::if_c< backends::is_fixed_precision >::value, backends::cpp_int_backend< (is_void::value ? 2 * backends::max_precision >::value : MinBits), 2 * backends::max_precision >::value, SignType, Checked, Allocator>, backends::cpp_int_backend >::type type; }; } template struct expression_template_default > { static const expression_template_option value = et_off; }; using boost::multiprecision::backends::cpp_int_backend; template struct number_category > : public mpl::int_{}; typedef number > cpp_int; typedef rational_adapter > cpp_rational_backend; typedef number cpp_rational; // Fixed precision unsigned types: typedef number > uint128_t; typedef number > uint256_t; typedef number > uint512_t; typedef number > uint1024_t; // Fixed precision signed types: typedef number > int128_t; typedef number > int256_t; typedef number > int512_t; typedef number > int1024_t; // Over again, but with checking enabled this time: typedef number > checked_cpp_int; typedef rational_adapter > checked_cpp_rational_backend; typedef number checked_cpp_rational; // Fixed precision unsigned types: typedef number > checked_uint128_t; typedef number > checked_uint256_t; typedef number > checked_uint512_t; typedef number > checked_uint1024_t; // Fixed precision signed types: typedef number > checked_int128_t; typedef number > checked_int256_t; typedef number > checked_int512_t; typedef number > checked_int1024_t; #ifdef BOOST_NO_SFINAE_EXPR namespace detail{ template struct is_explicitly_convertible, cpp_int_backend > : public mpl::true_ {}; } #endif }} // namespaces // // Last of all we include the implementations of all the eval_* non member functions: // #include #include #include #include #include #include #include #endif