// @(#)root/mathmore:$Id$ // Authors: L. Moneta, A. Zsenei 08/2005 /********************************************************************** * * * Copyright (c) 2004 ROOT Foundation, CERN/PH-SFT * * * * This library is free software; you can redistribute it and/or * * modify it under the terms of the GNU General Public License * * as published by the Free Software Foundation; either version 2 * * of the License, or (at your option) any later version. * * * * This library is distributed in the hope that it will be useful, * * but WITHOUT ANY WARRANTY; without even the implied warranty of * * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * * General Public License for more details. * * * * You should have received a copy of the GNU General Public License * * along with this library (see file COPYING); if not, write * * to the Free Software Foundation, Inc., 59 Temple Place, Suite * * 330, Boston, MA 02111-1307 USA, or contact the author. * * * **********************************************************************/ // Header file for class RootFinder // // Created by: moneta at Sun Nov 14 16:59:55 2004 // // Last update: Sun Nov 14 16:59:55 2004 // #ifndef ROOT_Math_RootFinder #define ROOT_Math_RootFinder #include "Math/IFunctionfwd.h" #include "Math/IRootFinderMethod.h" /** @defgroup RootFinders One-dimensional Root-Finding Classes implementing algorithms for finding the roots of a one-dimensional function. Various implementation esists in MathCore and MathMore The user interacts with a proxy class ROOT::Math::RootFinder which creates behing the chosen algorithms which are implemented using the ROOT::Math::IRootFinderMethod interface @ingroup NumAlgo */ namespace ROOT { namespace Math { //_____________________________________________________________________________________ /** User Class to find the Root of one dimensional functions. The GSL Methods are implemented in MathMore and they are loaded automatically via the plug-in manager The possible types of Root-finding algorithms are: <ul> <li>Root Bracketing Algorithms which do not require function derivatives <ol> <li>RootFinder::kBRENT (default method implemented in MathCore) <li>RootFinder::kGSL_BISECTION <li>RootFinder::kGSL_FALSE_POS <li>RootFinder::kGSL_BRENT </ol> <li>Root Finding Algorithms using Derivatives <ol> <li>RootFinder::kGSL_NEWTON <li>RootFinder::kGSL_SECANT <li>RootFinder::kGSL_STEFFENSON </ol> </ul> This class does not cupport copying @ingroup RootFinders */ class RootFinder { public: enum EType { kBRENT, // Methods from MathCore kGSL_BISECTION, kGSL_FALSE_POS, kGSL_BRENT, // GSL Normal kGSL_NEWTON, kGSL_SECANT, kGSL_STEFFENSON // GSL Derivatives }; /** Construct a Root-Finder algorithm */ RootFinder(RootFinder::EType type = RootFinder::kBRENT); virtual ~RootFinder(); private: // usually copying is non trivial, so we make this unaccessible RootFinder(const RootFinder & ) {} RootFinder & operator = (const RootFinder & rhs) { if (this == &rhs) return *this; // time saving self-test return *this; } public: bool SetMethod(RootFinder::EType type = RootFinder::kBRENT); /** Provide to the solver the function and the initial search interval [xlow, xup] for algorithms not using derivatives (bracketing algorithms) The templated function f must be of a type implementing the \a operator() method, <em> double operator() ( double x ) </em> Returns non zero if interval is not valid (i.e. does not contains a root) */ bool SetFunction( const IGenFunction & f, double xlow, double xup) { return fSolver->SetFunction( f, xlow, xup); } /** Provide to the solver the function and an initial estimate of the root, for algorithms using derivatives. The templated function f must be of a type implementing the \a operator() and the \a Gradient() methods. <em> double operator() ( double x ) </em> Returns non zero if starting point is not valid */ bool SetFunction( const IGradFunction & f, double xstart) { return fSolver->SetFunction( f, xstart); } template<class Function, class Derivative> bool Solve(Function &f, Derivative &d, double start, int maxIter = 100, double absTol = 1E-8, double relTol = 1E-10); template<class Function> bool Solve(Function &f, double min, double max, int maxIter = 100, double absTol = 1E-8, double relTol = 1E-10); /** Compute the roots iterating until the estimate of the Root is within the required tolerance returning the iteration Status */ bool Solve( int maxIter = 100, double absTol = 1E-8, double relTol = 1E-10) { return fSolver->Solve( maxIter, absTol, relTol ); } /** Return the number of iteration performed to find the Root. */ int Iterations() const { return fSolver->Iterations(); } /** Perform a single iteration and return the Status */ int Iterate() { return fSolver->Iterate(); } /** Return the current and latest estimate of the Root */ double Root() const { return fSolver->Root(); } /** Return the status of the last estimate of the Root = 0 OK, not zero failure */ int Status() const { return fSolver->Status(); } /** Return the current and latest estimate of the lower value of the Root-finding interval (for bracketing algorithms) */ /* double XLower() const { */ /* return fSolver->XLower(); */ /* } */ /** Return the current and latest estimate of the upper value of the Root-finding interval (for bracketing algorithms) */ /* double XUpper() const { */ /* return fSolver->XUpper(); */ /* } */ /** Get Name of the Root-finding solver algorithm */ const char * Name() const { return fSolver->Name(); } protected: private: IRootFinderMethod* fSolver; // type of algorithm to be used }; } // namespace Math } // namespace ROOT #include "Math/WrappedFunction.h" #include "Math/Functor.h" template<class Function, class Derivative> bool ROOT::Math::RootFinder::Solve(Function &f, Derivative &d, double start, int maxIter, double absTol, double relTol) { if (!fSolver) return false; ROOT::Math::GradFunctor1D wf(f, d); bool ret = fSolver->SetFunction(wf, start); if (!ret) return false; return Solve(maxIter, absTol, relTol); } template<class Function> bool ROOT::Math::RootFinder::Solve(Function &f, double min, double max, int maxIter, double absTol, double relTol) { if (!fSolver) return false; ROOT::Math::WrappedFunction<Function &> wf(f); bool ret = fSolver->SetFunction(wf, min, max); if (!ret) return false; return Solve(maxIter, absTol, relTol); } #endif /* ROOT_Math_RootFinder */