/// \file
/// \ingroup tutorial_unfold
/// \notebook
/// Test program for the classes TUnfoldDensity and TUnfoldBinning.
///
/// A toy test of the TUnfold package
///
/// This is an example of unfolding a two-dimensional distribution
/// also using an auxiliary measurement to constrain some background
///
/// The example comprises several macros
/// - testUnfold5a.C create root files with TTree objects for
/// signal, background and data
/// - write files testUnfold5_signal.root
/// testUnfold5_background.root
/// testUnfold5_data.root
///
/// - testUnfold5b.C create a root file with the TUnfoldBinning objects
/// - write file testUnfold5_binning.root
///
/// - testUnfold5c.C loop over trees and fill histograms based on the
/// TUnfoldBinning objects
/// - read testUnfold5_binning.root
/// testUnfold5_signal.root
/// testUnfold5_background.root
/// testUnfold5_data.root
///
/// - write testUnfold5_histograms.root
///
/// - testUnfold5d.C run the unfolding
/// - read testUnfold5_histograms.root
/// - write testUnfold5_result.root
/// testUnfold5_result.ps
///
/// \macro_output
/// \macro_code
///
/// **Version 17.6, in parallel to changes in TUnfold**
///
/// #### History:
/// - Version 17.5, updated for writing out XML code
/// - Version 17.4, updated for writing out XML code
/// - Version 17.3, updated for writing out XML code
/// - Version 17.2, updated for writing out XML code
/// - Version 17.1, in parallel to changes in TUnfold
/// - Version 17.0 example for multi-dimensional unfolding
///
/// This file is part of TUnfold.
///
/// TUnfold is free software: you can redistribute it and/or modify
/// it under the terms of the GNU General Public License as published by
/// the Free Software Foundation, either version 3 of the License, or
/// (at your option) any later version.
///
/// TUnfold is distributed in the hope that it will be useful,
/// but WITHOUT ANY WARRANTY; without even the implied warranty of
/// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/// GNU General Public License for more details.
///
/// You should have received a copy of the GNU General Public License
/// along with TUnfold. If not, see .
///
/// \author Stefan Schmitt DESY, 14.10.2008
#include
#include
#include
#include "TUnfoldBinningXML.h"
#include
using namespace std;
void testUnfold5b()
{
// write binning schemes to root file
TFile *binningSchemes=new TFile("testUnfold5_binning.root","recreate");
// reconstructed pt, eta, discriminator
#define NBIN_PT_FINE 8
#define NBIN_ETA_FINE 10
#define NBIN_DISCR 4
// generated pt, eta
#define NBIN_PT_COARSE 3
#define NBIN_ETA_COARSE 3
// pt binning
Double_t ptBinsFine[NBIN_PT_FINE+1]=
{3.5,4.0,4.5,5.0,6.0,7.0,8.0,10.0,13.0};
Double_t ptBinsCoarse[NBIN_PT_COARSE+1]=
{ 4.0, 5.0, 7.0, 10.0};
// eta binning
Double_t etaBinsFine[NBIN_ETA_FINE+1]=
{-3.,-2.5,-2.0,-1.,-0.5,0.0,0.5,1.,2.,2.5,3.};
Double_t etaBinsCoarse[NBIN_ETA_COARSE+1]=
{ -2.0, -0.5, 0.5, 2. };
// discriminator bins
Double_t discrBins[NBIN_DISCR+1]={0.,0.15,0.5,0.85,1.0};
//=======================================================================
// detector level binning scheme
TUnfoldBinning *detectorBinning=new TUnfoldBinning("detector");
// highest discriminator bin has fine binning
TUnfoldBinning *detectorDistribution=
detectorBinning->AddBinning("detectordistribution");
detectorDistribution->AddAxis("pt",NBIN_PT_FINE,ptBinsFine,
false, // no underflow bin (not reconstructed)
true // overflow bin
);
detectorDistribution->AddAxis("eta",NBIN_ETA_FINE,etaBinsFine,
false, // no underflow bin (not reconstructed)
false // no overflow bin (not reconstructed)
);
detectorDistribution->AddAxis("discriminator",NBIN_DISCR,discrBins,
false, // no underflow bin (empty)
false // no overflow bin (empty)
);
/* TUnfoldBinning *detectorExtra=
detectorBinning->AddBinning("detectorextra",7,"one;zwei;three");
detectorBinning->PrintStream(cout); */
//=======================================================================
// generator level binning
TUnfoldBinning *generatorBinning=new TUnfoldBinning("generator");
// signal distribution is measured with coarse binning
// underflow and overflow bins are needed ot take care of
// what happens outside the phase-space
TUnfoldBinning *signalBinning = generatorBinning->AddBinning("signal");
signalBinning->AddAxis("ptgen",NBIN_PT_COARSE,ptBinsCoarse,
true, // underflow bin
true // overflow bin
);
signalBinning->AddAxis("etagen",NBIN_ETA_COARSE,etaBinsCoarse,
true, // underflow bin
true // overflow bin
);
// this is just an example how to set bin-dependent factors
// for the regularisation
TF2 *userFunc=new TF2("userfunc","1./x+0.2*y^2",ptBinsCoarse[0],
ptBinsCoarse[NBIN_PT_COARSE],
etaBinsCoarse[0],etaBinsCoarse[NBIN_ETA_COARSE]);
signalBinning->SetBinFactorFunction(1.0,userFunc);
// background distribution is unfolded with fine binning
// !!! in the reconstructed variable !!!
//
// This has the effect of "normalizing" the background in each
// pt,eta bin to the low discriminator values
// Only the shape of the discriminator in each (pt,eta) bin
// is taken from Monte Carlo
//
// This method has been applied e.g. in
// H1 Collaboration, "Prompt photons in Photoproduction"
// Eur.Phys.J. C66 (2010) 17
//
TUnfoldBinning *bgrBinning = generatorBinning->AddBinning("background");
bgrBinning->AddAxis("ptrec",NBIN_PT_FINE,ptBinsFine,
false, // no underflow bin (not reconstructed)
true // overflow bin
);
bgrBinning->AddAxis("etarec",NBIN_ETA_FINE,etaBinsFine,
false, // no underflow bin (not reconstructed)
false // no overflow bin (not reconstructed)
);
generatorBinning->PrintStream(cout);
detectorBinning->Write();
generatorBinning->Write();
ofstream xmlOut("testUnfold5binning.xml");
TUnfoldBinningXML::ExportXML(*detectorBinning,xmlOut,kTRUE,kFALSE);
TUnfoldBinningXML::ExportXML(*generatorBinning,xmlOut,kFALSE,kTRUE);
TUnfoldBinningXML::WriteDTD();
xmlOut.close();
delete binningSchemes;
}