/////////////////////////////////////////////////////////////// // Copyright Jens Maurer 2006-1011 // Copyright Steven Watanabe 2011 // Copyright 2012 John Maddock. Distributed under the Boost // Software License, Version 1.0. (See accompanying file // LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_ #ifndef BOOST_MP_RANDOM_HPP #define BOOST_MP_RANDOM_HPP #ifdef BOOST_MSVC #pragma warning(push) #pragma warning(disable:4127) #endif #include namespace boost{ namespace random{ namespace detail{ // // This is a horrible hack: this declaration has to appear before the definition of // uniform_int_distribution, otherwise it won't be used... // Need to find a better solution, like make Boost.Random safe to use with // UDT's and depricate/remove this header altogether. // template boost::multiprecision::number generate_uniform_int(Engine& eng, const boost::multiprecision::number& min_value, const boost::multiprecision::number& max_value); }}} #include #include namespace boost{ namespace random{ namespace detail{ template struct subtract, true> { typedef boost::multiprecision::number result_type; result_type operator()(result_type const& x, result_type const& y) { return x - y; } }; } template class independent_bits_engine > { public: typedef Engine base_type; typedef boost::multiprecision::number result_type; static result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () { return 0; } // This is the only function we modify compared to the primary template: static result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () { // This expression allows for the possibility that w == std::numeric_limits::digits: return (((result_type(1) << (w - 1)) - 1) << 1) + 1; } independent_bits_engine() { } BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(independent_bits_engine, result_type, seed_arg) { _base.seed(seed_arg); } BOOST_RANDOM_DETAIL_SEED_SEQ_CONSTRUCTOR(independent_bits_engine, SeedSeq, seq) { _base.seed(seq); } independent_bits_engine(const base_type& base_arg) : _base(base_arg) {} template independent_bits_engine(It& first, It last) : _base(first, last) { } void seed() { _base.seed(); } BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(independent_bits_engine, result_type, seed_arg) { _base.seed(seed_arg); } BOOST_RANDOM_DETAIL_SEED_SEQ_SEED(independent_bits_engine, SeedSeq, seq) { _base.seed(seq); } template void seed(It& first, It last) { _base.seed(first, last); } result_type operator()() { // While it may seem wasteful to recalculate this // every time, both msvc and gcc can propagate // constants, resolving this at compile time. base_unsigned range = detail::subtract()((_base.max)(), (_base.min)()); std::size_t m = (range == (std::numeric_limits::max)()) ? std::numeric_limits::digits : detail::integer_log2(range + 1); std::size_t n = (w + m - 1) / m; std::size_t w0, n0; base_unsigned y0, y1; base_unsigned y0_mask, y1_mask; calc_params(n, range, w0, n0, y0, y1, y0_mask, y1_mask); if(base_unsigned(range - y0 + 1) > y0 / n) { // increment n and try again. ++n; calc_params(n, range, w0, n0, y0, y1, y0_mask, y1_mask); } BOOST_ASSERT(n0*w0 + (n - n0)*(w0 + 1) == w); result_type S = 0; for(std::size_t k = 0; k < n0; ++k) { base_unsigned u; do { u = detail::subtract()(_base(), (_base.min)()); } while(u > base_unsigned(y0 - 1)); S = (S << w0) + (u & y0_mask); } for(std::size_t k = 0; k < (n - n0); ++k) { base_unsigned u; do { u = detail::subtract()(_base(), (_base.min)()); } while(u > base_unsigned(y1 - 1)); S = (S << (w0 + 1)) + (u & y1_mask); } return S; } /** Fills a range with random values */ template void generate(Iter first, Iter last) { detail::generate_from_int(*this, first, last); } /** Advances the state of the generator by @c z. */ void discard(boost::uintmax_t z) { for(boost::uintmax_t i = 0; i < z; ++i) { (*this)(); } } const base_type& base() const { return _base; } /** * Writes the textual representation if the generator to a @c std::ostream. * The textual representation of the engine is the textual representation * of the base engine. */ BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, independent_bits_engine, r) { os << r._base; return os; } /** * Reads the state of an @c independent_bits_engine from a * @c std::istream. */ BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, independent_bits_engine, r) { is >> r._base; return is; } /** * Returns: true iff the two @c independent_bits_engines will * produce the same sequence of values. */ BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(independent_bits_engine, x, y) { return x._base == y._base; } /** * Returns: true iff the two @c independent_bits_engines will * produce different sequences of values. */ BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(independent_bits_engine) private: /// \cond show_private typedef typename base_type::result_type base_result; typedef typename make_unsigned::type base_unsigned; void calc_params( std::size_t n, base_unsigned range, std::size_t& w0, std::size_t& n0, base_unsigned& y0, base_unsigned& y1, base_unsigned& y0_mask, base_unsigned& y1_mask) { BOOST_ASSERT(w >= n); w0 = w/n; n0 = n - w % n; y0_mask = (base_unsigned(2) << (w0 - 1)) - 1; y1_mask = (y0_mask << 1) | 1; y0 = (range + 1) & ~y0_mask; y1 = (range + 1) & ~y1_mask; BOOST_ASSERT(y0 != 0 || base_unsigned(range + 1) == 0); } /// \endcond Engine _base; }; template class uniform_smallint > { public: typedef boost::multiprecision::number input_type; typedef boost::multiprecision::number result_type; class param_type { public: typedef uniform_smallint distribution_type; /** constructs the parameters of a @c uniform_smallint distribution. */ param_type(result_type const& min_arg = 0, result_type const& max_arg = 9) : _min(min_arg), _max(max_arg) { BOOST_ASSERT(_min <= _max); } /** Returns the minimum value. */ result_type a() const { return _min; } /** Returns the maximum value. */ result_type b() const { return _max; } /** Writes the parameters to a @c std::ostream. */ BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, param_type, parm) { os << parm._min << " " << parm._max; return os; } /** Reads the parameters from a @c std::istream. */ BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, param_type, parm) { is >> parm._min >> std::ws >> parm._max; return is; } /** Returns true if the two sets of parameters are equal. */ BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(param_type, lhs, rhs) { return lhs._min == rhs._min && lhs._max == rhs._max; } /** Returns true if the two sets of parameters are different. */ BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(param_type) private: result_type _min; result_type _max; }; /** * Constructs a @c uniform_smallint. @c min and @c max are the * lower and upper bounds of the output range, respectively. */ explicit uniform_smallint(result_type const& min_arg = 0, result_type const& max_arg = 9) : _min(min_arg), _max(max_arg) {} /** * Constructs a @c uniform_smallint from its parameters. */ explicit uniform_smallint(const param_type& parm) : _min(parm.a()), _max(parm.b()) {} /** Returns the minimum value of the distribution. */ result_type a() const { return _min; } /** Returns the maximum value of the distribution. */ result_type b() const { return _max; } /** Returns the minimum value of the distribution. */ result_type min BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _min; } /** Returns the maximum value of the distribution. */ result_type max BOOST_PREVENT_MACRO_SUBSTITUTION () const { return _max; } /** Returns the parameters of the distribution. */ param_type param() const { return param_type(_min, _max); } /** Sets the parameters of the distribution. */ void param(const param_type& parm) { _min = parm.a(); _max = parm.b(); } /** * Effects: Subsequent uses of the distribution do not depend * on values produced by any engine prior to invoking reset. */ void reset() { } /** Returns a value uniformly distributed in the range [min(), max()]. */ template result_type operator()(Engine& eng) const { typedef typename Engine::result_type base_result; return generate(eng, boost::is_integral()); } /** Returns a value uniformly distributed in the range [param.a(), param.b()]. */ template result_type operator()(Engine& eng, const param_type& parm) const { return uniform_smallint(parm)(eng); } /** Writes the distribution to a @c std::ostream. */ BOOST_RANDOM_DETAIL_OSTREAM_OPERATOR(os, uniform_smallint, ud) { os << ud._min << " " << ud._max; return os; } /** Reads the distribution from a @c std::istream. */ BOOST_RANDOM_DETAIL_ISTREAM_OPERATOR(is, uniform_smallint, ud) { is >> ud._min >> std::ws >> ud._max; return is; } /** * Returns true if the two distributions will produce identical * sequences of values given equal generators. */ BOOST_RANDOM_DETAIL_EQUALITY_OPERATOR(uniform_smallint, lhs, rhs) { return lhs._min == rhs._min && lhs._max == rhs._max; } /** * Returns true if the two distributions may produce different * sequences of values given equal generators. */ BOOST_RANDOM_DETAIL_INEQUALITY_OPERATOR(uniform_smallint) private: // \cond show_private template result_type generate(Engine& eng, boost::mpl::true_) const { // equivalent to (eng() - eng.min()) % (_max - _min + 1) + _min, // but guarantees no overflow. typedef typename Engine::result_type base_result; typedef typename boost::make_unsigned::type base_unsigned; typedef result_type range_type; range_type range = random::detail::subtract()(_max, _min); base_unsigned base_range = random::detail::subtract()((eng.max)(), (eng.min)()); base_unsigned val = random::detail::subtract()(eng(), (eng.min)()); if(range >= base_range) { return boost::random::detail::add()( static_cast(val), _min); } else { base_unsigned modulus = static_cast(range) + 1; return boost::random::detail::add()( static_cast(val % modulus), _min); } } template result_type generate(Engine& eng, boost::mpl::false_) const { typedef typename Engine::result_type base_result; typedef result_type range_type; range_type range = random::detail::subtract()(_max, _min); base_result val = boost::uniform_01()(eng); // what is the worst that can possibly happen here? // base_result may not be able to represent all the values in [0, range] // exactly. If this happens, it will cause round off error and we // won't be able to produce all the values in the range. We don't // care about this because the user has already told us not to by // using uniform_smallint. However, we do need to be careful // to clamp the result, or floating point rounding can produce // an out of range result. range_type offset = static_cast(val * (range + 1)); if(offset > range) return _max; return boost::random::detail::add()(offset , _min); } // \endcond result_type _min; result_type _max; }; namespace detail{ template struct select_uniform_01 > { template struct apply { typedef new_uniform_01 > type; }; }; template boost::multiprecision::number generate_uniform_int( Engine& eng, const boost::multiprecision::number& min_value, const boost::multiprecision::number& max_value, boost::mpl::true_ /** is_integral */) { typedef boost::multiprecision::number result_type; // Since we're using big-numbers, use the result type for all internal calculations: typedef result_type range_type; typedef result_type base_result; typedef result_type base_unsigned; const range_type range = random::detail::subtract()(max_value, min_value); const base_result bmin = (eng.min)(); const base_unsigned brange = random::detail::subtract()((eng.max)(), (eng.min)()); if(range == 0) { return min_value; } else if(brange == range) { // this will probably never happen in real life // basically nothing to do; just take care we don't overflow / underflow base_unsigned v = random::detail::subtract()(eng(), bmin); return random::detail::add()(v, min_value); } else if(brange < range) { // use rejection method to handle things like 0..3 --> 0..4 for(;;) { // concatenate several invocations of the base RNG // take extra care to avoid overflows // limit == floor((range+1)/(brange+1)) // Therefore limit*(brange+1) <= range+1 range_type limit; if(std::numeric_limits::is_bounded && (range == (std::numeric_limits::max)())) { limit = range/(range_type(brange)+1); if(range % (range_type(brange)+1) == range_type(brange)) ++limit; } else { limit = (range+1)/(range_type(brange)+1); } // We consider "result" as expressed to base (brange+1): // For every power of (brange+1), we determine a random factor range_type result = range_type(0); range_type mult = range_type(1); // loop invariants: // result < mult // mult <= range while(mult <= limit) { // Postcondition: result <= range, thus no overflow // // limit*(brange+1)<=range+1 def. of limit (1) // eng()-bmin<=brange eng() post. (2) // and mult<=limit. loop condition (3) // Therefore mult*(eng()-bmin+1)<=range+1 by (1),(2),(3) (4) // Therefore mult*(eng()-bmin)+mult<=range+1 rearranging (4) (5) // result(random::detail::subtract()(eng(), bmin) * mult); // equivalent to (mult * (brange+1)) == range+1, but avoids overflow. if(mult * range_type(brange) == range - mult + 1) { // The destination range is an integer power of // the generator's range. return(result); } // Postcondition: mult <= range // // limit*(brange+1)<=range+1 def. of limit (1) // mult<=limit loop condition (2) // Therefore mult*(brange+1)<=range+1 by (1), (2) (3) // mult*(brange+1)!=range+1 preceding if (4) // Therefore mult*(brange+1) limit loop condition (1) // Suppose range/mult >= brange+1 Assumption (2) // range >= mult*(brange+1) by (2) (3) // range+1 > mult*(brange+1) by (3) (4) // range+1 > (limit+1)*(brange+1) by (1), (4) (5) // (range+1)/(brange+1) > limit+1 by (5) (6) // limit < floor((range+1)/(brange+1)) by (6) (7) // limit==floor((range+1)/(brange+1)) def. of limit (8) // not (2) reductio (9) // // loop postcondition: (range/mult)*mult+(mult-1) >= range // // (range/mult)*mult + range%mult == range identity (1) // range%mult < mult def. of % (2) // (range/mult)*mult+mult > range by (1), (2) (3) // (range/mult)*mult+(mult-1) >= range by (3) (4) // // Note that the maximum value of result at this point is (mult-1), // so after this final step, we generate numbers that can be // at least as large as range. We have to really careful to avoid // overflow in this final addition and in the rejection. Anything // that overflows is larger than range and can thus be rejected. // range/mult < brange+1 -> no endless loop range_type result_increment = generate_uniform_int( eng, static_cast(0), static_cast(range/mult), boost::mpl::true_()); if(std::numeric_limits::is_bounded && ((std::numeric_limits::max)() / mult < result_increment)) { // The multiplication would overflow. Reject immediately. continue; } result_increment *= mult; // unsigned integers are guaranteed to wrap on overflow. result += result_increment; if(result < result_increment) { // The addition overflowed. Reject. continue; } if(result > range) { // Too big. Reject. continue; } return random::detail::add()(result, min_value); } } else { // brange > range range_type bucket_size; // it's safe to add 1 to range, as long as we cast it first, // because we know that it is less than brange. However, // we do need to be careful not to cause overflow by adding 1 // to brange. if(std::numeric_limits::is_bounded && (brange == (std::numeric_limits::max)())) { bucket_size = brange / (range+1); if(brange % (range+1) == range) { ++bucket_size; } } else { bucket_size = (brange+1) / (range+1); } for(;;) { range_type result = random::detail::subtract()(eng(), bmin); result /= bucket_size; // result and range are non-negative, and result is possibly larger // than range, so the cast is safe if(result <= range) return result + min_value; } } } template inline boost::multiprecision::number generate_uniform_int(Engine& eng, const boost::multiprecision::number& min_value, const boost::multiprecision::number& max_value) { typedef typename Engine::result_type base_result; typedef typename mpl::or_, mpl::bool_::value == boost::multiprecision::number_kind_integer> >::type tag_type; return generate_uniform_int(eng, min_value, max_value, tag_type()); } } // detail }} // namespaces #ifdef BOOST_MSVC #pragma warning(pop) #endif #endif