/// \file /// \ingroup tutorial_matrix /// \notebook -nodraw /// This macro shows several ways to invert a matrix . Each method /// is a trade-off between accuracy of the inversion and speed. /// Which method to chose depends on "how well-behaved" the matrix is. /// This is best checked through a call to Condition(), available in each /// decomposition class. A second possibility (less preferred) would be to /// check the determinant /// /// #### USAGE /// /// This macro can be executed with Cling or ACLIC /// - via the interpretor, do /// ~~~{.cpp} /// root > .x invertMatrix.C /// ~~~ /// - via ACLIC /// ~~~{.cpp} /// root > gSystem->Load("libMatrix"); /// root > .x invertMatrix.C+ /// ~~~ /// /// \macro_output /// \macro_code /// /// \author Eddy Offermann #include #include "TMath.h" #include "TMatrixD.h" #include "TMatrixDLazy.h" #include "TVectorD.h" #include "TDecompLU.h" #include "TDecompSVD.h" void invertMatrix(Int_t msize=6) { if (msize < 2 || msize > 10) { std::cout << "2 <= msize <= 10" < 6 x 6 but for smaller sizes, the // inversion is performed according to Cramer's rule by explicitly calculating // all Jacobi's sub-determinants . For instance for a 6 x 6 matrix this means: // \# of 5 x 5 determinant : 36 // \# of 4 x 4 determinant : 75 // \# of 3 x 3 determinant : 80 // \# of 2 x 2 determinant : 45 (see TMatrixD/FCramerInv.cxx) // // The only "quality" control in this process is to check whether the 6 x 6 // determinant is unequal 0 . But speed gains are significant compared to Invert() , // up to an order of magnitude for sizes <= 4 x 4 // // The inversion is done "in place", so the original matrix will be overwritten // If a pointer to a Double_t is supplied the determinant is calculated // std::cout << "1. Use .InvertFast(&det)" < 6) std::cout << " for ("< 1 // - The last step is a standard forward/backward substitution . // // It is important to realize that both InvertFast() and Invert() are "one-shot" deals , speed // comes at a price . If something goes wrong because the matrix is (near) singular, you have // overwritten your original matrix and no factorization is available anymore to get more // information like condition number or change the tolerance number . // // All other calls in the matrix classes involving inversion like the ones with the "smart" // constructors (kInverted,kInvMult...) use this inversion method . // std::cout << "2. Use .Invert(&det)" << std::endl; Double_t det2; TMatrixD H2 = H_square; H2.Invert(&det2); TMatrixD U2(H2,TMatrixD::kMult,H_square); TMatrixDDiag diag2(U2); diag2 = 0.0; const Double_t U2_max_offdiag = (U2.Abs()).Max(); std::cout << " Maximum off-diagonal = " << U2_max_offdiag << std::endl; std::cout << " Determinant = " << det2 << std::endl; // ### 3. Inversion through LU decomposition // The (default) algorithms used are similar to 2. (Not identical because in 2, the whole // calculation is done "in-place". Here the original matrix is copied (so more memory // management => slower) and several operations can be performed without having to repeat // the decomposition step . // Inverting a matrix is nothing else than solving a set of equations where the rhs is given // by the unit matrix, so the steps to take are identical to those solving a linear equation : // std::cout << "3. Use TDecompLU" << std::endl; TMatrixD H3 = H_square; TDecompLU lu(H_square); // Any operation that requires a decomposition will trigger it . The class keeps // an internal state so that following operations will not perform the decomposition again // unless the matrix is changed through SetMatrix(..) // One might want to proceed more cautiously by invoking first Decompose() and check its // return value before proceeding.... lu.Invert(H3); Double_t d1_lu; Double_t d2_lu; lu.Det(d1_lu,d2_lu); Double_t det3 = d1_lu*TMath::Power(2.,d2_lu); TMatrixD U3(H3,TMatrixD::kMult,H_square); TMatrixDDiag diag3(U3); diag3 = 0.0; const Double_t U3_max_offdiag = (U3.Abs()).Max(); std::cout << " Maximum off-diagonal = " << U3_max_offdiag << std::endl; std::cout << " Determinant = " << det3 << std::endl; // ### 4. Inversion through SVD decomposition // For SVD and QRH, the (n x m) matrix does only have to fulfill n >=m . In case n > m // a pseudo-inverse is calculated std::cout << "4. Use TDecompSVD on non-square matrix" << std::endl; TMatrixD H_nsquare = THilbertMatrixD(msize,msize-1); TDecompSVD svd(H_nsquare); TMatrixD H4 = svd.Invert(); Double_t d1_svd; Double_t d2_svd; svd.Det(d1_svd,d2_svd); Double_t det4 = d1_svd*TMath::Power(2.,d2_svd); TMatrixD U4(H4,TMatrixD::kMult,H_nsquare); TMatrixDDiag diag4(U4); diag4 = 0.0; const Double_t U4_max_offdiag = (U4.Abs()).Max(); std::cout << " Maximum off-diagonal = " << U4_max_offdiag << std::endl; std::cout << " Determinant = " << det4 << std::endl; }