// Boost.Units - A C++ library for zero-overhead dimensional analysis and // unit/quantity manipulation and conversion // // Copyright (C) 2003-2008 Matthias Christian Schabel // Copyright (C) 2007-2008 Steven Watanabe // // Distributed under the Boost Software License, Version 1.0. (See // accompanying file LICENSE_1_0.txt or copy at // http://www.boost.org/LICENSE_1_0.txt) #ifndef BOOST_UNITS_QUANTITY_HPP #define BOOST_UNITS_QUANTITY_HPP #include <algorithm> #include <boost/config.hpp> #include <boost/static_assert.hpp> #include <boost/mpl/bool.hpp> #include <boost/mpl/and.hpp> #include <boost/mpl/not.hpp> #include <boost/mpl/or.hpp> #include <boost/mpl/assert.hpp> #include <boost/utility/enable_if.hpp> #include <boost/type_traits/is_arithmetic.hpp> #include <boost/type_traits/is_convertible.hpp> #include <boost/type_traits/is_integral.hpp> #include <boost/type_traits/is_same.hpp> #include <boost/units/conversion.hpp> #include <boost/units/dimensionless_type.hpp> #include <boost/units/homogeneous_system.hpp> #include <boost/units/operators.hpp> #include <boost/units/static_rational.hpp> #include <boost/units/units_fwd.hpp> #include <boost/units/detail/dimensionless_unit.hpp> namespace boost { namespace units { namespace detail { template<class T, class Enable = void> struct is_base_unit : mpl::false_ {}; template<class T> struct is_base_unit<T, typename T::boost_units_is_base_unit_type> : mpl::true_ {}; template<class Source, class Destination> struct is_narrowing_conversion_impl : mpl::bool_<(sizeof(Source) > sizeof(Destination))> {}; template<class Source, class Destination> struct is_non_narrowing_conversion : mpl::and_< boost::is_convertible<Source, Destination>, mpl::not_< mpl::and_< boost::is_arithmetic<Source>, boost::is_arithmetic<Destination>, mpl::or_< mpl::and_< is_integral<Destination>, mpl::not_<is_integral<Source> > >, is_narrowing_conversion_impl<Source, Destination> > > > > {}; template<> struct is_non_narrowing_conversion<long double, double> : mpl::false_ {}; // msvc 7.1 needs extra disambiguation template<class T, class U> struct disable_if_is_same { typedef void type; }; template<class T> struct disable_if_is_same<T, T> {}; } /// class declaration template<class Unit,class Y = double> class quantity { // base units are not the same as units. BOOST_MPL_ASSERT_NOT((detail::is_base_unit<Unit>)); enum { force_instantiation_of_unit = sizeof(Unit) }; typedef void (quantity::*unspecified_null_pointer_constant_type)(int*******); public: typedef quantity<Unit,Y> this_type; typedef Y value_type; typedef Unit unit_type; quantity() : val_() { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); } quantity(unspecified_null_pointer_constant_type) : val_() { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); } quantity(const this_type& source) : val_(source.val_) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); } // Need to make sure that the destructor of // Unit which contains the checking is instantiated, // on sun. #ifdef __SUNPRO_CC ~quantity() { unit_type force_unit_instantiation; } #endif //~quantity() { } this_type& operator=(const this_type& source) { val_ = source.val_; return *this; } #ifndef BOOST_NO_SFINAE /// implicit conversion between value types is allowed if allowed for value types themselves template<class YY> quantity(const quantity<Unit,YY>& source, typename boost::enable_if<detail::is_non_narrowing_conversion<YY, Y> >::type* = 0) : val_(source.value()) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); } /// implicit conversion between value types is not allowed if not allowed for value types themselves template<class YY> explicit quantity(const quantity<Unit,YY>& source, typename boost::disable_if<detail::is_non_narrowing_conversion<YY, Y> >::type* = 0) : val_(static_cast<Y>(source.value())) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); } #else /// implicit conversion between value types is allowed if allowed for value types themselves template<class YY> quantity(const quantity<Unit,YY>& source) : val_(source.value()) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); BOOST_STATIC_ASSERT((boost::is_convertible<YY, Y>::value == true)); } #endif /// implicit assignment between value types is allowed if allowed for value types themselves template<class YY> this_type& operator=(const quantity<Unit,YY>& source) { BOOST_STATIC_ASSERT((boost::is_convertible<YY, Y>::value == true)); *this = this_type(source); return *this; } #ifndef BOOST_NO_SFINAE /// explicit conversion between different unit systems is allowed if implicit conversion is disallowed template<class Unit2,class YY> explicit quantity(const quantity<Unit2,YY>& source, typename boost::disable_if< mpl::and_< //is_implicitly_convertible should be undefined when the //units are not convertible at all typename is_implicitly_convertible<Unit2,Unit>::type, detail::is_non_narrowing_conversion<YY, Y> >, typename detail::disable_if_is_same<Unit, Unit2>::type >::type* = 0) : val_(conversion_helper<quantity<Unit2,YY>,this_type>::convert(source).value()) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); BOOST_STATIC_ASSERT((boost::is_convertible<YY,Y>::value == true)); } /// implicit conversion between different unit systems is allowed if each fundamental dimension is implicitly convertible template<class Unit2,class YY> quantity(const quantity<Unit2,YY>& source, typename boost::enable_if< mpl::and_< typename is_implicitly_convertible<Unit2,Unit>::type, detail::is_non_narrowing_conversion<YY, Y> >, typename detail::disable_if_is_same<Unit, Unit2>::type >::type* = 0) : val_(conversion_helper<quantity<Unit2,YY>,this_type>::convert(source).value()) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); BOOST_STATIC_ASSERT((boost::is_convertible<YY,Y>::value == true)); } #else /// without SFINAE we can't distinguish between explicit and implicit conversions so /// the conversion is always explicit template<class Unit2,class YY> explicit quantity(const quantity<Unit2,YY>& source) : val_(conversion_helper<quantity<Unit2,YY>,this_type>::convert(source).value()) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); BOOST_STATIC_ASSERT((boost::is_convertible<YY,Y>::value == true)); } #endif /// implicit assignment between different unit systems is allowed if each fundamental dimension is implicitly convertible template<class Unit2,class YY> this_type& operator=(const quantity<Unit2,YY>& source) { BOOST_STATIC_ASSERT((is_implicitly_convertible<Unit2,unit_type>::value == true)); BOOST_STATIC_ASSERT((boost::is_convertible<YY,Y>::value == true)); *this = this_type(source); return *this; } const value_type& value() const { return val_; } ///< constant accessor to value ///< can add a quantity of the same type if add_typeof_helper<value_type,value_type>::type is convertible to value_type template<class Unit2, class YY> this_type& operator+=(const quantity<Unit2, YY>& source) { BOOST_STATIC_ASSERT((boost::is_same<typename add_typeof_helper<Unit, Unit2>::type, Unit>::value)); val_ += source.value(); return *this; } ///< can subtract a quantity of the same type if subtract_typeof_helper<value_type,value_type>::type is convertible to value_type template<class Unit2, class YY> this_type& operator-=(const quantity<Unit2, YY>& source) { BOOST_STATIC_ASSERT((boost::is_same<typename subtract_typeof_helper<Unit, Unit2>::type, Unit>::value)); val_ -= source.value(); return *this; } template<class Unit2, class YY> this_type& operator*=(const quantity<Unit2, YY>& source) { BOOST_STATIC_ASSERT((boost::is_same<typename multiply_typeof_helper<Unit, Unit2>::type, Unit>::value)); val_ *= source.value(); return *this; } template<class Unit2, class YY> this_type& operator/=(const quantity<Unit2, YY>& source) { BOOST_STATIC_ASSERT((boost::is_same<typename divide_typeof_helper<Unit, Unit2>::type, Unit>::value)); val_ /= source.value(); return *this; } ///< can multiply a quantity by a scalar value_type if multiply_typeof_helper<value_type,value_type>::type is convertible to value_type this_type& operator*=(const value_type& source) { val_ *= source; return *this; } ///< can divide a quantity by a scalar value_type if divide_typeof_helper<value_type,value_type>::type is convertible to value_type this_type& operator/=(const value_type& source) { val_ /= source; return *this; } /// Construct quantity directly from @c value_type (potentially dangerous). static this_type from_value(const value_type& val) { return this_type(val, 0); } protected: explicit quantity(const value_type& val, int) : val_(val) { } private: value_type val_; }; /// Specialization for dimensionless quantities. Implicit conversions between /// unit systems are allowed because all dimensionless quantities are equivalent. /// Implicit construction and assignment from and conversion to @c value_type is /// also allowed. template<class System,class Y> class quantity<BOOST_UNITS_DIMENSIONLESS_UNIT(System),Y> { public: typedef quantity<unit<dimensionless_type,System>,Y> this_type; typedef Y value_type; typedef System system_type; typedef dimensionless_type dimension_type; typedef unit<dimension_type,system_type> unit_type; quantity() : val_() { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); } /// construction from raw @c value_type is allowed quantity(value_type val) : val_(val) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); } quantity(const this_type& source) : val_(source.val_) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); } //~quantity() { } this_type& operator=(const this_type& source) { val_ = source.val_; return *this; } #ifndef BOOST_NO_SFINAE /// implicit conversion between value types is allowed if allowed for value types themselves template<class YY> quantity(const quantity<unit<dimension_type,system_type>,YY>& source, typename boost::enable_if<detail::is_non_narrowing_conversion<YY, Y> >::type* = 0) : val_(source.value()) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); } /// implicit conversion between value types is not allowed if not allowed for value types themselves template<class YY> explicit quantity(const quantity<unit<dimension_type,system_type>,YY>& source, typename boost::disable_if<detail::is_non_narrowing_conversion<YY, Y> >::type* = 0) : val_(static_cast<Y>(source.value())) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); } #else /// implicit conversion between value types is allowed if allowed for value types themselves template<class YY> quantity(const quantity<unit<dimension_type,system_type>,YY>& source) : val_(source.value()) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); BOOST_STATIC_ASSERT((boost::is_convertible<YY, Y>::value == true)); } #endif /// implicit assignment between value types is allowed if allowed for value types themselves template<class YY> this_type& operator=(const quantity<unit<dimension_type,system_type>,YY>& source) { BOOST_STATIC_ASSERT((boost::is_convertible<YY,Y>::value == true)); *this = this_type(source); return *this; } #if 1 /// implicit conversion between different unit systems is allowed template<class System2, class Y2> quantity(const quantity<unit<dimensionless_type, System2>,Y2>& source, #ifdef __SUNPRO_CC typename boost::enable_if< boost::mpl::and_< detail::is_non_narrowing_conversion<Y2, Y>, detail::is_dimensionless_system<System2> > >::type* = 0 #else typename boost::enable_if<detail::is_non_narrowing_conversion<Y2, Y> >::type* = 0, typename detail::disable_if_is_same<System, System2>::type* = 0, typename boost::enable_if<detail::is_dimensionless_system<System2> >::type* = 0 #endif ) : val_(source.value()) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); } /// implicit conversion between different unit systems is allowed template<class System2, class Y2> explicit quantity(const quantity<unit<dimensionless_type, System2>,Y2>& source, #ifdef __SUNPRO_CC typename boost::enable_if< boost::mpl::and_< boost::mpl::not_<detail::is_non_narrowing_conversion<Y2, Y> >, detail::is_dimensionless_system<System2> > >::type* = 0 #else typename boost::disable_if<detail::is_non_narrowing_conversion<Y2, Y> >::type* = 0, typename detail::disable_if_is_same<System, System2>::type* = 0, typename boost::enable_if<detail::is_dimensionless_system<System2> >::type* = 0 #endif ) : val_(static_cast<Y>(source.value())) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); } #else /// implicit conversion between different unit systems is allowed template<class System2, class Y2> quantity(const quantity<unit<dimensionless_type,homogeneous_system<System2> >,Y2>& source) : val_(source.value()) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); BOOST_STATIC_ASSERT((boost::is_convertible<Y2, Y>::value == true)); } #endif /// conversion between different unit systems is explicit when /// the units are not equivalent. template<class System2, class Y2> explicit quantity(const quantity<unit<dimensionless_type, System2>,Y2>& source, typename boost::disable_if<detail::is_dimensionless_system<System2> >::type* = 0) : val_(conversion_helper<quantity<unit<dimensionless_type, System2>,Y2>, this_type>::convert(source).value()) { BOOST_UNITS_CHECK_LAYOUT_COMPATIBILITY(this_type, Y); } #ifndef __SUNPRO_CC /// implicit assignment between different unit systems is allowed template<class System2> this_type& operator=(const quantity<BOOST_UNITS_DIMENSIONLESS_UNIT(System2),Y>& source) { *this = this_type(source); return *this; } #endif /// implicit conversion to @c value_type is allowed operator value_type() const { return val_; } const value_type& value() const { return val_; } ///< constant accessor to value ///< can add a quantity of the same type if add_typeof_helper<value_type,value_type>::type is convertible to value_type this_type& operator+=(const this_type& source) { val_ += source.val_; return *this; } ///< can subtract a quantity of the same type if subtract_typeof_helper<value_type,value_type>::type is convertible to value_type this_type& operator-=(const this_type& source) { val_ -= source.val_; return *this; } ///< can multiply a quantity by a scalar value_type if multiply_typeof_helper<value_type,value_type>::type is convertible to value_type this_type& operator*=(const value_type& val) { val_ *= val; return *this; } ///< can divide a quantity by a scalar value_type if divide_typeof_helper<value_type,value_type>::type is convertible to value_type this_type& operator/=(const value_type& val) { val_ /= val; return *this; } /// Construct quantity directly from @c value_type. static this_type from_value(const value_type& val) { return this_type(val); } private: value_type val_; }; #ifdef BOOST_MSVC // HACK: For some obscure reason msvc 8.0 needs these specializations template<class System, class T> class quantity<unit<int, System>, T> {}; template<class T> class quantity<int, T> {}; #endif } // namespace units } // namespace boost #if BOOST_UNITS_HAS_BOOST_TYPEOF #include BOOST_TYPEOF_INCREMENT_REGISTRATION_GROUP() BOOST_TYPEOF_REGISTER_TEMPLATE(boost::units::quantity, 2) #endif namespace boost { namespace units { namespace detail { /// helper class for quantity_cast template<class X,class Y> struct quantity_cast_helper; /// specialization for casting to the value type template<class Y,class X,class Unit> struct quantity_cast_helper<Y,quantity<Unit,X> > { typedef Y type; type operator()(quantity<Unit,X>& source) { return const_cast<X&>(source.value()); } }; /// specialization for casting to the value type template<class Y,class X,class Unit> struct quantity_cast_helper<Y,const quantity<Unit,X> > { typedef Y type; type operator()(const quantity<Unit,X>& source) { return source.value(); } }; } // namespace detail /// quantity_cast provides mutating access to underlying quantity value_type template<class X,class Y> inline X quantity_cast(Y& source) { detail::quantity_cast_helper<X,Y> qch; return qch(source); } template<class X,class Y> inline X quantity_cast(const Y& source) { detail::quantity_cast_helper<X,const Y> qch; return qch(source); } /// swap quantities template<class Unit,class Y> inline void swap(quantity<Unit,Y>& lhs, quantity<Unit,Y>& rhs) { using std::swap; swap(quantity_cast<Y&>(lhs),quantity_cast<Y&>(rhs)); } /// specialize unary plus typeof helper /// INTERNAL ONLY template<class Unit,class Y> struct unary_plus_typeof_helper< quantity<Unit,Y> > { typedef typename unary_plus_typeof_helper<Y>::type value_type; typedef typename unary_plus_typeof_helper<Unit>::type unit_type; typedef quantity<unit_type,value_type> type; }; /// specialize unary minus typeof helper /// INTERNAL ONLY template<class Unit,class Y> struct unary_minus_typeof_helper< quantity<Unit,Y> > { typedef typename unary_minus_typeof_helper<Y>::type value_type; typedef typename unary_minus_typeof_helper<Unit>::type unit_type; typedef quantity<unit_type,value_type> type; }; /// specialize add typeof helper /// INTERNAL ONLY template<class Unit1, class Unit2, class X, class Y> struct add_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> > { typedef typename add_typeof_helper<X,Y>::type value_type; typedef typename add_typeof_helper<Unit1,Unit2>::type unit_type; typedef quantity<unit_type,value_type> type; }; /// for sun CC we need to invoke SFINAE at /// the top level, otherwise it will silently /// return int. template<class Dim1, class System1, class Dim2, class System2, class X, class Y> struct add_typeof_helper< quantity<unit<Dim1, System1>,X>,quantity<unit<Dim2, System2>,Y> > { }; template<class Dim, class System, class X, class Y> struct add_typeof_helper< quantity<unit<Dim, System>,X>,quantity<unit<Dim, System>,Y> > { typedef typename add_typeof_helper<X,Y>::type value_type; typedef unit<Dim, System> unit_type; typedef quantity<unit_type,value_type> type; }; /// specialize subtract typeof helper /// INTERNAL ONLY template<class Unit1, class Unit2, class X, class Y> struct subtract_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> > { typedef typename subtract_typeof_helper<X,Y>::type value_type; typedef typename subtract_typeof_helper<Unit1,Unit2>::type unit_type; typedef quantity<unit_type,value_type> type; }; // Force adding different units to fail on sun. template<class Dim1, class System1, class Dim2, class System2, class X, class Y> struct subtract_typeof_helper< quantity<unit<Dim1, System1>,X>,quantity<unit<Dim2, System2>,Y> > { }; template<class Dim, class System, class X, class Y> struct subtract_typeof_helper< quantity<unit<Dim, System>,X>,quantity<unit<Dim, System>,Y> > { typedef typename subtract_typeof_helper<X,Y>::type value_type; typedef unit<Dim, System> unit_type; typedef quantity<unit_type,value_type> type; }; /// scalar times unit typeof helper /// INTERNAL ONLY template<class System, class Dim, class X> struct multiply_typeof_helper< X,unit<Dim,System> > { typedef X value_type; typedef unit<Dim,System> unit_type; typedef quantity<unit_type,value_type> type; }; /// unit times scalar typeof helper /// INTERNAL ONLY template<class System, class Dim, class X> struct multiply_typeof_helper< unit<Dim,System>,X > { typedef X value_type; typedef unit<Dim,System> unit_type; typedef quantity<unit_type,value_type> type; }; /// scalar times quantity typeof helper /// INTERNAL ONLY template<class Unit, class X, class Y> struct multiply_typeof_helper< X,quantity<Unit,Y> > { typedef typename multiply_typeof_helper<X,Y>::type value_type; typedef Unit unit_type; typedef quantity<unit_type,value_type> type; }; /// disambiguate /// INTERNAL ONLY template<class Unit, class Y> struct multiply_typeof_helper< one,quantity<Unit,Y> > { typedef quantity<Unit,Y> type; }; /// quantity times scalar typeof helper /// INTERNAL ONLY template<class Unit, class X, class Y> struct multiply_typeof_helper< quantity<Unit,X>,Y > { typedef typename multiply_typeof_helper<X,Y>::type value_type; typedef Unit unit_type; typedef quantity<unit_type,value_type> type; }; /// disambiguate /// INTERNAL ONLY template<class Unit, class X> struct multiply_typeof_helper< quantity<Unit,X>,one > { typedef quantity<Unit,X> type; }; /// unit times quantity typeof helper /// INTERNAL ONLY template<class Unit, class System, class Dim, class X> struct multiply_typeof_helper< unit<Dim,System>,quantity<Unit,X> > { typedef X value_type; typedef typename multiply_typeof_helper< unit<Dim,System>,Unit >::type unit_type; typedef quantity<unit_type,value_type> type; }; /// quantity times unit typeof helper /// INTERNAL ONLY template<class Unit, class System, class Dim, class X> struct multiply_typeof_helper< quantity<Unit,X>,unit<Dim,System> > { typedef X value_type; typedef typename multiply_typeof_helper< Unit,unit<Dim,System> >::type unit_type; typedef quantity<unit_type,value_type> type; }; /// quantity times quantity typeof helper /// INTERNAL ONLY template<class Unit1, class Unit2, class X, class Y> struct multiply_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> > { typedef typename multiply_typeof_helper<X,Y>::type value_type; typedef typename multiply_typeof_helper<Unit1,Unit2>::type unit_type; typedef quantity<unit_type,value_type> type; }; /// scalar divided by unit typeof helper /// INTERNAL ONLY template<class System, class Dim, class X> struct divide_typeof_helper< X,unit<Dim,System> > { typedef X value_type; typedef typename power_typeof_helper< unit<Dim,System>,static_rational<-1> >::type unit_type; typedef quantity<unit_type,value_type> type; }; /// unit divided by scalar typeof helper /// INTERNAL ONLY template<class System, class Dim, class X> struct divide_typeof_helper< unit<Dim,System>,X > { typedef typename divide_typeof_helper<X,X>::type value_type; typedef unit<Dim,System> unit_type; typedef quantity<unit_type,value_type> type; }; /// scalar divided by quantity typeof helper /// INTERNAL ONLY template<class Unit, class X, class Y> struct divide_typeof_helper< X,quantity<Unit,Y> > { typedef typename divide_typeof_helper<X,Y>::type value_type; typedef typename power_typeof_helper< Unit,static_rational<-1> >::type unit_type; typedef quantity<unit_type,value_type> type; }; /// disambiguate /// INTERNAL ONLY template<class Unit, class Y> struct divide_typeof_helper< one,quantity<Unit,Y> > { typedef quantity<Unit,Y> type; }; /// quantity divided by scalar typeof helper /// INTERNAL ONLY template<class Unit, class X, class Y> struct divide_typeof_helper< quantity<Unit,X>,Y > { typedef typename divide_typeof_helper<X,Y>::type value_type; typedef Unit unit_type; typedef quantity<unit_type,value_type> type; }; /// disambiguate /// INTERNAL ONLY template<class Unit, class X> struct divide_typeof_helper< quantity<Unit,X>,one > { typedef quantity<Unit,X> type; }; /// unit divided by quantity typeof helper /// INTERNAL ONLY template<class Unit, class System, class Dim, class X> struct divide_typeof_helper< unit<Dim,System>,quantity<Unit,X> > { typedef typename divide_typeof_helper<X,X>::type value_type; typedef typename divide_typeof_helper< unit<Dim,System>,Unit >::type unit_type; typedef quantity<unit_type,value_type> type; }; /// quantity divided by unit typeof helper /// INTERNAL ONLY template<class Unit, class System, class Dim, class X> struct divide_typeof_helper< quantity<Unit,X>,unit<Dim,System> > { typedef X value_type; typedef typename divide_typeof_helper< Unit,unit<Dim,System> >::type unit_type; typedef quantity<unit_type,value_type> type; }; /// quantity divided by quantity typeof helper /// INTERNAL ONLY template<class Unit1, class Unit2, class X, class Y> struct divide_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> > { typedef typename divide_typeof_helper<X,Y>::type value_type; typedef typename divide_typeof_helper<Unit1,Unit2>::type unit_type; typedef quantity<unit_type,value_type> type; }; /// specialize power typeof helper /// INTERNAL ONLY template<class Unit,long N,long D,class Y> struct power_typeof_helper< quantity<Unit,Y>,static_rational<N,D> > { typedef typename power_typeof_helper<Y,static_rational<N,D> >::type value_type; typedef typename power_typeof_helper<Unit,static_rational<N,D> >::type unit_type; typedef quantity<unit_type,value_type> type; static type value(const quantity<Unit,Y>& x) { return type::from_value(power_typeof_helper<Y,static_rational<N,D> >::value(x.value())); } }; /// specialize root typeof helper /// INTERNAL ONLY template<class Unit,long N,long D,class Y> struct root_typeof_helper< quantity<Unit,Y>,static_rational<N,D> > { typedef typename root_typeof_helper<Y,static_rational<N,D> >::type value_type; typedef typename root_typeof_helper<Unit,static_rational<N,D> >::type unit_type; typedef quantity<unit_type,value_type> type; static type value(const quantity<Unit,Y>& x) { return type::from_value(root_typeof_helper<Y,static_rational<N,D> >::value(x.value())); } }; /// runtime unit times scalar /// INTERNAL ONLY template<class System, class Dim, class Y> inline typename multiply_typeof_helper< unit<Dim,System>,Y >::type operator*(const unit<Dim,System>&,const Y& rhs) { typedef typename multiply_typeof_helper< unit<Dim,System>,Y >::type type; return type::from_value(rhs); } /// runtime unit divided by scalar template<class System, class Dim, class Y> inline typename divide_typeof_helper< unit<Dim,System>,Y >::type operator/(const unit<Dim,System>&,const Y& rhs) { typedef typename divide_typeof_helper<unit<Dim,System>,Y>::type type; return type::from_value(Y(1)/rhs); } /// runtime scalar times unit template<class System, class Dim, class Y> inline typename multiply_typeof_helper< Y,unit<Dim,System> >::type operator*(const Y& lhs,const unit<Dim,System>&) { typedef typename multiply_typeof_helper< Y,unit<Dim,System> >::type type; return type::from_value(lhs); } /// runtime scalar divided by unit template<class System, class Dim, class Y> inline typename divide_typeof_helper< Y,unit<Dim,System> >::type operator/(const Y& lhs,const unit<Dim,System>&) { typedef typename divide_typeof_helper< Y,unit<Dim,System> >::type type; return type::from_value(lhs); } ///// runtime quantity times scalar //template<class Unit, // class X, // class Y> //inline //typename multiply_typeof_helper< quantity<Unit,X>,Y >::type //operator*(const quantity<Unit,X>& lhs,const Y& rhs) //{ // typedef typename multiply_typeof_helper< quantity<Unit,X>,Y >::type type; // // return type::from_value(lhs.value()*rhs); //} // ///// runtime scalar times quantity //template<class Unit, // class X, // class Y> //inline //typename multiply_typeof_helper< X,quantity<Unit,Y> >::type //operator*(const X& lhs,const quantity<Unit,Y>& rhs) //{ // typedef typename multiply_typeof_helper< X,quantity<Unit,Y> >::type type; // // return type::from_value(lhs*rhs.value()); //} /// runtime quantity times scalar template<class Unit, class X> inline typename multiply_typeof_helper< quantity<Unit,X>,X >::type operator*(const quantity<Unit,X>& lhs,const X& rhs) { typedef typename multiply_typeof_helper< quantity<Unit,X>,X >::type type; return type::from_value(lhs.value()*rhs); } /// runtime scalar times quantity template<class Unit, class X> inline typename multiply_typeof_helper< X,quantity<Unit,X> >::type operator*(const X& lhs,const quantity<Unit,X>& rhs) { typedef typename multiply_typeof_helper< X,quantity<Unit,X> >::type type; return type::from_value(lhs*rhs.value()); } ///// runtime quantity divided by scalar //template<class Unit, // class X, // class Y> //inline //typename divide_typeof_helper< quantity<Unit,X>,Y >::type //operator/(const quantity<Unit,X>& lhs,const Y& rhs) //{ // typedef typename divide_typeof_helper< quantity<Unit,X>,Y >::type type; // // return type::from_value(lhs.value()/rhs); //} // ///// runtime scalar divided by quantity //template<class Unit, // class X, // class Y> //inline //typename divide_typeof_helper< X,quantity<Unit,Y> >::type //operator/(const X& lhs,const quantity<Unit,Y>& rhs) //{ // typedef typename divide_typeof_helper< X,quantity<Unit,Y> >::type type; // // return type::from_value(lhs/rhs.value()); //} /// runtime quantity divided by scalar template<class Unit, class X> inline typename divide_typeof_helper< quantity<Unit,X>,X >::type operator/(const quantity<Unit,X>& lhs,const X& rhs) { typedef typename divide_typeof_helper< quantity<Unit,X>,X >::type type; return type::from_value(lhs.value()/rhs); } /// runtime scalar divided by quantity template<class Unit, class X> inline typename divide_typeof_helper< X,quantity<Unit,X> >::type operator/(const X& lhs,const quantity<Unit,X>& rhs) { typedef typename divide_typeof_helper< X,quantity<Unit,X> >::type type; return type::from_value(lhs/rhs.value()); } /// runtime unit times quantity template<class System1, class Dim1, class Unit2, class Y> inline typename multiply_typeof_helper< unit<Dim1,System1>,quantity<Unit2,Y> >::type operator*(const unit<Dim1,System1>&,const quantity<Unit2,Y>& rhs) { typedef typename multiply_typeof_helper< unit<Dim1,System1>,quantity<Unit2,Y> >::type type; return type::from_value(rhs.value()); } /// runtime unit divided by quantity template<class System1, class Dim1, class Unit2, class Y> inline typename divide_typeof_helper< unit<Dim1,System1>,quantity<Unit2,Y> >::type operator/(const unit<Dim1,System1>&,const quantity<Unit2,Y>& rhs) { typedef typename divide_typeof_helper< unit<Dim1,System1>,quantity<Unit2,Y> >::type type; return type::from_value(Y(1)/rhs.value()); } /// runtime quantity times unit template<class Unit1, class System2, class Dim2, class Y> inline typename multiply_typeof_helper< quantity<Unit1,Y>,unit<Dim2,System2> >::type operator*(const quantity<Unit1,Y>& lhs,const unit<Dim2,System2>&) { typedef typename multiply_typeof_helper< quantity<Unit1,Y>,unit<Dim2,System2> >::type type; return type::from_value(lhs.value()); } /// runtime quantity divided by unit template<class Unit1, class System2, class Dim2, class Y> inline typename divide_typeof_helper< quantity<Unit1,Y>,unit<Dim2,System2> >::type operator/(const quantity<Unit1,Y>& lhs,const unit<Dim2,System2>&) { typedef typename divide_typeof_helper< quantity<Unit1,Y>,unit<Dim2,System2> >::type type; return type::from_value(lhs.value()); } /// runtime unary plus quantity template<class Unit,class Y> typename unary_plus_typeof_helper< quantity<Unit,Y> >::type operator+(const quantity<Unit,Y>& val) { typedef typename unary_plus_typeof_helper< quantity<Unit,Y> >::type type; return type::from_value(+val.value()); } /// runtime unary minus quantity template<class Unit,class Y> typename unary_minus_typeof_helper< quantity<Unit,Y> >::type operator-(const quantity<Unit,Y>& val) { typedef typename unary_minus_typeof_helper< quantity<Unit,Y> >::type type; return type::from_value(-val.value()); } /// runtime quantity plus quantity template<class Unit1, class Unit2, class X, class Y> inline typename add_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >::type operator+(const quantity<Unit1,X>& lhs, const quantity<Unit2,Y>& rhs) { typedef typename add_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >::type type; return type::from_value(lhs.value()+rhs.value()); } /// runtime quantity minus quantity template<class Unit1, class Unit2, class X, class Y> inline typename subtract_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >::type operator-(const quantity<Unit1,X>& lhs, const quantity<Unit2,Y>& rhs) { typedef typename subtract_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >::type type; return type::from_value(lhs.value()-rhs.value()); } /// runtime quantity times quantity template<class Unit1, class Unit2, class X, class Y> inline typename multiply_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >::type operator*(const quantity<Unit1,X>& lhs, const quantity<Unit2,Y>& rhs) { typedef typename multiply_typeof_helper< quantity<Unit1,X>, quantity<Unit2,Y> >::type type; return type::from_value(lhs.value()*rhs.value()); } /// runtime quantity divided by quantity template<class Unit1, class Unit2, class X, class Y> inline typename divide_typeof_helper< quantity<Unit1,X>,quantity<Unit2,Y> >::type operator/(const quantity<Unit1,X>& lhs, const quantity<Unit2,Y>& rhs) { typedef typename divide_typeof_helper< quantity<Unit1,X>, quantity<Unit2,Y> >::type type; return type::from_value(lhs.value()/rhs.value()); } /// runtime operator== template<class Unit, class X, class Y> inline bool operator==(const quantity<Unit,X>& val1, const quantity<Unit,Y>& val2) { return val1.value() == val2.value(); } /// runtime operator!= template<class Unit, class X, class Y> inline bool operator!=(const quantity<Unit,X>& val1, const quantity<Unit,Y>& val2) { return val1.value() != val2.value(); } /// runtime operator< template<class Unit, class X, class Y> inline bool operator<(const quantity<Unit,X>& val1, const quantity<Unit,Y>& val2) { return val1.value() < val2.value(); } /// runtime operator<= template<class Unit, class X, class Y> inline bool operator<=(const quantity<Unit,X>& val1, const quantity<Unit,Y>& val2) { return val1.value() <= val2.value(); } /// runtime operator> template<class Unit, class X, class Y> inline bool operator>(const quantity<Unit,X>& val1, const quantity<Unit,Y>& val2) { return val1.value() > val2.value(); } /// runtime operator>= template<class Unit, class X, class Y> inline bool operator>=(const quantity<Unit,X>& val1, const quantity<Unit,Y>& val2) { return val1.value() >= val2.value(); } } // namespace units } // namespace boost #endif // BOOST_UNITS_QUANTITY_HPP