// Author: Kerstin Tackmann, Andreas Hoecker, Heiko Lacker /********************************************************************************** * * * Project: TSVDUnfold - data unfolding based on Singular Value Decomposition * * Package: ROOT * * Class : TSVDUnfold * * * * Description: * * Single class implementation of SVD data unfolding based on: * * A. Hoecker, V. Kartvelishvili, * * "SVD approach to data unfolding" * * NIM A372, 469 (1996) [hep-ph/9509307] * * * * Authors: * * Kerstin Tackmann - CERN, Switzerland * * Andreas Hoecker - CERN, Switzerland * * Heiko Lacker - Humboldt U, Germany * * * * Copyright (c) 2010: * * CERN, Switzerland * * Humboldt University, Germany * * * **********************************************************************************/ ////////////////////////////////////////////////////////////////////////// // // // TSVDUnfold // // // // Data unfolding using Singular Value Decomposition (hep-ph/9509307) // // Authors: Kerstin Tackmann, Andreas Hoecker, Heiko Lacker // // // ////////////////////////////////////////////////////////////////////////// #ifndef TSVDUNFOLD_H #define TSVDUNFOLD_H #include "TObject.h" #include "TMatrixD.h" #include "TVectorD.h" #include "TMatrixDSym.h" class TH1D; class TH2D; class TSVDUnfold : public TObject { public: // Constructor // Initialisation of unfolding // "bdat" - measured data distribution (number of events) // "Bcov" - covariance matrix for measured data distribution // "bini" - reconstructed MC distribution (number of events) // "xini" - truth MC distribution (number of events) // "Adet" - detector response matrix (number of events) TSVDUnfold( const TH1D* bdat, const TH1D* bini, const TH1D* xini, const TH2D* Adet ); TSVDUnfold( const TH1D* bdat, TH2D* Bcov, const TH1D* bini, const TH1D* xini, const TH2D* Adet ); TSVDUnfold( const TSVDUnfold& other ); // Destructor virtual ~TSVDUnfold(); // Set option to normalize unfolded spectrum to unit area // "normalize" - switch void SetNormalize ( Bool_t normalize ) { fNormalize = normalize; } // Do the unfolding // "kreg" - number of singular values used (regularisation) TH1D* Unfold ( Int_t kreg ); // Determine for given input error matrix covariance matrix of unfolded // spectrum from toy simulation // "cov" - covariance matrix on the measured spectrum, to be propagated // "ntoys" - number of pseudo experiments used for the propagation // "seed" - seed for pseudo experiments TH2D* GetUnfoldCovMatrix( const TH2D* cov, Int_t ntoys, Int_t seed = 1 ); // Determine covariance matrix of unfolded spectrum from finite statistics in // response matrix // "ntoys" - number of pseudo experiments used for the propagation // "seed" - seed for pseudo experiments TH2D* GetAdetCovMatrix( Int_t ntoys, Int_t seed=1 ); // Regularisation parameter Int_t GetKReg() const { return fKReg; } // Obtain the distribution of |d| (for determining the regularization) TH1D* GetD() const; // Obtain the distribution of singular values TH1D* GetSV() const; // Obtain the computed regularized covariance matrix TH2D* GetXtau() const; // Obtain the computed inverse of the covariance matrix TH2D* GetXinv() const; //Obtain the covariance matrix on the data TH2D* GetBCov() const; // Helper functions Double_t ComputeChiSquared( const TH1D& truspec, const TH1D& unfspec ); private: // Helper functions for vector and matrix operations void FillCurvatureMatrix( TMatrixD& tCurv, TMatrixD& tC ) const; static Double_t GetCurvature ( const TVectorD& vec, const TMatrixD& curv ); void InitHistos ( ); // Helper functions static void H2V ( const TH1D* histo, TVectorD& vec ); static void H2Verr ( const TH1D* histo, TVectorD& vec ); static void V2H ( const TVectorD& vec, TH1D& histo ); static void H2M ( const TH2D* histo, TMatrixD& mat ); static void M2H ( const TMatrixD& mat, TH2D& histo ); static TMatrixD MatDivVec( const TMatrixD& mat, const TVectorD& vec, Int_t zero=0 ); static TVectorD CompProd ( const TVectorD& vec1, const TVectorD& vec2 ); static TVectorD VecDiv ( const TVectorD& vec1, const TVectorD& vec2, Int_t zero = 0 ); static void RegularisedSymMatInvert( TMatrixDSym& mat, Double_t eps = 1e-3 ); // Class members Int_t fNdim; //! Truth and reconstructed dimensions Int_t fDdim; //! Derivative for curvature matrix Bool_t fNormalize; //! Normalize unfolded spectrum to 1 Int_t fKReg; //! Regularisation parameter TH1D* fDHist; //! Distribution of d (for checking regularization) TH1D* fSVHist; //! Distribution of singular values TH2D* fXtau; //! Computed regularized covariance matrix TH2D* fXinv; //! Computed inverse of covariance matrix // Input histos const TH1D* fBdat; // measured distribution (data) TH2D* fBcov; // covariance matrix of measured distribution (data) const TH1D* fBini; // reconstructed distribution (MC) const TH1D* fXini; // truth distribution (MC) const TH2D* fAdet; // Detector response matrix // Evaluation of covariance matrices TH1D* fToyhisto; //! Toy MC histogram TH2D* fToymat; //! Toy MC detector response matrix Bool_t fToyMode; //! Internal switch for covariance matrix propagation Bool_t fMatToyMode; //! Internal switch for evaluation of statistical uncertainties from response matrix ClassDef( TSVDUnfold, 0 ) // Data unfolding using Singular Value Decomposition (hep-ph/9509307) }; #endif