/* GLIB - Library of useful routines for C programming
* Copyright (C) 1995-1997 Peter Mattis, Spencer Kimball and Josh MacDonald
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see .
*/
/*
* Modified by the GLib Team and others 1997-2000. See the AUTHORS
* file for a list of people on the GLib Team. See the ChangeLog
* files for a list of changes. These files are distributed with
* GLib at ftp://ftp.gtk.org/pub/gtk/.
*/
#ifndef __G_ALLOCA_H__
#define __G_ALLOCA_H__
#if !defined (__GLIB_H_INSIDE__) && !defined (GLIB_COMPILATION)
#error "Only can be included directly."
#endif
#include
#if defined(__BIONIC__) && defined (GLIB_HAVE_ALLOCA_H)
# include
#elif defined(__GNUC__)
/* GCC does the right thing */
# undef alloca
# define alloca(size) __builtin_alloca (size)
#elif defined (GLIB_HAVE_ALLOCA_H)
/* a native and working alloca.h is there */
# include
#else /* !__GNUC__ && !GLIB_HAVE_ALLOCA_H */
# if defined(_MSC_VER) || defined(__DMC__)
# include
# define alloca _alloca
# else /* !_MSC_VER && !__DMC__ */
# ifdef _AIX
# pragma alloca
# else /* !_AIX */
# ifndef alloca /* predefined by HP cc +Olibcalls */
G_BEGIN_DECLS
char *alloca ();
G_END_DECLS
# endif /* !alloca */
# endif /* !_AIX */
# endif /* !_MSC_VER && !__DMC__ */
#endif /* !__GNUC__ && !GLIB_HAVE_ALLOCA_H */
/**
* g_alloca:
* @size: number of bytes to allocate.
*
* Allocates @size bytes on the stack; these bytes will be freed when the current
* stack frame is cleaned up. This macro essentially just wraps the alloca()
* function present on most UNIX variants.
* Thus it provides the same advantages and pitfalls as alloca():
*
* - alloca() is very fast, as on most systems it's implemented by just adjusting
* the stack pointer register.
*
* - It doesn't cause any memory fragmentation, within its scope, separate alloca()
* blocks just build up and are released together at function end.
*
* - Allocation sizes have to fit into the current stack frame. For instance in a
* threaded environment on Linux, the per-thread stack size is limited to 2 Megabytes,
* so be sparse with alloca() uses.
*
* - Allocation failure due to insufficient stack space is not indicated with a %NULL
* return like e.g. with malloc(). Instead, most systems probably handle it the same
* way as out of stack space situations from infinite function recursion, i.e.
* with a segmentation fault.
*
* - Special care has to be taken when mixing alloca() with GNU C variable sized arrays.
* Stack space allocated with alloca() in the same scope as a variable sized array
* will be freed together with the variable sized array upon exit of that scope, and
* not upon exit of the enclosing function scope.
*
* Returns: space for @size bytes, allocated on the stack
*/
#define g_alloca(size) alloca (size)
/**
* g_newa:
* @struct_type: Type of memory chunks to be allocated
* @n_structs: Number of chunks to be allocated
*
* Wraps g_alloca() in a more typesafe manner.
*
* Returns: Pointer to stack space for @n_structs chunks of type @struct_type
*/
#define g_newa(struct_type, n_structs) ((struct_type*) g_alloca (sizeof (struct_type) * (gsize) (n_structs)))
#endif /* __G_ALLOCA_H__ */