/// \file /// \ingroup tutorial_roostats /// \notebook -js /// Standard demo of the Feldman-Cousins calculator /// StandardFeldmanCousinsDemo /// /// This is a standard demo that can be used with any ROOT file /// prepared in the standard way. You specify: /// - name for input ROOT file /// - name of workspace inside ROOT file that holds model and data /// - name of ModelConfig that specifies details for calculator tools /// - name of dataset /// /// With default parameters the macro will attempt to run the /// standard hist2workspace example and read the ROOT file /// that it produces. /// /// The actual heart of the demo is only about 10 lines long. /// /// The FeldmanCousins tools is a classical frequentist calculation /// based on the Neyman Construction. The test statistic can be /// generalized for nuisance parameters by using the profile likelihood ratio. /// But unlike the ProfileLikelihoodCalculator, this tool explicitly /// builds the sampling distribution of the test statistic via toy Monte Carlo. /// /// \macro_image /// \macro_output /// \macro_code /// /// \author Kyle Cranmer #include "TFile.h" #include "TROOT.h" #include "TH1F.h" #include "TSystem.h" #include "RooWorkspace.h" #include "RooAbsData.h" #include "RooStats/ModelConfig.h" #include "RooStats/FeldmanCousins.h" #include "RooStats/ToyMCSampler.h" #include "RooStats/PointSetInterval.h" #include "RooStats/ConfidenceBelt.h" using namespace RooFit; using namespace RooStats; void StandardFeldmanCousinsDemo(const char *infile = "", const char *workspaceName = "combined", const char *modelConfigName = "ModelConfig", const char *dataName = "obsData") { // ------------------------------------------------------- // First part is just to access a user-defined file // or create the standard example file if it doesn't exist const char *filename = ""; if (!strcmp(infile, "")) { filename = "results/example_combined_GaussExample_model.root"; bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code // if file does not exists generate with histfactory if (!fileExist) { #ifdef _WIN32 cout << "HistFactory file cannot be generated on Windows - exit" << endl; return; #endif // Normally this would be run on the command line cout << "will run standard hist2workspace example" << endl; gROOT->ProcessLine(".! prepareHistFactory ."); gROOT->ProcessLine(".! hist2workspace config/example.xml"); cout << "\n\n---------------------" << endl; cout << "Done creating example input" << endl; cout << "---------------------\n\n" << endl; } } else filename = infile; // Try to open the file TFile *file = TFile::Open(filename); // if input file was specified byt not found, quit if (!file) { cout << "StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl; return; } // ------------------------------------------------------- // Tutorial starts here // ------------------------------------------------------- // get the workspace out of the file RooWorkspace *w = (RooWorkspace *)file->Get(workspaceName); if (!w) { cout << "workspace not found" << endl; return; } // get the modelConfig out of the file ModelConfig *mc = (ModelConfig *)w->obj(modelConfigName); // get the modelConfig out of the file RooAbsData *data = w->data(dataName); // make sure ingredients are found if (!data || !mc) { w->Print(); cout << "data or ModelConfig was not found" << endl; return; } // ------------------------------------------------------- // create and use the FeldmanCousins tool // to find and plot the 95% confidence interval // on the parameter of interest as specified // in the model config FeldmanCousins fc(*data, *mc); fc.SetConfidenceLevel(0.95); // 95% interval // fc.AdditionalNToysFactor(0.1); // to speed up the result fc.UseAdaptiveSampling(true); // speed it up a bit fc.SetNBins(10); // set how many points per parameter of interest to scan fc.CreateConfBelt(true); // save the information in the belt for plotting // Since this tool needs to throw toy MC the PDF needs to be // extended or the tool needs to know how many entries in a dataset // per pseudo experiment. // In the 'number counting form' where the entries in the dataset // are counts, and not values of discriminating variables, the // datasets typically only have one entry and the PDF is not // extended. if (!mc->GetPdf()->canBeExtended()) { if (data->numEntries() == 1) fc.FluctuateNumDataEntries(false); else cout << "Not sure what to do about this model" << endl; } // We can use PROOF to speed things along in parallel // ProofConfig pc(*w, 1, "workers=4", kFALSE); // ToyMCSampler* toymcsampler = (ToyMCSampler*) fc.GetTestStatSampler(); // toymcsampler->SetProofConfig(&pc); // enable proof // Now get the interval PointSetInterval *interval = fc.GetInterval(); ConfidenceBelt *belt = fc.GetConfidenceBelt(); // print out the interval on the first Parameter of Interest RooRealVar *firstPOI = (RooRealVar *)mc->GetParametersOfInterest()->first(); cout << "\n95% interval on " << firstPOI->GetName() << " is : [" << interval->LowerLimit(*firstPOI) << ", " << interval->UpperLimit(*firstPOI) << "] " << endl; // --------------------------------------------- // No nice plots yet, so plot the belt by hand // Ask the calculator which points were scanned RooDataSet *parameterScan = (RooDataSet *)fc.GetPointsToScan(); RooArgSet *tmpPoint; // make a histogram of parameter vs. threshold TH1F *histOfThresholds = new TH1F("histOfThresholds", "", parameterScan->numEntries(), firstPOI->getMin(), firstPOI->getMax()); // loop through the points that were tested and ask confidence belt // what the upper/lower thresholds were. // For FeldmanCousins, the lower cut off is always 0 for (Int_t i = 0; i < parameterScan->numEntries(); ++i) { tmpPoint = (RooArgSet *)parameterScan->get(i)->clone("temp"); double arMax = belt->GetAcceptanceRegionMax(*tmpPoint); double arMin = belt->GetAcceptanceRegionMax(*tmpPoint); double poiVal = tmpPoint->getRealValue(firstPOI->GetName()); histOfThresholds->Fill(poiVal, arMax); } histOfThresholds->SetMinimum(0); histOfThresholds->Draw(); }