#include #include #include #include #include "km3net-dataformat/offline/Head.hh" #include "km3net-dataformat/offline/Evt.hh" #include "km3net-dataformat/offline/Hit.hh" #include "JAAnet/JHead.hh" #include "JAAnet/JAAnetToolkit.hh" #include "JSupport/JMultipleFileScanner.hh" #include "JSupport/JMonteCarloFileSupportkit.hh" #include "JSupport/JSupport.hh" #include "JPhysics/JPDFToolkit.hh" #include "JPhysics/JDispersion.hh" #include "JPhysics/JConstants.hh" #include "JPhysics/Antares.hh" #include "JPhysics/KM3NeT.hh" #include "JIO/JFileStreamIO.hh" #include "JGeometry3D/JGeometry3DToolkit.hh" #include "JGeometry3D/JDirection3D.hh" #include "JGeometry3D/JCylinder3D.hh" #include "JGeometry3D/JPosition3D.hh" #include "JGeometry3D/JAxis3D.hh" #include "JTools/JHistogram1D_t.hh" #include "JTools/JHistogramMap_t.hh" #include "JTools/JTransformableMultiHistogram.hh" #include "JTools/JFunction1D_t.hh" #include "JTools/JFunctionalMap_t.hh" #include "JDetector/JDetector.hh" #include "JDetector/JDetectorToolkit.hh" #include "JDetector/JPMTRouter.hh" #include "Jeep/JParser.hh" #include "Jeep/JMessage.hh" #include "JPhysics/JPDFTransformer.hh" #include "JPhysics/JPDF.hh" #include "JSirene/JVisibleEnergyToolkit.hh" /** * \file * * Program to histogram event-by-event data of shower light for making PDFs. * \author lquinn */ int main(int argc, char **argv) { using namespace std; using namespace JPP; JMultipleFileScanner inputFile; JLimit_t& numberOfEvents = inputFile.getLimit(); string outputFile; string detectorFile; bool hadronicMode; int debug; try { JParser<> zap("Program to histogram event-by-event data of shower light for making PDFs."); zap['f'] = make_field(inputFile); zap['o'] = make_field(outputFile); zap['n'] = make_field(numberOfEvents) = JLimit::max(); zap['a'] = make_field(detectorFile); zap['H'] = make_field(hadronicMode); zap['d'] = make_field(debug) = 1; zap(argc, argv); } catch(const exception &error) { FATAL(error.what() << endl); } if(hadronicMode) { NOTICE("Plotting hadronic showers." << endl); } else { NOTICE("Plotting EM showers." << endl); } JDetector detector; try { load(detectorFile, detector); } catch(const JException& error) { FATAL(error); } JHead head(JMultipleFileScanner(inputFile).getHeader()); // Monte Carlo header const Vec offset = getOffset(head); NOTICE("Apply detector offset " << offset << endl); detector -= getPosition(offset); const JCylinder3D can(detector.begin(), detector.end()); const JPMTRouter pmtRouter(detector); const double P_atm = NAMESPACE::getAmbientPressure(); const double wmin = getMinimalWavelength(); const double wmax = getMaximalWavelength(); const JDispersion dispersion(P_atm); const double ng[] = { dispersion.getIndexOfRefractionGroup(wmax), dispersion.getIndexOfRefractionGroup(wmin) }; typedef JHistogram1D_t::abscissa_type abscissa_type; typedef JTransformableMultiHistogram::maplist> JMultiHistogram_t; typedef JPDFTransformer<4, abscissa_type> JFunction4DTransformer_t; JMultiHistogram_t h0; // occurrence rate of PMT (used for normalisation) JMultiHistogram_t h1; // light from cascade h1.transformer.reset(new JFunction4DTransformer_t(21.5, 2, ng[0], 0.0, JGeant(JGeanx(1.00, -2.2)), 1e-2, NAMESPACE::getAngularAcceptance, 0.05)); set C; // cosine emission angle JQuadrature qeant(-1.0, 1.0, 20, JGeanx(1.00, -2.2)); for (JQuadrature::const_iterator i = qeant.begin(); i != qeant.end(); ++i) { C.insert(i->getX()); } C.insert(-1.01); C.insert(-1.00); C.insert( 1.00); C.insert( 1.01); const double R[] = {0.0, 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0, 25.0, 30.0, 35.0, 40.0, 50.0, 60.0, 70.0, 80.0}; const double Dmax_m = 80.0; for (int i = 0; i != sizeof(R)/sizeof(R[0]); ++i) { const double R_m = R[i]; for (set::const_iterator c = C.begin(); c != C.end(); ++c) { const double cd = *c; const double grid = 10.0 + 0.0 * R_m/100.0; // [deg] const double alpha = 2.0 * sqrt(1.0 - cos(grid * PI / 180.0)); // azimuth angle unit step size const int number_of_theta_points = max(2, (int) (180.0/(1.4 * grid))); const double theta_step = PI / (number_of_theta_points + 1); for (double theta = -0.5*theta_step; theta < PI + theta_step; theta += theta_step) { const int number_of_phi_points = max(2, (int) (PI * sin(theta) / alpha)); const double phi_step = PI / (number_of_phi_points + 1); for (double phi = -0.5*phi_step; phi < PI + phi_step; phi += phi_step) { for (JMultiHistogram_t* p : { &h0, &h1 }) { (*p)[R_m][cd][theta][phi]; } } } } } double buffer[] = { 0.0, 0.5, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 7.5, 10.0, 15.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 85.0, 100.0 }; for (JMultiHistogram_t::super_iterator i1 = h1.super_begin(); i1 != h1.super_end(); ++i1) { for (int j = 0; j != sizeof(buffer)/sizeof(buffer[0]); ++j) { i1.getValue()[buffer[j]]; } } while (inputFile.hasNext()) { NOTICE("event: " << setw(10) << inputFile.getCounter() << '\r'); STATUS(endl); const Evt* event = inputFile.next(); if (!has_neutrino(*event)) { WARNING("Event " << inputFile.getCounter() << " does not correspond to a neutrino interaction; skip."); continue; } if (!has_electron(*event) || count_hadrons(*event) == 0) { WARNING("No electron/hadrons found; skip."); continue; } const Trk& neutrino = get_neutrino(*event); const double Evis = getVisibleEnergy (*event, can); const Vec EvisVector = getVisibleEnergyVector(*event, can); JVertex3D vertex = getVertex(neutrino); const JRotation3D R(getDirection(EvisVector)); vertex.rotate(R); for (vector::const_iterator hit = event->mc_hits.begin(); hit != event->mc_hits.end(); ++hit) { try { JAxis3D axis = pmtRouter.getPMT(hit->pmt_id); axis.transform(R, vertex.getPosition()); if ((!hadronicMode && from_electron(*hit)) || (hadronicMode && from_hadron(*hit))) { const double t1 = vertex.getT() + axis.getLength() * getInverseSpeedOfLight() * getIndexOfRefraction(); const double D_m = axis.getLength(); const double cd = axis.getZ() / D_m; const double theta = axis.getTheta(); const double phi = fabs(axis.getPhi()); const double dt = getTime(*hit) - t1; const double npe = getNPE (*hit); if (D_m < Dmax_m) { h1.fill(D_m, cd, theta, phi, dt, npe/Evis); } } } catch(const exception& error) { FATAL(error.what() << endl); } } for (JDetector::const_iterator module = detector.begin(); module != detector.end(); ++module) { JPosition3D P = module->getPosition(); P.rotate(R); P.sub(vertex); if (P.getLength() < h0.getXmax()) { for (JModule::const_iterator pmt = module->begin(); pmt != module->end(); ++pmt) { JAxis3D axis = *pmt; axis.transform(R, vertex); h0.fill(axis.getLength(), axis.getZ()/axis.getLength(), axis.getTheta(), fabs(axis.getPhi()), 0.0, 1.0); } } } } double integral = 0; for (JMultiHistogram_t::super_iterator i = h0.super_begin(); i != h0.super_end(); ++i) { integral+=i.getValue().getIntegral(); } DEBUG("Integral:\t" << integral << endl); // output JFileStreamWriter out(outputFile.c_str()); NOTICE("Storing, " << flush); for (const JMultiHistogram_t* p : { &h0, &h1 }) { out.store(*p); } out.close(); NOTICE("done." << endl); }