## \file ## \ingroup tutorial_math ## \notebook ## Principal Components Analysis (PCA) example ## ## Example of using TPrincipal as a stand alone class. ## ## I create n-dimensional data points, where c = trunc(n / 5) + 1 ## are correlated with the rest n - c randomly distributed variables. ## ## Based on principal.C by Rene Brun and Christian Holm Christensen ## ## \macro_output ## \macro_code ## ## \authors Juan Fernando Jaramillo Botero from ROOT import TPrincipal, gRandom, TBrowser, vector n = 10 m = 10000 c = int(n / 5) + 1 print ("""************************************************* * Principal Component Analysis * * * * Number of variables: {0:4d} * * Number of data points: {1:8d} * * Number of dependent variables: {2:4d} * * * *************************************************""".format(n, m, c)) # Initilase the TPrincipal object. Use the empty string for the # final argument, if you don't wan't the covariance # matrix. Normalising the covariance matrix is a good idea if your # variables have different orders of magnitude. principal = TPrincipal(n, "ND") # Use a pseudo-random number generator randumNum = gRandom # Make the m data-points # Make a variable to hold our data # Allocate memory for the data point data = vector('double')() for i in range(m): # First we create the un-correlated, random variables, according # to one of three distributions for j in range(n - c): if j % 3 == 0: data.push_back(randumNum.Gaus(5, 1)) elif j % 3 == 1: data.push_back(randumNum.Poisson(8)) else: data.push_back(randumNum.Exp(2)) # Then we create the correlated variables for j in range(c): data.push_back(0) for k in range(n - c - j): data[n - c + j] += data[k] # Finally we're ready to add this datapoint to the PCA principal.AddRow(data.data()) data.clear() # Do the actual analysis principal.MakePrincipals() # Print out the result on principal.Print() # Test the PCA principal.Test() # Make some histograms of the orginal, principal, residue, etc data principal.MakeHistograms() # Make two functions to map between feature and pattern space # Start a browser, so that we may browse the histograms generated # above principal.MakeCode() b = TBrowser("principalBrowser", principal)