// @(#)root/roostats:$Id: MinNLLTestStat.h 43035 2012-02-16 16:48:57Z sven $ // Author: Kyle Cranmer, Lorenzo Moneta, Gregory Schott, Wouter Verkerke // Additional Contributions: Giovanni Petrucciani /************************************************************************* * Copyright (C) 1995-2008, Rene Brun and Fons Rademakers. * * All rights reserved. * * * * For the licensing terms see $ROOTSYS/LICENSE. * * For the list of contributors see $ROOTSYS/README/CREDITS. * *************************************************************************/ #ifndef ROOSTATS_MinNLLTestStat #define ROOSTATS_MinNLLTestStat #include "Rtypes.h" #include "RooStats/RooStatsUtils.h" //#include "RooStats/DistributionCreator.h" #include "RooStats/SamplingDistribution.h" #include "RooStats/TestStatistic.h" #include "RooStats/RooStatsUtils.h" #include "RooRealVar.h" #include "RooProfileLL.h" #include "RooNLLVar.h" #include "RooMsgService.h" #include "RooMinuit.h" #include "RooMinimizer.h" #include "Math/MinimizerOptions.h" #include "TStopwatch.h" #include "ProfileLikelihoodTestStat.h" namespace RooStats { /** \class MinNLLTestStat \ingroup Roostats MinNLLTestStat is an implementation of the TestStatistic interface that calculates the minimum value of the negative log likelihood function and returns it as a test statistic. Internally it operates by delegating to a MinNLLTestStat object. */ class MinNLLTestStat : public TestStatistic{ public: MinNLLTestStat() { // Proof constructor. Do not use. fProflts = 0; } MinNLLTestStat(RooAbsPdf& pdf) { fProflts = new ProfileLikelihoodTestStat(pdf); } MinNLLTestStat(const MinNLLTestStat& rhs) : TestStatistic(rhs), fProflts(0) { RooAbsPdf * pdf = rhs.fProflts->GetPdf(); if (pdf) fProflts = new ProfileLikelihoodTestStat(*pdf); } MinNLLTestStat & operator=(const MinNLLTestStat& rhs) { if (this == &rhs) return *this; RooAbsPdf * pdf = rhs.fProflts->GetPdf(); if (fProflts) delete fProflts; fProflts = NULL; if (pdf) fProflts = new ProfileLikelihoodTestStat(*pdf); return *this; } virtual ~MinNLLTestStat() { delete fProflts; } void SetOneSided(Bool_t flag=true) {fProflts->SetOneSided(flag);} void SetOneSidedDiscovery(Bool_t flag=true) {fProflts->SetOneSidedDiscovery(flag);} void SetReuseNLL(Bool_t flag) { fProflts->SetReuseNLL(flag); } void SetMinimizer(const char* minimizer){ fProflts->SetMinimizer(minimizer); } void SetStrategy(Int_t strategy){ fProflts->SetStrategy(strategy); } void SetTolerance(double tol){ fProflts->SetTolerance(tol); } void SetPrintLevel(Int_t printlevel){ fProflts->SetPrintLevel(printlevel); } void SetLOffset(Bool_t flag=kTRUE) { fProflts->SetLOffset(flag) ; } // Main interface to evaluate the test statistic on a dataset virtual Double_t Evaluate(RooAbsData& data, RooArgSet& paramsOfInterest) { return fProflts->EvaluateProfileLikelihood(1, data, paramsOfInterest); //find unconditional NLL minimum } virtual void EnableDetailedOutput( bool e=true ) { fProflts->EnableDetailedOutput(e); } virtual const RooArgSet* GetDetailedOutput(void) const { // Returns detailed output. The value returned by this function is updated after each call to Evaluate(). // The returned RooArgSet contains the following: // // - the minimum nll, fitstatus and convergence quality for each fit // - for all non-constant parameters their value, error and pull return fProflts->GetDetailedOutput(); } virtual void SetVarName(const char* name) { fProflts->SetVarName(name); } virtual const TString GetVarName() const { return fProflts->GetVarName(); } private: ProfileLikelihoodTestStat* fProflts; protected: ClassDef(MinNLLTestStat,1) // implements the minimum NLL as a test statistic to be used with several tools }; } #endif