{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Event file Header information ##\n", "\n", "Header information is stored internally in aanet, in a class called Head,\n", "in a way that derives directly from the ascii (.evt) event files. \n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "start_run: 1\n", "PDF: 4 58\n", "XSecFile: \n", "can: -479.9 545.21 1327.95\n", "coord_origin: 0 0 479.9 \n", "cut_in: 0 0 0 0\n", "cut_nu: 100 1e+07 -1 1\n", "cut_primary: 0 0 0 0\n", "cut_seamuon: 0 0 0 0\n", "detector: /pi1/data/shanidze/km3net/TDR/DETECTORS/km3net_wpd_V2.det\n", "drawing: Volume\n", "genhencut: 3000 0\n", "genvol: -22772.9 3161.5 26837.2 5.868e+13 2e+08\n", "kcut: 2\n", "livetime: 0 0\n", "model: 1 2 1 1 10\n", "muon_desc_file: \n", "norma: 0 0\n", "nuflux: 0 2 0 0.500E+00 0.000E+00 0.200E+01 0.800E+01\n", "physics: GENHEN 5.02-280602 110117 1754\n", "seed: GENHEN 3 1000 309408948 0\n", "simul: \n", "spectrum: -1.4\n", "target: isoscalar\n", "end_event:\n", "\n" ] } ], "source": [ "import ROOT\n", "import aa\n", "f = EventFile(\"../evtfiles/numu_jgandalf.root\")\n", "\n", "print f.header \n", " " ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The for statement loops over all the events in the file. EventFile::index counts the events, which is usefull since we only want to process a few events here. \n", "Of course, we can do much more complicated things in the event loop.\n", "\n", "\n", "The following exmple makes a plot of the energy of the neutrino, for all events that have a total ToT of 100000, for an E^-2 neutrino spectrum" ] }, { "cell_type": "code", "execution_count": 3, "metadata": { "collapsed": false, "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAArgAAAHYCAIAAAApvgy/AAAABmJLR0QAAAAAAAD5Q7t/AAAgAElE\nQVR4nO3dsZLjyJ0n4MRFzzuU+gUkt+hKWoC7bkfoFc7SemuuPJFcb2Wud+3dI2xsuxLBkNwe2nqB\nnu5nmInBGXmVQoFMFquKRQDJ74uJiSIIcgCSw/wx84/Mquu6AABwzP8a+wAAgOkSFACALEEBAMgS\nFACALEEBAMgSFACALEEBAMgSFODW/eEPf/jDH/4w9lEAE/Vu7AMARvbf//3ff//730MI//mf/zn2\nsQCTo0cBAMgSFACALEEBeETJAtAnKAAhhPD3v//9V7/6VVVVf/rTn/70pz9VVSUuACGEyuqRcON+\n9atfxWLGEMLvfve7X/7yl6m80fcDICjArUtBof9tUFVVCOHf//3fXQoBN87QAxBCCL/73e/6N3/5\ny1+OdSTApAgKQAiSAZAhKAAAWYICAJAlKAAAWYICAJAlKAAAWYICAJBlwiUAIEuPAgCQJSgAAFmC\nAgCQJSgAAFmCAgCQ9W7sA5iBtm2bpkl/hxDSTQAOxWXKmbgzL3sUFJ4QM0HMB+v1erPZxO3b7VZc\nAMhx7f3EnR/mDD2cUlXVbrdLNzebzXa77bputVqt1+vxjgsArkRQOKXrurqu083VatXvYACA4t1i\nUKiqatDSxyqEqqpOjybEXoSmaXa7nawAwC24uaBwdMhguVzudru6rne73Ylhm7ZtY5gw9gZwC6qq\nMtB8Q0FhvV5XVZWqEZPYi9B1Xdu2MQHkPhbL5VJ1AsBN0X9cWlBYr9eHb2qMAk3TrFarfs1BFPsS\n0s26rg/DRHj4rGw2m+rBJY8bACaptMsjY7dB/9rFeDOE0DRN0zRt2y6Xy8GjTpQmpNhhxAHgNsWf\noLvd7jY7lUvrUQghdF23XC5jAz8IDQDwLLvdLnUzbzabG2xQSutRiLqui0MDUgIAr5S6kweT69yI\nAnsUXkCtCgBHDYrYRjySsZQZFOKIQ38M4rR+QhzUNgLALSswKPTrEs7JCrHUMdan9P8NAJRWo7Be\nrwd1CV3XxYsdcg+Jl01uNptYrpLmaQYAKpf8Jf3lpAF4saoqpHGpqqqu6/518rvdrphTO/NEChx6\neDEpAQAGCgl9iQkTAaagsMalPOf3KJRWoxB8OgHG5jdbSQoMCgCMTlYohqAAwOXp3J2485PcdIsZ\n4/JOVVUNagzjtQmH2wGAi5toMWO8BCXOkBinTexPtR1CqOt6sD3dO80zArgdvoqnb97FjIPVPNfr\n9WaziR0Jab7FuGdVVev12kSKALMQv88Pt/fnKniBWU9v0LZtPPfUxh3eddjMpS39u452tDdN89pW\nspueOKdyXKxhcDOEUNd12jN2OfQfO80zArgpua/i+KVdH1itVuc8Z263w7ZgLgZLC/UbuEFjPWgT\nD+863H74nH3nv2KTfmW32+1qteoHmsEHRVAAmKDTQSG1ec99znPyxIzEBi6dVP/m4IXqt4Mn7jr6\n/LlXu5CgkAJReh3PCQovcMVzAijfy4LCdruNP39jC1fXddoz/fJO7Wj6JRn37/9ujs8zeIajzzOu\no01YPJFBT8Czetb7Dzlxmue3fVOsUUi6rosjNHFM68xRlm6ew1QA7Ha7fsX6crkc9KjHMft4V39j\nLG8PvTKI/jPEwfv+M8fSt9cURrzeYVHCabFWLzfEMBBfn8vU8J0ZKK5pu90OMmDIhCxDDwATlPsq\nHgzJJ/GHb2wC05f84GZ43Lvc/0/024JwbKS/O+iHn2AL2O9uGRxe6mJJW1KvSTjWQzMo9Tvq/NOf\n4jwKbdv2o+JAio3x79zHDoBpOixm7N+bfgSf/rV99Mv/8BqBVOgWn229Xsd9UmM5BW3bVlUVL/eL\nxxkPO16w0DTN0UtFUmt42C+yXC7rur7YbENnBoprSikypqF+yOoPuhwt05jmGQHclNxX8ZM1CoN7\nQ75H4Wi9WooFA/3WJMpdC3B9uY6B/rkMyh4PH95/7DndCd3cexSaplmtVnFsaRCy4l2bzaaqqs1m\nk7YDQLRarbaPxZaibdvuofIxFUOMK7VxXdcNmrP1ep2a6nRX27apUyTtFh53KsQtF2wcpxgUwsML\nlIoV+v1I6a7BdgBuXGodmwexZQ0hxD788DD6EH+jj17MGELYbreHbdmgzrF/CrEMM92VJmtKWy4+\nKD/pqx5OBCIdCQAzldrswcbXP3N82s1mk7oQNptNajV3u12MDv3JEF//H32xWGQwOPF+XUL8O81W\nnPaJd8VzieUL6URSpLjkgZ45RDEX5Z0RwOzkvopP/NLtzqhRSHuGk3Pq9J/28EK5ZPSpFI6+DumA\nT1RUDB7Sf8XOn6Ty/OaytHU7rEQCb6SqPsY/uu734x4J0/dGX8XndwOkzvnD1ROObp+mE0f7+hM5\n/z0qrVkVFOCNCAqcz1fx9J3/Hk20mBEAmIJJFzO+TO6KF/EWAJ6rwKAgEADApRh6AACyCuxRAGCa\n4tDwarU6vNA/3pVmUbwFT855kO463CdNBXF414lHvUxphalKbeGNuOqB8+W+ilMN2eDetDb07QSF\nuPxhXde52SEH9Xb9V6Zpmv76iP05qgdLKp54PV31AMBsHF0dsWwnFkkOvdmd0+RIaf80UePhXfGP\nuD3OXnWRTgVBAYBrO6cBW6/XVVXFaYz729u2bZrm8K71eh0nPE73XvaYL+jJ9ahih0E6hf78zTEN\npBPfbrdxNsbYMzFYVrvf8fByZ87gOBflnRFMRAj/J/4z9oEwA7mv4hBCXdeDaYbTGsrh8W/ouHP6\no79z/67+b+t0V7x3OmtJ96UzPXGEg8Wj++11elRaNzEZ3Dz9CpzfXJbWrAoK8EYEBc53OigcZoLB\nxqNJIt41+Ik7aEH7T3v+qgfXFPNBDDdPNuR98bxSvDi8a/CfOHrX4PnPPGZDDwBcVew27xfxDYYJ\nBgsl9/fvN6JHywD7FX8XOt5LigWMT468pFNLr0P/ZGONQuxRCAflDhdfO1tQAODa6rqOBYy5SwR3\nu13VEx4vgxQ3HtYDnlidcgpidomFFOl0jrbrqSyxbduu61ar1Waz6aeHuBR10zSxu6X/JOv1OsWp\n0yWTZxIUALi2dDnfZrM52rrXdb19LIaJqqrS7+nD/vmJi6WFywdxy3K5PKzWDI8LGFPCOOwmSa9k\n27aD5znMEC9jwiUAri1OnBAbtqNjBLvdLm2P0wNst9vUgl5qKqEr61cPhIef+4dTHaS2f/Dwoy9U\nf+ntzWYTuxmefNTznFnLMBe3c6ZwZYoZOV/uKzf0yvdSR0K82a9YjH+nToW02+BKgcEzhMe1gfFJ\nLn9ulzM44H71Zfy7X4gweKGO3hX/7r+GJ16B81+cSb+ILzDxjwXMl6DA+c4JCikN9G+mKv1+x3s4\nuJYh6WeFuQeFQbt+4tKG3F2DHovTp3/+i1PahMemcIY3UlUfQ7gL4aspnHnSpb6K+/3qg43hcRf9\nNK9xeKXBmR699/Cu049Kzn+PSmtWBQV4C/t9t1j8EIPC99//4v7+iXnluHG+iqdPUABeKC3+9NiH\nEN4//P0lhE9HH6uzgchX8fRZFAq4oHch3PVu3oXw3WjHAlyXoAA86acQvvZufgvhx9GOBbiu0nqH\n9HfBW+jVKHz7/PlusVCjwCm+iqdPjQJwYa564Hy+iqfv/PfIzIzA+b4+vQvwlDQl5ekrGNMElIOZ\nKA/nXozrRxydsPLoxM/Pc+Z8C3NR3hnBRJhwifOd+CoeTAp0Yp3low88um7yoF2Li1a/5Ljf3vmn\nPzipE7Mqhd60lYdyL8X5zaViRgCuJK7aEEJYrVar1aqu67hKZNqhqqrcOg65xY36aypGu90urnpw\nyUO/kHh2aZbl3W539HzjwadwEHrrQMbzHQSm+JBBAx8ncLzAuhhnBoq5uJ0zhSvTo8D5cl+5h9/G\n8Xdw+tUb8j+yB3M8D55h8Ki0VsLzj/0NDU62y5/v4IXqT0fdXxLiyf/W0Q6Y9J8487AL7FE48aIA\nMClN06SVC+LP6MG6kU3TnOhmyIk/uzebTX9LfKqmafqTHA8WlTjccnH9ro7Y/3G4T3xN0nH2TySK\nlQexNOHof2W5XNZ1fZlulTMDxVyUd0YwEXoUOF/uqzi1gkd/6abEEH9kpwa7vwbSmT0K3eNf3mn8\nPj1V/Fk/+HX+5z//OYTwxz/+8QWnfI7DTpET3QODxro/DDFw2HGS630ZPP+Zh11gjwJwQlV9jP+M\nfSDcothg73a75XI5+HEfHn5A13Wd+gNi89+27dEG8rT+klFxgD89VV3X8Tf6H//4xxBCSiT/8R//\nEY79fL++fuHFYEs4WHPy8IDjS3epKg1BAYAriQV32+02tn8pMRzuGcca+iMOLx4RiE1s/+EpQ/zz\nP/9zeMgH8XgGKziPZZBsVqvVZrOJJxI3pj1j9uq/UIcv3SsJCgBcVexI6Pe9H80K4XWLR6dVmFP/\nRPWg/xM8JYO//OUv4aGP4Y2ceTq5ZHNm2x/P7oIXfQgKAFxD27ZVVQ2K73K1eOfce1oqEoxN5mq1\n2j4Wt6fRh9ivEPsY3shhe3+0D6M/aDLYHl/D/jOkPNS/eeF6zDNrGeaivDOCy3pxTaJiRs6X+yoO\nx6oO+41R2uHwSsLYoJ5ZzBhbyv5Vl/2n6l9t2PWqH86f/enF+mcxOKN+YWO6vDNmmsFLlB41uKs7\nr4wxPc+Zx1xasyoowGmCAleQ+yqO7V+86iEaTHjQb61jExgby/QTORcUQm8Sp8NWv9/uxqfq35uG\nG/785z9f6AU4pf9bfTCnQv91G/Q09E/8xA/+M2dZ6J7TXJa2boeVSOC0dL3Dc9d2evEDuUEnvoqb\nphnMHLBarVJfeipWiA/v1y7EKQfSkEGSZnvMPefR/27/8P7yl7/8y7/8y2DjmxqMF5ze7eieJ+46\nk9UjgeMEBa7gya/iJ5vAwaD7RUrzXt+4lkRQAI4TFLgCX8XTd9PLTOcus/GpBYDnKjAoCAQAo8v9\nZmN2CgwKAIzrln+wlTfsIigAZ1GaALfJzIwAQJYeBZgfFyAAVyMoAJMmFcG4pjv0sF6v4zJf/QXL\n43oYfebNgOmrqo/xn7EPBHi2ifYoxLk2+wuW96ft7M+ALSjA892F8HXsYwDmYaJBIaaE1JEQV9Vs\n2zZuec3Co3DL9vsuhA8xKOz33f29K92BJ0wxKMQcMFjPIy7m0R+D0JcAOflO/g8hvA8hhPB+sfgS\nwqejO6kGAJIpBoWmafqzVcRwkNYYDb0Jv/q9DsBT3oVw17t5F8J3Ifw42uEAczDdYsZovV7H9UNj\nB0PsV0hriu92u8N+her5rn1WMI6fHpcmfJMSgCdNsUchSkuM97sN+j0N8WqIwbrm4banDoUoN3aw\n33eLxZcQ7kL49vnz3WJhiAF4wkR7FFJK2G63JwYXlCnAs9zfVyF8CuFTCP+zWOhLA5420aCwXC7r\nuu66rh8F4iQK/SJHBQrwIq6NBM41xaGHFAX6KaFpmrh9s9k0TRNv7na7fpEjAHBZUwwKsZ/gsPgg\nhNB1XVVVcVQihFDX9eAqSgDggqYbFHJiraJ5FADgCiZao/AkKQEArmCuQQEAuAJBAWbq7uldAF5N\nUICZeVjY6UMIH/b7G5leTCqC0UyxmBEIFnYKIVjuEiZAUIB5me/CTncnJnqSimCyChx6sPITRZvf\nwk6vGCs5moqAqyqwR8GiUJRhdgs7vbJX4JiYit4/3JxBKoLyFBgUoGwPCzvdhfB1Oikh79yxkqPB\naLKpCG5HgUMPcBvmsrDTq8ZKLHcJo9OjAFzGW46VzCUVQYEEBeBtzW2sBHjE0ANwHXoFYJb0KMBt\nMeUA8Cx6FACALEEBAMgSFACALEEBAMgqsJgxt6yDqZ0B4LkKDAoCAQBciqEHACBLUAAAsgQFACBL\nUAAAsgQFACCrwKseoHjWawCuRlAAJk0qgnEZegAAsqrCpieqqtLOCIAZKa8Z0qMAAGQVWKNgrQcA\nuJQCg4JAAACXYugBAMgSFACALEEBAMgSFACArAKLGQGiqvoY/zC9I7yYHgUAIEtQAACyBAUAIEtQ\nAACyBAUAIKvAqx6s9QAAl1JgUBAIAOBSDD0AAFmCAgCQJSgAAFmCAgCQJSgAAFmCAgCQNd2gsF6v\nq6qqqqppmrZt0/a2bZumidtHOzhgNu7GPgCYt2qasw40TbPb7eq6DiHsdrsQwna7jckgzqdU13Xc\nPjj+qproGQFXtt93i8UPIdyF8PX7739xf398Kja4rPKaoYmeT1VVdV2njoR0MwaIdMxVVa1Wq/V6\n3X/gNM8IeCNV9TFzz4cQ3j/8/SWET0d36rrfv8VRcbPKa4amOPQQ80G/+Q8P/QqpmyGq63qz2Vz1\n4IB5ePd40OEuhO9GOxaYsylO4dw0TT+OxdywWq3SvWMcFDAvP4Xwtdej8C2EH8c8HJitKQaFvvV6\nHfsMBh0MJ+QWhTqhsG4iuCm5sYP9vlssvoRwF8K3z5/vFgtDDPAS0w0Kbdsul8sQQr9Y4RxafSCE\ncH9fhfApFjNKCfBiU6xRCL2UsN1uBynhWaEBuHlfxz4AmLeJFmcOrnrobw+9PoPD3corNwVeLF0Q\n4dIGrqa8ZmiKPQqpHKHpiRu3223aof9vAOAtTLFGIfYQxOshB5qmWa1Wm80mVjiuVisXQQDA25lr\nD0mcfOlwe3l9PsCLGXrg+sprhqY49HAOHQkAcAVzDQoAwBUICgBAlqAAAGQJCgBA1hQvj3yl3FoP\nhZWhAsAVFBgUBAIAuBRDDwBAVmnzQpQ30wUAM1JeM6RHAQDIEhQAgCxBAQDIKvCqB5gF6xUBs6BH\nAQDIEhQAgCxBAQDIEhQAgKwCixmt9QAAl1JgUBAIAOBSDD0AAFmCAgCQJSgAAFmCAgCQJSgAAFkF\nXvUA83EXwtexj4HjLMYBkaAAI9jvuxA+xKCw33f398cn/wAYnaAAbyj9Kj3wIYT3IYQQ3i8WX0L4\ndHQnv2WB0alRgOt7F8Jd7+ZdCN+NdiwAJwkKcH0/PS5N+BbCj6MdC8BJhh7gDeXGDvb7brH4EsJd\nCN8+f75bLAwxABNVYFCwKBTTd39fhfApFjNKCcCUFRgUBALmw7WRwNSpUQAAsgQFACBLUAAAsgQF\nACBLUADIuXt6FyhdgVc9ALySxTggERSA22UxDniSoQeAAYtxwD8ICgADFuOAfzD0ANwui3HAkwoM\nCtZ6AF7JYhyQFBgUBALgQizGASUGBZgFBfPALChmBACyBAUAIEtQAACyBAUAIGvqQaGqqrZt0822\nbavHmqYZ7eAAoHSTvuphvV4f3V7XdfpbUACAtzPRoLBerzebzeH22LvQ72MAAN7ORIcemqZZrVb9\nnoMoRQRZAQCuYKI9Ck3TNE3Ttu1yuTy8N03SXNe1xAAAb2eiPQo5u90uhLBarbbb7Wq12u12hzUK\n1fONcCYAMAcT7VHI6a/jELscYnTI7QPwMubYhmhmPQoDLnkAgDc1p6AQJ1HoXzOpQAEA3tScgkLs\nP9hsNjEfrNfr3W63Wq3GPSoAKNj8ahSqqkqXQtR1nZuUCQB4vWqmpX9t2x4tUKiquZ4RAAUorxkq\n7nyKe4cAmJHymqE51SgAAFcmKAAAWYICAJAlKAAAWTO7PPIcubUbCqsuAYArKDAoCAQAcCmGHgCA\nrAJ7FADGVVUf4x+WoKQAehQAgCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQAgKwC\ng0KVMfZxATflbuwDgMsocApni0IBI9rvuxA+hHAXwtf9vru/9yuFeasKa1arqrQzAqYpLehw4EMI\n7x/+/hLCp6M7WQaiVOU1QwUOPQCM593jQYe7EL4b7VjgEgQFgAv6KYSvvZvfQvhxtGOBSyith6S8\nPh9gXvb7brH4IYS7EL59/ny3WKhRuC3lNUPFnU9x7xAwO1X1MRYzKkS4QeU1Q4YeAN7C16d3gTkQ\nFACALEEBAMgSFACArAJnZoSrSVPuqFkDSlVgUMgt61BYGSoAXEGBQUEgAIBLUaMAAGQJCgBAVoFD\nDwDjUtxKSfQoAABZggIAkCUoAABZggK80t3YBwDwhhQzwgvt910IH+Jqwvt9d39/fKYvgFkrbdns\n8hYCZ3RpnuYDH0J4//D3lxA+Hd1JATzclPKaIUMP8DLvHg863IXw3WjHAvBmCgwKVcbYx0Vhfgrh\na+/mtxB+HO1YAN5MaT0k5fX5MFn7fbdY/BDCXQjfPn++WyyEUaDAZqi48ynuHWLKqupjLGZUiABE\n5TVDBQ49wHV9fXoXgNkSFACALEEBAMgSFACALEEBAMiaelCoqqpt2/6Wtm2bpqmqqmmacY4JAG7G\npNd6WK/XhxuXy2UIoa7r3W5X3lUoADApE+1RWK/XVVVtNpvB9tiL0HVd27YxIhwNEwDARUw0KDRN\ns1qt6roebN/tdv2NdV0fhgkA4FImOvTQNE3TNG3bxoGGwV1jHBEcYUJGoHgTDQqv8YL1nxQ6ABOR\nljUXQ5mIAoOCVh8ALmWiNQonDK6WBADezvyCwm636/99WPAIAFzKzILCdrsND5dE9v8NALyFmdUo\nxMsmN5tNvCpytVq5CAIA3s5cZzaMEzkfbjdXIzBrrnqYu/KaoZkNPSQ6EoBy3Y19APAPMxt6ACjY\nft+F8CGEuxC+7vfd/f2zZ4WBiyuth6S8Ph+gPGl84cCHEN4//P0lhE9HdzIqMWXlNUNzHXoAKM67\nx4MOdyF8N9qxwANBAWAifgrha+/mtxB+HO1Y4EFpPSQnFnoo7EyB8uz33WLxQwh3IXz7/PlusVCj\nMD/lDT0Udz7FvUPATamqj7GYUSHCTJXXDBl6AJiar0/vAtciKAAAWYICAJAlKAAAWWZmBCiEdSJ4\nC3oUAIAsQQEAyDL0ADAhRg2YGj0KAECWHgVunfovgBMKDAq55R4Km1MTAK6gwKGHLmPs4wK4grun\nd4HnKLBHAeAG7fddCB/iglL7fXd/b+VJLkNQAJiTVFVz4EMI70MIIbxfLL6E8OnoTmpxeK4Chx4A\nbs+7x4MOdyF8N9qxUBZBAYJhXebvp8eLU38L4cfRjoWyVIVV+VVVaWfEm9rvu8Xihzis+/33vzCs\ny3z1PszfPn++Wyx8mMdRXjNU3PkU9w5xEWcM64YQDOsyb1X1MaZen9gRldcMGXrglhnWpTxfn94F\nnkNQ4JYZ1gV4gssjuQm5ntj9vlssvvSGdXXYAjwiKHDT7u+rED7FYV0pAeBQgUHBWg88n2FdgOMK\nDAoCAQBcSoFBAeA2uSqSt+CqBwAgS1AAALIEBQAgq7SZJsubOxOAGSmvGdKjAABkCQoAQJagAABk\nCQoAQJagAABkCQoAQFaBUzhbFAoALqXAoCAQAMClGHoAALIEBQAgS1AAALIEBQAgS1AAALLmFxTW\n63X1WNu2Yx8UwI2qqo/xn7EPhLcyv8sjYyyo63rsAwGA8s0vKOx2u7qu9SIAwBXMb+ghkRUA4K3N\nMijsdruqqpbLZVVV6/V67MMBmL3XlRrcXfhomJKZBYXUi7DdbrfbbV3Xm81m0LVQPd/1TwSgAPt9\nF8KH+M9+b/r8MlVzXxmhqqp+yUJVzf6MAK4v9SV03e9P3HvgQwjvH/7+EsKnozsdfc5SldcMzaxH\n4ajdbjf2IQAU4LkjCO8eP+QuhO8ueThMw8yCQpxEYbDRpZIAr/HSEYSfQvjau/kthB8vf3CMbWY9\nJG3bLpfLuq5jDeN6vd7tdtvttmmauEN5fT4Al/KaEYSjwwf7fbdY/BDCXQjfPn++WyyUfBXYDM3v\nfGJWSDdXq1X/wofy3iGAS8kEhXch/O9eB/PPIfzfw76BXJ1BVX0M4S6ErzdViHBCec3Q/CZcapqm\n67pYvZg6EgB4qTiCkHoUXjCC8PXpXZit0oJPeVEO4K29ZgTh9OUSN6i8Zmh+PQoAXNb9fRXCpziC\nsFho73lEUAAgeskIgo6E4s3s8kgA4JoEBQAgq8Chh9zaDYVVlwDAFZRWnFleuSkAM1JeM2ToAQDI\nEhQAgCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQAgCxrPQAAWQUGBYEAAC7F0AMA\nkCUoAABZggIAkCUoAABZggIAkCUoAABZggIAkCUoAABZggIAkFXgzIzcoKr6GP/out+PeyQAhdGj\nQDHuxj4AgAIV2KNgUahbs993IXwI4S6Er/t9d39//AMAwAtUhTWfVVXaGZGk8YUDH0J4//D3lxA+\nHd3JqARwBeU1Q4YemLt3jwcd7kL4brRjASiOoMDc/RTC197NbyH8ONqxABSntB6S8vp8eNJ+3y0W\nP4RwF8K3z5/vFgs1CsBoymuGijuf4t4hzlFVH2Mxo0IEYFzlNUOGHijG16d3AeCZSgs+5UU5AGak\nvGZIjwIAkCUoAABZggIAkCUoAABZ1noAALIKDAo3FQjKK6894aZONtzY+d7UyYYbO9+bOtkiGXpg\nQnY73yYA0yIoMAn7fVdVX5qmq6ov+724ADAVBQ49MGVnLBX9frHILhUNwJXpUeDCXjR8YKlogIkS\nFLiY/b77p3/qmib89rfdM4cPLBUNMFGzLEZdr9ebzSaEUNd127b9u55bXmv/F+ycHz741xDS/tnh\ng7TAY//5z1kqelIvzq3tP6mDsf+4+0/qYArYf/rm16MQU0Jd13Vd73a7pmnGPiKiQb3L84YP7u+r\nrnu/3VZd94ujKQGAUcwvKMSU0LZt27ar1Wq32419RNP14qsNX/TAnx7ffMnwQdOICAAT083KdrsN\nIWy327QlhLBarfo3n/WEpe7//fc///a3P4fw829+8/P33/98/vP3H/iCg/nNb34O4edf//rnz59/\nPmf/5z6//cfaf1IHY/9x95/UwRSw//SVcHnkoEzh1mQqBv7/1YZ/+1sYXG2YrzAYPvDEzqnOYOCv\nf63attMxAFCMmQWFmAlO1yXk1noodf8Q/vUt9z++c1Xltk/rxbH/Bfef1BoUmnoAAAOtSURBVMHY\nf9z9J3UwE9y/MDMLClHbtrms0JVVa/qkM+YvCiH8EML/nP2UZz0w16MAQGFmFhSapokXRg42jnEs\nk5BrsPf77t/+rfvb38Kvfx3+67/uFotz2/UXPxCAIs3sqoeYCVJRwjkjEbfp/r7661+r7Tb87W/V\ns642fPEDASjS/OaFaJpmt9ttt9umaeK40exOAQDmYmY9CuGhF2G5XMaUEC+Y7Kuq6haug1iv11VV\nVVXVNE3x59s/2bGP5aqK/zCndzYp+3zDQ4lV8R/mw3c2Gvu43lap31Qzq1GIuq7LDTqs1+urH84I\nYrdKXdchhN1ut1wuYxfL2Mf1JgYnW970qDnFf6uGh9wf39xb0LbtcrkMIcSJZQv+MB/+gCl+cryS\nv6lGnMPhslarVTqp/oxMRQoh1HWdu1mS2GOU5tSK73Lx72/X+zyXfbIFf3SP6p/v4LNdtsO58srT\nfzcLO9/5DT3kNE2zWq1u4adJzOmDvpOy03rqLCm112Sgbds4VfnYB3I9xY84hIP/c5um6bruRjpB\nl8vlarW6kf9/CzR2UrmwwnLcOW7kd8l2u00/ssc+ljcXQqjr+hY+zIOvo7I/xul/1RgBb6crJf6f\nO/ZRvLn0tpb3TVXOmUS38N3aV94nMudG2pLu4eumu4EPc6pE3m632+02nnjB55v+b42L397I/7nd\nwYo8pRpU1pd0yqV9TIv/bk3Sh/J2fpekToWS/g8c6Bdh3M6HOSn783z46S37fKMUfIvXfzcL+6Yq\n7f27ke/W/k+xsY/lbcXfmv0tZX+35uoSxj6uKyn7ZI8uflvw+UYltZcnHA6vlPTmzvLySJbLZV3X\nN1L/tdlsumKuMnrKer3uTzwar7YqtQRsvV4fvrkFl3CmiWX7b2jB5xseKjdL/QA/qZw3d+ykcmG3\n0KMQo2v9WKmZPb6hsbKve/jBXfb7mxT/Ye6/ubdQo9A9/gDfzvmOfRRXcvhNVczXcmlvYfHfrV2m\nd7rg3vj+DBkl/b/3pFv4MBdc/5VzU+db9lfTQMEf5oKmjqJoFgAr2K29ubd2vjelyDdXUAAAssqZ\nmREAuDhBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQA\ngCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQAgCxBAQDIEhQAgCxB\nAQDIEhQAgCxBAQDIEhQAgCxBAQDI+n84qP1/KPXw/gAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "name": "stderr", "output_type": "stream", "text": [ "Info in : created default TCanvas with name c1\r\n" ] } ], "source": [ "h = TH1D(\"h\",\"h\",28,1,8)\n", "\n", "for event in f :\n", " \n", " if event.mc_hits.size() < 100 : continue \n", " h.Fill( log10(event.mc_trks[0].E) ,event.w[1] * event.mc_trks[0].E**-2 )\n", " \n", "h.Draw()\n", "ROOT.gPad.Draw() \n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }