/***************************************************************************** * Project: RooFit * * Package: RooFitCore * * File: $Id: RooHist.h,v 1.22 2007/05/11 09:11:30 verkerke Exp $ * Authors: * * WV, Wouter Verkerke, UC Santa Barbara, verkerke@slac.stanford.edu * * DK, David Kirkby, UC Irvine, dkirkby@uci.edu * * * * Copyright (c) 2000-2005, Regents of the University of California * * and Stanford University. All rights reserved. * * * * Redistribution and use in source and binary forms, * * with or without modification, are permitted according to the terms * * listed in LICENSE (http://roofit.sourceforge.net/license.txt) * *****************************************************************************/ #ifndef ROO_HIST #define ROO_HIST #include "TGraphAsymmErrors.h" #include "RooPlotable.h" #include "RooAbsData.h" #include "RooAbsRealLValue.h" class TH1; class RooCurve ; class RooHist : public TGraphAsymmErrors, public RooPlotable { public: RooHist() ; RooHist(Double_t nominalBinWidth, Double_t nSigma= 1, Double_t xErrorFrac=1.0, Double_t scaleFactor=1.0); RooHist(const TH1 &data, Double_t nominalBinWidth= 0, Double_t nSigma= 1, RooAbsData::ErrorType=RooAbsData::Poisson, Double_t xErrorFrac=1.0, Bool_t correctForBinWidth=kTRUE, Double_t scaleFactor=1.); RooHist(const TH1 &data1, const TH1 &data2, Double_t nominalBinWidth= 0, Double_t nSigma= 1, RooAbsData::ErrorType=RooAbsData::Poisson, Double_t xErrorFrac=1.0, Bool_t efficiency=kFALSE, Double_t scaleFactor=1.0); RooHist(const RooHist& hist1, const RooHist& hist2, Double_t wgt1=1.0, Double_t wgt2=1.0, RooAbsData::ErrorType etype=RooAbsData::Poisson, Double_t xErrorFrac=1.0) ; RooHist(const RooAbsReal &f, RooAbsRealLValue &x, Double_t xErrorFrac=1.0, Double_t scaleFactor=1.0, const RooArgSet *normVars = 0, const RooFitResult* fr = 0); virtual ~RooHist(); // add a datapoint for a bin with n entries, using a Poisson error void addBin(Axis_t binCenter, Double_t n, Double_t binWidth= 0, Double_t xErrorFrac=1.0, Double_t scaleFactor=1.0); // add a datapoint for a bin with n entries, using a given error void addBinWithError(Axis_t binCenter, Double_t n, Double_t elow, Double_t ehigh, Double_t binWidth= 0, Double_t xErrorFrac=1.0, Bool_t correctForBinWidth=kTRUE, Double_t scaleFactor=1.0); // add a datapoint for a bin with n entries, using a given x and y error void addBinWithXYError(Axis_t binCenter, Double_t n, Double_t exlow, Double_t exhigh, Double_t eylow, Double_t eyhigh, Double_t scaleFactor=1.0); // add a datapoint for the asymmetry (n1-n2)/(n1+n2), using a binomial error void addAsymmetryBin(Axis_t binCenter, Int_t n1, Int_t n2, Double_t binWidth= 0, Double_t xErrorFrac=1.0, Double_t scaleFactor=1.0); // add a datapoint for the asymmetry (n1-n2)/(n1+n2), using sum-of-weights error void addAsymmetryBinWithError(Axis_t binCenter, Double_t n1, Double_t n2, Double_t en1, Double_t en2, Double_t binWidth= 0, Double_t xErrorFrac=1.0, Double_t scaleFactor=1.0); // add a datapoint for the efficiency (n1)/(n1+n2), using a binomial error void addEfficiencyBin(Axis_t binCenter, Int_t n1, Int_t n2, Double_t binWidth= 0, Double_t xErrorFrac=1.0, Double_t scaleFactor=1.0); // add a datapoint for the efficiency (n1)/(n1+n2), using a sum-of-weights error void addEfficiencyBinWithError(Axis_t binCenter, Double_t n1, Double_t n2, Double_t en1, Double_t en2, Double_t binWidth= 0, Double_t xErrorFrac=1.0, Double_t scaleFactor=1.0); virtual void printName(std::ostream& os) const ; virtual void printTitle(std::ostream& os) const ; virtual void printClassName(std::ostream& os) const ; virtual void printMultiline(std::ostream& os, Int_t content, Bool_t verbose=kFALSE, TString indent= "") const; inline virtual void Print(Option_t *options= 0) const { // Printing interface printStream(defaultPrintStream(),defaultPrintContents(options),defaultPrintStyle(options)); } Double_t getFitRangeNEvt() const; Double_t getFitRangeNEvt(Double_t xlo, Double_t xhi) const ; Double_t getFitRangeBinW() const; inline Double_t getNominalBinWidth() const { return _nominalBinWidth; } inline void setRawEntries(Double_t n) { _rawEntries = n ; } Bool_t hasIdenticalBinning(const RooHist& other) const ; RooHist* makeResidHist(const RooCurve& curve,bool normalize=false, bool useAverage=false) const; RooHist* makePullHist(const RooCurve& curve, bool useAverage=false) const {return makeResidHist(curve,true,useAverage); } Bool_t isIdentical(const RooHist& other, Double_t tol=1e-6) const ; protected: void initialize(); Int_t roundBin(Double_t y); private: Double_t _nominalBinWidth ; // Average bin width Double_t _nSigma ; // Number of 'sigmas' error bars represent Double_t _entries ; // Number of entries in histogram Double_t _rawEntries; // Number of entries in source dataset ClassDef(RooHist,1) // 1-dimensional histogram with error bars }; #endif