{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "## Effective Volume ##\n", "\n", "Here, we compute the effective volume and basically re-derive the w2 weight that\n", "enters in the computation of the effective area.\n", "\n", "The Monte Carlo file contains reconstructed events, which are a small subset of all the neutrino interactions that were originally generated by the event generator. These a large number ($N_{gen}$) of events was generated in a (huge) volume ($V_{gen}$), where the interacting neutrinos have a power-law spectrum with index $\\gamma$. We need to get all these numbers from teh event file's header.\n", "\n", "The effective volume is than given by\n", "$$\n", "V_{eff}(E) = V_{gen} \\frac{N_{det}(E)}{N_{gen}(E)},\n", "$$\n", "\n", "The tricky part is to know $N_{gen}(E)$: the number of events in a given energy bin that was originally generated by genhen. We can compute this number from the information in the header using the nnu function defined below.\n" ] }, { "cell_type": "code", "execution_count": 58, "metadata": { "collapsed": false }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "ttt 0xa4641a0\r\n", " EventFile io / wall time = 0.00576591 / 100.515 (0.00573636 % spent on io.)\r\n" ] } ], "source": [ "ROOT.gStyle.SetOptStat(0)\n", "\n", "f = EventFile(\"../evtfiles/numu_jgandalf.root\")\n", "Ngen = float( f.header.get_field(\"genvol\",\"numberOfEvents\") )\n", "Vgen = float( f.header.get_field(\"genvol\",\"volume\") )\n", "gamma= float( f.header.get_line(\"spectrum\"))\n", "Emin, Emax, theta_min, theta_max = (float(x) for x in f.header.get_line(\"cut_nu\").split() )\n", "\n", "def nnu(E1, E2):\n", " \"How many neutrinos where generated between E1 and E2?\"\n", " return Ngen *( E2**(1+gamma) - E1**(1+gamma) ) / ( Emax**(1+gamma) - Emin**(1+gamma) )" ] }, { "cell_type": "code", "execution_count": 128, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "TFile::Append:0: RuntimeWarning: Replacing existing TH1: hvol (Potential memory leak).\n", "TFile::Append:0: RuntimeWarning: Replacing existing TH1: hxsec (Potential memory leak).\n", "TCanvas::Constructor:0: RuntimeWarning: Deleting canvas with same name: c\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAF0CAIAAAAmXahBAAAABmJLR0QAAAAAAAD5Q7t/AAAgAElE\nQVR4nO3dT48c1dXH8VuP8hqSjU0kD+MZLMUsCRuq2tgO+A8Gx1mapbFREmNsDAgzXW1FigImCkEi\nTqRskl2cIAKJlJjYXb2KsoSFhQEjRXI2vIl6Fgdfrqu6e7q7blWduvX9CKHump7uOz1Tx7976lZ1\nlOe5AQAAQDX/1/YAAAAAQkCoAgAA8IBQBQAA4AGhCgAAwANCFQAAgAffansAQCAuXrx4+/btjY2N\nN954o+2xAABaEHFJBaC6zc3N27dvy+2NjY1PP/203fEAAJrH4T+gKulRvfTSS3mev/TSS7dv3754\n8WLbgwIANI1QBXhgj/px7A/opyiKHnvssbZHgZZx+A/wxh4EZLcC+iCKomPHjr3//vty+4EHHvjv\nf//b9qDQJjpVDXnqqac2NjYuXLggd8+ePbu+vr6+vl7Ha33/+9/fsWNHHc9c3fe+973vfOc7bY9i\nurfeeuvZZ59d+dvlIKAxZmNjQ7Y8/PDDfkYGQL08z0lUIFQ1IYqiDz/88LPPPpO7Z8+e/fWvf/3F\nF1988cUXXp7/6aeffvrpp+3d//znP//73/+8PLN3X3311VdfffX444+3PZApbORdzRtvvJHneZ7n\nt2/fPnbsmGwkVwFlMsmMosjOQIwxDz300KuvvvrMM89EUWQ32ocdPXrUfYYf/OAHDz74YBRFDz74\n4CLbXadPn15bW4uiaG1t7eDBg+6XnnzyyfX19SiKyjPePXv2RFG0Z8+eH/7wh7Jlc3PTGPPXv/5V\nyu93v/td9/DfwYMH5VXcl3j++edlYHaQzz///Pz3Ch2To36Ft1p2qp/+9Kc1Pf8jjzzyyCOP+Hpy\nv7797W8bY/bt29f2QIr27t278u6wsbGxsbFh7xpj5O6VK1eMMVeuXPEzRCAIu3fvlpJlb+R5/sor\nr5T/YSo8bPfu3bJ9bW1Nttgb87e7nnvuOfnSrl275MaBAwfkSzbu2EBmv0vuPvTQQ3Lj+PHjFy9e\ntIlQ9ndjzAMPPOA+fteuXfZVZLsNWGtra3MGie7i11m78+fPu+Ugrz9UaaY2VBljTp48udr3PvXU\nU8YYe/afMeapp56yT7t3715vowQ6TvrBR48elbvSfzp69KgNVfaRkqXs3SNHjhhjXnzxxTzPJZTI\ndokpZ86cmbPdJSnnueeek7sSffI8//GPf2yMeeKJJ+wj7V3JUq+99prd7sa+Y8eO2dsSqg4cOOBm\nNYlxcldGZQd55swZY8zBgwdXezOhUDf+JdZP1kgZY9bX1w8dOmS3nz9/3k6zjh49ev78+SeffFLu\nPvjgg08++aT7DIcOHZKFVu4zWK+88op0mzc3N59++mnZePHiRXuk6dixYxcvXsydTtXW1taJEye2\ntrYKT3XixIkTJ064Ww4cOCCTKlsIppLjjK+88srU7eWfevfu3bZ6ikKoOnz48OHDh90HnDt37vDh\nw+fOnbMDkyGVRzh/zPv375ev7t+//9SpU3N+qDzPT548WUily76uexTD7VqVnxnoM0lRhS0XLlyQ\nULW5uWm3F+aisuXIkSP5vVhTDkyztrsk8ezatcvmKiFz3albpEdlt7/22mvHjx+3r1gOVZLbygPL\np0U9QlVgKPceTF1vLl8qrAOQrlX5YYcOHSo/w9mzZ+1LuEumhFSfwvWQbBfa3N8/d0e7tbXlbjx9\n+nT5pU+fPj31J5VhuIXPbrShyobI8o+Zl0JVeXiHDx82xtik5T6JbaRPvWGf4dSpU+UBzM9V5WGs\n8Lp5nkuzyiVHAFfugQGBKfSfLAlV7tzM3ItQ7haJWdLgsWwombW9wO6/7i48aw1WXgpVhSGVQ1W5\nntiYJaGq8AyEqpAQqqo6e/asMWZ9fd1ukYxlu02LHP6TndCmKJux5G65MS4tK1uACl9178ptt1l1\n4sQJY4ztVMkDbIqyGWvWzzsrf7g/rCn18O2Pv1qosoXPDs9NM1N/fJuibMaa9RPl0w7SrfC6iz85\n0FtLhapyp8rdcubMGbtEyc0ls7YXSMvZ7sVSln9ckhOqsAxCVVVT/2Ut54w5oUpCmNuXKmyUZ3MP\nuhVa5XNClUSoPXv2TP1q4di/u3FWs0rynB1MIfDJ7fPnz896N1YLVeVnc4fnPmb//v3GmP3797vf\nMnWjNbWZtOzrzrHgw4A+kOb9hQsX7BYpj1NDlbvjvPjii8aYI0eOnDlzRs7acx+5trY2a3thAHLs\n3t6Vcvfcc8898cQThf1UVqyXR3L8+HG34i14+E9elFAVPD5QuRbr6+uff/75Cy+88Ktf/WrbB3/+\n+efGmMIj5RnkS+LnP/+5e9u9O8e1a9eiKLp165bcHQ6Hxpg9e/bI3Tt37hjnTBmxtrb20UcfyZfK\nNjc3P/300/fff18GIB9yVzg6KTHF2r1792effXbhwoXC9ip+85vfTN3+5ZdfGufwnJC78qWyjz/+\n2Cx87YNZrzvH3r17P/nkk2W/CwjSBx98EEWRLQUffPCBMUZO9Sg4cuTI3/72t42NDVmi/stf/tIY\n8+GHHxpjoii6c+eOXIzAFrF333136vbyM3/55ZcHDx68fv366dOnP/roI2PM1atX5WmjKJIV6//4\nxz+++OILSVrHjx9/77339uzZI3Hqvffec5+t/EGfd+7ckaeSJeryEpLeEL62U123ybG/WaTPtG2n\nas4zyDHEbX9ThQcU7kqEkiOA7u35L11YLTTr5dzb5WN/wp7gk/vrVM0fz1I/kawlL1z4YNnXnUMu\n1sCFFQBRuCCcVIZypyq/d8afJaf+5c6FCUThjL/y9oJCZbAr1iVOWe6ZgBKnrMKZgObe0it7SQV7\n4QZhjwbQqQoenSo/pqarRdpU85/Biz179ty6devPf/7zaDSSltVoNHIfcODAganzuVmkWfXqq6/a\nu3LjypUrb731lqdRVyKn/rU9ivuUz1EA+unNN99888035eIjb775pmyc2n2XvpTsO25t+ec//2mM\nsZfNfPfdd+dvL8idVZLSoxLvvPPOO++885Of/ERuu9/yl7/8xRhz6dIlY8zPfvYz96lefvlle9tu\nv3r16tWrV+VV3JeQERYGM3WQ6Kp2M10Apr6NZ8+etWukFuxUlZ/ZPsPUB2xubi6ypsrdIuf9uRdT\nkORRXj41a0GVsCu6CuurZg1VlqbKQqu6O1XyE5XP9Ztz9p90qhZcUzV/y1RVLisKAOgQPqamKllR\n/sILL7gb33777bfffnvBZ5Bz/SRMWFEU2WeQ7PLMM8/Yr7766qvlA/lzyFG/y5cvG2dBlbm34OD6\n9evug9fW1q5evVo4OdllV1PJGNz5peSnwgoJ+XyeBRdU/f3vf1/kYbPImvR//etf7sa1tbXf/e53\nhYa8VfcnybCgCgD6ou1U13n2sN2hQ4ekQWXvygMWv6SCfQZ7HdHCA+TCm/aEO9siKvwqy79Ze22q\n8m9cNu7atev06dOnT58ufKjCLPaQX2ENhD3IJVc6de/KA6Z2qqQvde7cOXvFr5U7Ve5PdOrUqVOn\nTi3yE5kZl1RYdsuCTw4ACBKhyoPycqjCRdW3DVV56bC6m6jy0gdjFdJM+SOoZoWnwoXURflcuW1/\n5PKlswo/r8u9qHohVJ07d67w4IqH/6b+RNtGn/IRutVet4yLfwJAf0Q5q+Q8eeGFFz7//PP19fWl\n1qdPfQYzY5G7HPXb3Nwsr+h8+eWXb9++vbGx8Ytf/GKFlz5z5ow9A3mFqwaUXbhw4bPPPtu9e/ci\nR/1efPFFebCcNe2FHOz78ssvd+3a9dvf/nb+g9966y254oP35eQPP/zwJ598wl4GAH1AqAKMMSaK\nor1798o1q/w+7cmTJ//whz/4fVoAgEIsVAeMMebkyZPeV5Q/++yzxhgSFQD0BJ0q4GtyGqDHZhVt\nKgDoFTpVwNc+/vhj6S35cuXKFRIVAPQHnSoAAAAP6FQBAAB4QKgCAADwgFAFAADgAaEKAADAA0IV\nAACAB4QqAAAADwhVAAAAHhCqAAAAPPhW2wP4RhRFbQ8BwH24OHAZlQrQRk+l8hCq0jQdjUbuljiO\n0zRNkmTZp9LzvgAILD14rFQuqhbQLlWVqtLhvzRNoyjKsmw4HI7H4zzP8zwfj8dJkgwGgyRJsizz\nNE4AWJH3SpU76hkygE6q2qkq15QkSZIkSdM0y7IsyyrOAgGgOioVgAYo+kDlKFI0GAAB7JJuWvKV\nnAJ4W4CQqNollz78J430JEmiKJIbNYwKAKpK03QwGMiBP2PMYDBoe0QAArd0vpNIaDvnHhOiqrAJ\noOu7pIw/y7LBYJDnua8fp+tvCxAYVbvkKgvV03tYhw5AMzm5bzgc0lMH0IClQ9V4PLZLEwaDwXg8\n9j8oAKhM2lRZllW/bgIALMJb06zQtVqhhKnq4AEIcpekUgGBUbVLerj4pyxZKGzU8xMCgKFSAaif\nh3wnU73q66tUhU0Age2SVCogSKp2SQ8fqOxxsULk8PWcAGC8VioAmMrbOcbGmDiO7ZYVpoOqwiaA\n8HZJKhUQHlW7pIdOVZqm5v46BQDaUKkA1M3Pmiq5EGjVoWgKmwAC2yU9Vir3bkhvEdBFqiqVh6HY\nCxZXHYqm9wVAYLsklQoIkqpd0s8lFQyzNwC6UakA1M1DqJKmevXnAYD6UKkA1K1S00w+AXDWV2Ve\nuHgVU9XBAxDMLkmlAgKmapesevZfFEVJksgHbMkW+aStKIrKFy8GgFZQqYAARNHv5L+2BzKTn7P/\nJpOJuyWO4xU+wVRV2AR6xRapPD/lbAxql6RSAd1VCFJqK5XPoWRZVmXJgqr3BeiJrpQqj6hUQLeU\nW1NqK1Wlw3/STnfvVhwNgCZp7qLXh0oFdMXUg31uotKmUr6zJyev1kUvP5uesAmEbWqcKpQqdsmp\neFuAZiwYp1TtkpU6VXme53k+HA6NMYPBwC4F9TM0APWYWqo0T/4A9E23GlSWz3yXpmmWZbIUdIWn\nVRU2AeXcirNUrVm8VAW5S968eXPfvn03b940xuzbt2+FZwjybQH0WDZOqdolPVz8U0iDqnByDQDv\nyhVn6rl7i3xjJ2Z+vty8efPxxx83xuR5PplMLl++HMcxnXVAla6XKQ/5Lk3T0Wgkt4fD4ZzLFts4\nKd9SqGiqwiag0FLryksLpJYuVYHtklKXbM2RjEVPHVBikYWeM75R0S7Z0EJ1+ShTc++woLwFhQ+N\nV/W+AKp4P02vc6WquiRJ4ji2M0BjTBRFN27cWPYgYGBvC6BBlQaVql2y0uG/xU/6S5Ikz3MJYVmW\nxXFsSldkADDVYmfqLZq6utVL92hra0sO/0n9uXz5sll1WRUAX1ZuUOlUKVQRiYBaLV5u7r8U3syA\n1d1SVd2+ffu2trYkS4kbN24UHmN76rKSwf0EGz1TYSAMgcUpUfWz/6xC20muWTyrF2XXs3MVPmCq\nWZe8W6TiyMMKj+SiCcaY0WiU5/l4PJbLwZTbVGmaDofDPM9Ho5H01/M8j+N4PB63MmAgVEEmKuPr\n7L80Td3z/mS2Jz32wWBQmOHJygY5FMjkD1jwyN0K5SaACuWX/fi/4XA4Go3G43FhXiefuCw1ym4x\nTP8Af0KNU8JDqLLL1a00Te2ZfbIUXVaj2wjFcUP0TZWV5sGUm3bJ3G88Hg8GAwlJg8Hg+vXr9gEH\nDhwwxkiL3a5nHwwGtKkAX7p+xYRteVszH0WRnfZFUWRDlVw9YZFXKYczFz0tdE71U/baLTeqzqlZ\nmczrkntu3br173//2xjz6KOPXrt2rdCssnXM/uzlNyGMtwVoWH0NKlW7pLeLfxas1i3X874Aq1k5\nSAU2XVPCXZkgieratWs7duwwxly7ds2UKpX0scy9MwSl6d7wmIHAhH28r6CuUAX0RJULcqJWheZ3\nmqY7d+7csWPH3bt3jTE7duzYuXNn4Vtkcbr7LfUPEwhZrxKVqSlUuZdKt1elAoJBkOoEe/zObrl7\n9+6OHTviOE6S5Pr163IccAVz1irQbgdE3+KUqCVUucs8ZWXogt/olipqE1QhSIVh586dWZZVbEFR\nnYD5gl+QPkstoSpN0yzLJCHJpHDBb6RUQZv6rneAhtn2uZw98+ijj7Y6HCBYvU1UxuPZf2VyuZcl\nhqJpAT96bpEsFXyZCGOXtCf0JUly584dY8zdu3eHw+Hvf/97Y8wf//jHZc+qCeNtAerQSpxStUvW\nuFCdy+WhWwhSwdu5c6eso5IlCj/60Y9Wex4WKgBlfW5QWYryXWHtp56BIWxkqVlUzf9WZjtV8kkP\n7tl/d+/eXeEHDONtAfxqMVGp2iU1DUXT+4I+2DZO9TNLWeHtkvIpNLdu3frTn/4065NJtxXe2wJU\n0XqDStUuqWkomt4XhG1OnOp5kHIFtkva66rbLavlKnrqgNV6ojLKKtX/tT0AoGmzrp4i/zU/HjRm\nMBjIxRTk9GT3Y+CXkjt8jg/oFA2JShtF+U5V2ESQ+nkxupWFt0vKsiq5PRwOV7taVXhvC7AsVXFK\n1S6p62NqOKcG9VFVBQCgo6ilc+g6/EdTHTWhCiBN08FgMBwO8zwfj8ej0WjOp80AKIui31FL59PV\nqQK8owTAkmsrmHsfnLzytfToqaOHqKWLUHQkUtVhUYSBKlAFu+RUvC3oIc21VNUuSacKYWJNOgBU\npzlOKaQrVNFUR3XEKQDwgkS1LF2hiiCFKmZd0pMqAABLYXa6Gl2hClgBl0dHw+ipI2w0qFZGqEJX\nzf/kPkoA6kOQQqhoUFVEqEL3EKcAwDsaVNURqtAZZCkAqAMNKl90hSpWKqCMLAUA9aFB5ZGuUEWQ\ngjU/Sxl2ewCojETll65QBZCloB89dQSAOFUHQhVUIEuhQwhS6DoSVU0IVWgZS6YAoDGsSa8VoQqt\n4aKdANAkGlR1I1ShBXyeDAA0jETVAEIVGkWcAoCGEacaoytUcU5NwIhTANA8ElWTdIUqglSQiFMA\n0AoSVcN0hSqEhzNNEB566uiEQvml8DaAUIUaMUlCkAhS0I9E1QpCFWpBnAKAVlB+W/R/bQ8AAWKX\nBoBWUH7bRaiCZ+zSANAKym/rOPwHnziKDwCtoPxqQKcK3rBLA0ArKL9K0KmCB/ScAaAVlF9VdIUq\nrv7SRezSANAKyq82ukIVQapz2KXRQ0z/oAHlVyFdoQrdwlF89BNBCu0iTqnFQnWsiEQFAM0jUWlG\nqMIqSFQA0DwSlXIc/sPSSFQA0DDiVCfQqcJySFQA0DASVVcQqrAEEhUANIxE1SEc/sNC2KsBoHlM\nZbuFThW2R6ICgOaRqDqHThW2QaICgIZReDuKUIV5mCcBQMNIVN3F4T/MRKICgIaRqDqNThWmI1EB\nQMMovF2nK1TxMaVKsGMDQMMovAHQFaoIUhqwYwPzMf2DXxzyC4auUIXWkaiAbRGk4BGJKiQsVMc3\nSFQA0CQSVWDoVOFrJCoAaBJVNzyEKjBVAoCmkaiCxOG/viNRAUDDSFSholPVayQqAGgSVTdshKr+\nYqoEAE0iUQWPw389RaICgCaRqPqATlUfkagAoElU3Z6gU9U77NsA0CSqbn/QqeoX9m0AaAyH/PqG\nTlV/sW8DQH1IVD1EqOoRdw9n3waA+pCo+onDf31R3sMBAHVgoUVvtdCpyrIsiqIoirIsa/7VYdjD\nAaA2JKo+ayFUpWk6HA7zPB8MBs2/ej9x4A9YhJ3ypWlqjEnTNIqiJElaHha6g0TVc1Ge502/ZBSN\nx+MkSewNu735wfQBOzlW08NdMkmSJEkkS+V5Lv+3G+UxPXxbsCCKbStU7ZItdKrG4/FgMIiiyBjD\nFLBh7OTAHFmWSYSK41i2JEkymUyoVNgWiQqmplCVJIm7XsrWKdmYZdl4PNaTK8PGgT9gjswhW6RY\nTSYTezeOYxaAYj4SFYT/UJWmqa1Hxpgsy+zaKbmRJIl0qobDofdXh4sz/oD5c7zEYYyRE2jkSF+W\nZXEcp2laeAaggEQFy/MlFeSgnitNUzvPk3UJaZrSpmoA+zkwdY4nh/YGg0G5EMniBGNMHMfSr5Ka\nNh6PGxw1uoRKC1cty7vcFehRFNlQlabpaDSa9YrlQOYihy2LA3+oSNXyzxXYkmLLkfzf7VHZ5edL\nPW2n3xZ4RKLSQNUu2cRC9cXXeOaz1TnAAJGogHLpcLtWSZKMRqPVnjmardKI0SkkKpRxRfUAsZQK\nmMXLeXxM80CiwlS1d6rcE2dk4WfdrwgXuzoA+EWiwiy1d6rcHvtkMpm/3tNtnjMXXA0H/oBZfM3x\nqFR9RqLCHLWHqjRN5ZMfzL0TauY8mPJUEQf+gDmWmuPNQaXqLRIV5qslVBUqjlxYj0sSN4y9HShY\nao4HFJCosC1FJyKqOiuyizjwB79C3SUrzvFCfVswH4lKLVW7pKah3H82sp6BdQI7PLxTVar0oFL1\nEAVWM1WVStclFfS8L93CDg80iUrVKxRYLK6Ji3+iSezwAOALiQpLIVR1HkupAKAOJCosS9fhP67+\nsiyuoQAADSBRYRG6QhVBainMooBWMP3rAw4CYAW6QhVWxj4PNIYgFTwOAmA1rKnqKmZRAFAHDgJg\nZYSqTmIWBQB1IFGhCkJV97DPA0AdqK6oSNeaKpZ/Lot9HmgelSpIJCpUpytUUZ62xVIqoHVUqvCQ\nqOAFh/+6hKVUAOAdiQq+EKo6g90eALyjtMIjQlUnsdsDgHeUVlREqOoGllIBgHeUVvila6E659RM\nxVIqQBUqVRgorfBOV6iiPG2LuRTQOipVAFhKhTpw+E87utMA4BeJCjUhVAEAeoREhfoQqlSjTQUA\nHpGoUCtCFQCgF0hUqBuhSi/aVABQE4oq6kCoAgCEj2kqGqDrkgpc/WUq9n9AFSpV53BJKjRDV6ii\nPFmUAEAtKlW3sJQKjeHwHwAgWCQqNIlQpRHH/gGgOhIVGkaoAgCEj0SFBhCq1KFNBQDVUUvRPEIV\nACA0nOuDVhCqdGFqBQAVsZQKbSFUAQDCQaJCi3Rdp4pL6lkUAkAtKpVaJCq0S1eo6nl5YhEA0Ak9\nr1RdQaJC8zj8BwAIAWtS0TpClRaUAwBYGZ1+aECoAgB0G0upoAShSgXaVACwGhIV9CBUAQACQaJC\nuwhVulARAGBxtPmhCqGqfayvBIAVUDyhDaEKANA9LKWCQoSqltG7BoBlkaigE6EKANBhJCroQahq\nE20qAFgWlRNqEaoAAJ3B4nRopusDlXv72e9MtoAO6W2lah1LqaCcrlDVq/LEfAvoqF5VKrVIVFCI\nw38AgA5gKRX0I1S1g+oAAIujtY9OIFQBAFRjKRW6glDVMqoDACyOmgnNCFUtoI8NAAtisQQ6hFAF\nAFCKKSi6hVDVJmZdADALS6nQOYSqpjHxAoBlkajQCYQqAIA6LKVCFxGqGkWZAIBt0dFHRxGqAACK\nsJQK3UWoagdlAgC2RalEtxCqmkNDGwDmY40EOo1QBQBQgZknuo5Q1QKmX4BOWZZFURRFUZqmxpg0\nTaMoSpKk5WH1A0upEIB2QpVbtnqCGRigX5qmw+Ewz/PRaJRl2Wg0yvNctrc9tH4hUaGjWghVSZLY\nstX8qwPALFmWJUmSJEkcx4XtLY2oL1hKhTB8q/mXTNN0MBhkWVYoWwGjXgA6uWlJDvNJqBqNRhKt\noigyxvSnWLWCRj6C0UKnKk3TOI6TJJlMJs2/OoBeSZLETU62FyUbE4cxJoqiLMvswb4kSfI8l3rV\n9Lh7g6VUCEktoWp+FZtMJmmaStnqW1OdegE0KU1Td/KWZdlgMJDb9oZrPB4PBoMoiqQ1JevWpWQ1\nMt6+o0Ki6/wf/ptaxaRCDQaDPM+lbBljejL/o7MNtEKO3LmkTW57VHZ2Z0lryt7t26yveSyNQGA8\nh6oFq5hbtgCgDlJn3KI0mUzs6ihZOLVaC6pc6AovikUw4UR4PB/+y/O8UFPcrpVUsTnfHs3md5yt\nYB4GtM5LdzyfrfqT9wRLqRCkJs7+W7yKhVeSmIoBwHwkKgSjhUsqAEAr7FIEY0yVq7q4vfPwpoIN\nYCkVQlV7qPJVxbqIwgGo4q5AmEwm4/F4techSFVB/x4Bqz1ULVXFmP8BqE+apnKVBNObs4+1YSkV\nwlZ7qFqqioUapCgcQFsKVSXLMrlyXkvDwTcojAhP1EyOWaSKRVFDg2kGx/7QdYHtkr4UTkbmLVoc\nVRF1UFWpGlqozrwQQDD0VPAOYSkV+kDX2X9BrqliQgag51hKhZ7QFaqCCVIAgKlIVAhYLR+oDBrd\nACBYSoX+0NWpAgD9glyoUBNmmOgVXaEqvFLFtAwITxjVqQEspULf6ApVlCoACBKJCn3AmioAgH8s\npUIPEar8Yw0BgJ6jDKKfdB3+AwD9wlv9WSvaVOgPXaEqsFJFKQGCFEB1qhUH/tBbukIVpQoAOo0D\nf+gz1lQBAPzgGgroOUKVZ8zSAMCQqNBLhCoAgAcspQJ0rakKCTUFCFVgp9R4QZMeMIQqAFgWQWo+\nppToLV2hivkfAHQOB/4AoStUEaQAoFs48AdYLFT3ieICoFe4hgLgIlQBADwgUQGEqlpQXAAEj6VU\nQIGuNVUAoB+n1BhWOwDTEKoAYDm9DVIWS6mAqXSFqk7P/5i3AeghEhVg6QpVnQtSANA3LKUCZmGh\nun9UGQChoiUPzEGoAgCsggkkUECoAgAshAN/wHyEKj9oiQMIG1UO2BahCgCwDa6hACyCUOUZtQZA\n2KhywCy6LqkAAPp1+op6K2ApFbAgQhUALKcPQcpiKRWwOF2hqqPzP4oOgD6gTQXMpytUdShIAUDw\nOPAHLIWF6j5RdAAEgx48sCxCFQBgG8wYgUUQqgAARRz4A1ZAqKqKDjmAwFDWgNUQqgAAM9GmAhZH\nqPKG0gMgABz4A1ZGqAIAfI0Df0AVhCoAwBS0qYBlEaoqYVYHIBgc+AMqIlQBAJgiAh7o+pia7mJW\nB/RHRz+ldHEUNGA1hCoAWE54QYoDf4AXukJV8PM/ANCGA3+AL7pCVbeCFKD0s9EAAAjBSURBVJUI\nQGBoUwFVsFAdAPqLA3+AR4QqD6hEALqIdjvgF6EKAPqokKiYHALVEaoAoO9IVIAXhCoA6B2WUgF1\nIFStiLUIADqK8gXUhFAFAD3CUiqgPoSqqihJADqK8gX4RagCgL5gKRVQK0IVAPQCS6mAuhGqVkFt\nAtAtLKUCGkCoAoB+IVEBNSFUVUJtAsKTJEmapsaY4XAYRVGSJC0PqDKWUgHNIFQBwDeyLJtMJnL7\n8uXLeZ4bY4bDYauDqoTlCkBjCFUA8I3BYBDHsTHm5s2bciOOYxuzOoelVECTvtX2ALqHaR8QjCzL\n7O0kSaIokiCVZdljjz3W2rDqQaIC6tZCpypyuBUNALxLksStM1mWJUliNyYOY4wkqslkIq0p26CS\n7Z3DUiqgYS10qmSNQpZlg8Gg0ytAKVKAcmmaukfupOxIQhoMBlKLXJK0ZJX6vn374jiOosjcq1rd\nQk8daF7UVrGQ82vcUBVFrQ1mccz80B+d2CXnkDxkjBmPx1Jq5P9uj0ry07JPq/9tYSkV+kPVLlnL\n4b/5/XZz7/yaTrepACiX53mh1LpdqyRJRqPRas8czVZpxPUgUQGN8R+qpvbb5ba9kaZpF09Rpk0F\ndJ2XuVw+W/Unr45KBbTF85qq8kQtTdM4jm2/PU1TSV0sUQcAACHx3KlasN8+az6nuanO5A/oOjvB\nM8ZkWbbyOX2qSlMBlQpoURNn/y3eb1fSPAcQJHcd1WQyGY/Hqz0PlQrAVFxRfSFM/oAAyGoE6TDF\ncRzeuTJUKqBdtXeqluq3u710PXNBLvcCdFehkmRZJucjtzScGlGpgNbVHqqW6rfrCVKzMPkDuq56\notI5/XNRqYBW1B6q0jTNskxqUBf77bTTARQoDFJUKkCDWkJVf/rtAAAAQtHF3QsnJ2sYGJM/9Jmq\nD3/QQ+HbQqVCn6naJVv4QOU59LwvAAAAS9EVqlRh8gdgKlUL1alUgB6EKgBYTutBCoBOXPxzuvuv\n+PJca+OYS+FHZAidA9M5KqN4YNCPSlWFzoHpHJVRPDBVdHWqlDTVuYYeAP2oVIA2ujpVuaPtsXyN\nNQoA9KNSARro6lRpwKpPAPNp6KlTqQCFdHWq5ph/NLe+r26LgS2LgS1L7cB6a05PXe0vi4Eti4Et\nS+3AmtSZUNUMJn8A9KNSATrpOvynoakOAACwAl2hqt0gxeQPgH5UKkAtRZ+Y06GDpkBP6KkPelCp\nAG30VCpFoap1dv7H5A+AWlQqQC1CFQAAgAeKzv5LkiTLsrZHcZ8kSZIkSdO07YHcJ8synQOzVB0f\nSZIkuidJkraHc580TbX9HtM0je6nba9sHZVqQVSqpVCplqK2UmlZqJ6m6WQyaXsU94miKI7jJElG\no9FoNNLT0hsMBnZgWZYp+UuyVNUpY8xkMpG3q+2BFCVJMplMhsOhqt+j+0ZlWaZtr2wdlWpxVKql\nUKmWordS5QrYwYzH47bH8rXhcGjfnPF4rGds7sDc20rIkFSNStVgLPmjsrfjOG51ONPFcaxzYG2h\nUi2OSrUsVYOxqFTLUnH4T4bS9ijukySJ3evslpbGcp80TeWvXGYMcRy3PaJvZFk2Go0K71u7ZFIl\nfXUlv0EhA8uyTDrqSiZ/Lpn8KRxYi6hUi6NSLYVKtTJ1laq9PFdk1MyxXLLjDYfDtgdyH1sOVL1j\n8ka5M5vW2V+ftomp/TdGbuiZZlkK/+yV0LbfCSrV4qhUi6NSLUvLby5XWarkj0nVL8wlf+Vtj+Jr\nMpjxeCxFQduvMld2cMT93akq7kLh8Ro99PwVWVSqxVGplkKlWpai0ej5MxI6U7lMZeS2qj/xchNU\nw29zPB67w1AyqrxUC/QMTMRxrPZf6NZp+2VRqZZCpVoKlWpZWv7Qc2W/LTuJsdoe0dfcP3FV8z9L\nVQF1J6Pa5jRqB5Yr2xm1UfXmUKlWRqVakNqB5cp2RqHoDVL17pSXVeocm55RWapKVa747XLXyaoa\nmLbfoDaqfl9UqpVp+ztX+3ZRqZbCFdU7yZ4q0vI4ukOuQ9j2KKZQOzCgOirVstQWBLUD04ZQBQAA\n4IGK61QBAAB0HaEKAADAA0IV0JAsy1b4uLE0TeVaxlGJ/XzT119//fXXXzfG3Lx5033AnGtGlwcj\nH1C62iABBINKVUnbK+WBvljtXBX7LcaYOI6nnjwvj7lx44Y85saNG3meb21tGWPk9qxndi/xYj8/\nS15l2XECCAOVqgpCFdCQcemjSQtFYTgcyrXs5DM07Bb5qpl9yWx5WlO6CKT7OaPlVyxcPcjcO19a\n54nKAJpBpapC3YCAUNkSIDekcNgCIbdtG1yqknEuDDNr/nfp0qVLly7JA2bN9qa+4tj5NIzydZPr\neAcA6EelqkLdgIBQ2VLlTtTslZQLFWRqqSqQLxljrl+/Lh11W6oKh/jdiaB7276Qu7HwugB6hUpV\nxbfKPz+Auk29jJ5stF8qXzhxOBzaJZ+uAwcOFLZI5ZpMJpcvX5Ybxpjyus7hcDgajdI0nUwmUiJF\nHMdc6w8AlWpZnP0HKLVIpXj99dcvXbpk70phMsbs27dv37597iMLDXn3JQol0twrbQCwLSrVfdpu\nlQF9YZvq7rpLc6/Bbu71t6XNvuBKhccee+z69evyAJnzbW1tuXfnvKK9a0rrRo2+pjqAZlCpqiBU\nAQ1xz1UpT2zcnrZx1oTa82jKM6LCSTG5U56E3J31isIulXA3Mt0CeotKVQWf/Qe0o7AQIU1T29yO\nomg8HidJkmXZYDCYs5N+9NFH5WUKN2/eNMYUmurlV5wlTdMsy+TBAHqOSrUUQhWggqzNlPWYsvrS\nbpey1eRIKAsApqJSzcdCdUCFPM+Hw2GWZfJ/u73QbK+bDKDJVwTQIVSq+TQGPQAAgM6hUwUAAOAB\noQoAAMADQhUAAIAHhCoAAAAPCFUAAAAeEKoAAAA8IFQBAAB4QKgCAADwgFAFAADgAaEKAADAA0IV\nAACAB4QqAAAAD/4fin6C0j0i8HQAAAAASUVORK5CYII=\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "hvol = TH1D(\"hvol\",\"effective volume (m^{3});log(E/GeV);V(m^{3})\", 24, 1,7 )\n", "hxsec = TH1D(\"hxsec\",\"cross section;log(E/GeV);xsec (m^{2})\", 24, 1,7 )\n", "\n", "f.roottree().Draw(\"log10(mc_trks[0].E)>>hvol\" )\n", "f.roottree().Draw(\"log10(mc_trks[0].E)>>hxsec\",\"w2list[2]\") # [2] is the cross-section(Enu)\n", "hxsec.Divide( hvol )\n", "\n", "for b in range(1, hvol.GetNbinsX()+1):\n", " \n", " \"how many neutrinos generated in this bin?\"\n", " e1 = 10**hvol.GetXaxis().GetBinLowEdge(b)\n", " e2 = 10**hvol.GetXaxis().GetBinUpEdge(b) \n", " hvol.SetBinContent( b, hvol.GetBinContent(b) * Vgen / nnu( e1,e2) )\n", "\n", "c = ROOT.TCanvas('c','c',800,400)\n", "c.Divide(2,1)\n", "c.cd(1); ROOT.gPad.SetLogy(); hvol.Draw(\"Lhist\")\n", "c.cd(2); ROOT.gPad.SetLogy(); hxsec.Draw(\"Lhist\")\n", "c.Draw()" ] }, { "cell_type": "code", "execution_count": 127, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "TFile::Append:0: RuntimeWarning: Replacing existing TH1: haeff2 (Potential memory leak).\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAxwAAAF0CAIAAAAmXahBAAAABmJLR0QAAAAAAAD5Q7t/AAAgAElE\nQVR4nO3dy7MdVfXA8b1/ZZWO9D/AkBuSAP+D3Z0iJAMgiDDmMUgkOKBIgQMhZ58MrFILdUBQMrCc\nK5RiBuQi9O4/wQkGJfg3+Bfs32Bxt/v2edzz6Mfq7u+nKOqcc89j3z63V1avvXq3DSEYAAAA7Of/\n+h4AAADAGJBUAQAANICkCgAAoAEkVQAAAA0gqQIAAGgASRUAAEADSKoAAAAaQFIFAADQAJKqLlhr\nrbVy++mnn7bWnjt3rpG3/d73vrf/+7TNWntwcNDZx/3sZz9LN3hLvvOd72zyEdbaS5cutToSYBwG\nFCfPnz9vrT1//nyzb4sRIKlqneQTTzzxhDHmxo0bd+/ePXv27FNPPbXbu1lrz5492+T4RufnP/+5\nMeaHP/xh3wMBsKlhxckvv/wy/h9IkVS17uuvvzbGfPrpp/GRp5566t13393/nUMI//3vf/d/n/E5\nf/78Rx991PcojDEmhHDv3r2+RwFoN6A4+eyzz8bbP/3pTxt8Z4wASVVjrl+/fubMGWvtmTNnrl+/\nLg/Gaa+Dg4MbN278+te/NsbcvXv36aeflsdfe+21+KrXXnstfcMrV65IhfnKlSvyiBx7/fvf/5Yb\nDz300EMPPWSMeeyxx370ox+lr00fuXz5cvyIVYM/depUnucvvfTSqVOnrLWnTp2KPzpz5szly5fj\nXXm3+KPr169funQp/a0XN4J48sknDw4OrLVPPvlk7dPjS37yk5/EBx9//PHZbPbCCy+smmV7+umn\nz507V5sjePTRR40x9+/flxupV1555eGHHzbGXLhwwVr78MMPv/LKK/KjGzdu1CYazp07d+PGjXQw\n1loZ0tLBLP324yZa+hJgggYdJ8Vf//pXY4xcNldup4M0xpw5cya+yZqRX7x4UWY8Dw4Orl27dvK2\nwyAENOHVV1+V7Rmjw6uvvhpCOH36tNw9ffr0G2+8ETf7U089FUKI3TbxVdevX5c3lLvnzp2Tf+zP\nnTsXQnjkkUfk8UceeUSe893vfjc+OQ7mueeeM8b87Gc/CyGk0WrNNx4H9v3vfz/eiD86ODiIz5T3\nqb0qbZk6ODiofVb8Udwa8UcxysSXXLp0qfaqpWOOtf1444033gghxC6H8+fP115SFEV8w5g1vvzy\nyyEEmWWobRD5jm7evCnPfOyxx+TG888/H0L49re/HV+y6tuX93nyySeXbnNgaoYeJ0MIb731Vvyg\n2jPT7kmJmYtZY4xv6a8sN65evdrs1kYvSKqaYY5nHunOlt6WeCH//C99ldx95plnjDFvvvmmPC7x\nIj5HIkVIgkUaHdJPlF067saLn1gb8Isvvrh0/OuTKrkt9af4TLkrEVOe9uMf/1h+dPHiRWPMxYsX\nw0JUWnzzmzdvLo5WNuPZs2fT8ce7ZllGFY6SqlOnTsndl19+2RhTFEVYm1RJLlXbUOF4UlX7LWpb\nj6QKEEOPkyEEqYe99dZb8faVK1fkRzGpWvoLhoX4dvr06fSZ6V0MF9N/DZB9Mq3WSEqxft5H5tRq\nBzcPHjwwxnz88cfGmF/+8pfy+P379yV8rPLhhx8aY/75z3/GRyR8yLt98sknix+x1B//+Ee5EetV\nJ4pzefLrrznL73e/+53cODw8jGMzx7eAbJM4CfjYY4/N5/PFt/rXv/5ljEmbWM+ePSsPnijWq/7w\nhz8YY/7zn/+sf/4XX3wRa1TGmJs3bz7//PPpE+RbTuc0N/n2gakZR5yU+b5f/OIXxpi//OUv5vgM\nYPrrSBk+HbnclsdDCPEjmPsbk2/1PYAxkH3j8PBwq9P4v/rqK2PM+++///777y/+tNbiU9tvl5LW\nbGkRkPAhH7HhqDZPpHaQTvyJr7/+WpKne/fu1UYowzbJjFuN5E9pE+vmSdVWpIMqHcZikrfbtw9M\nzQjiZGxL3/xXWIxvsh2uXbv297//XdrzMSYkVY2RRuz0kaVRIDpz5syDBw+aqmc899xzH3300dtv\nv/3RRx/VerR1lkximnXp0qVaZ+h77723/rUtpVBRbFGfz+e3bt1a/2T50rf99oFpGnSclKTt3Llz\nsXfz/v37X3755bPPPitVq0WXLl2q/b63b9++du3anTt3jDFPPPHE6dOnP/jgAw7JRoOkqgFxn4nR\n4dKlS4eHhxv+s3r79m25EXOLc+fOpSugXLly5eOPP37zzTdjoXvRhx9+aK2Vg7AYLCQeLf2Ina2Z\nPVwjPSCTZtWDg4P33nvv9u3bX331VSy8X758WRYgODGvMsbcuHEjFqvu3r27w6jWvGHqiy++iLcf\nf/zxL774Ihzvoxe7ffvARIwgTsrH3b9/P33QWru0Qnb79m351eLbSny7ffu2xMOrV69+8MEHJ/za\nGBqSqga8//77h4eHh4eHclDy4MGDw8PDE9cQ/+STT6y1MaA8ePDgwYMHMun+zDPP/OpXvzp//ry0\nCNRaB1Z59NFHpV1AatqLH3Hv3r34EVt58ODBa6+9dvv27X1ysoODA2mh+P3vf2+OOqtkc8VlGjbM\nqP72t79Za+W8a7OsxWpbcgrh3bt333333XhGt3j++ef//Oc/v/DCC3/6059ms1mtxcrs+u0DUzP0\nOClzf3Hhhkhyu6ULVh0cHNy7d+/y5cvy+9aWrJPUSuYB148ZQ9J3p/x4rNqw6d3aWS21gnN6vkmt\n4zKe4ZK+vzk6q0VI0+Wjjz6ajmrNR9QGH9dQCCFIf9WqdzDLTm2T+lO8Wzv7r9ZTFc8EDMnJzIvb\nTRYvWCo979osnAm45uw/WUMhPjOeDJiuvyz5mZz9F45OAKyNMD37b/1vwdl/QGSOqz0ut3XGSenf\nkvP+UvEcQMnD4nIPYk1kiNLlFTbdjtDKhmUTGdhN3DO3mvqRk0FiiTgla6LUjr1ef/11Y8xvf/vb\nRj6is3cwRxN/8TTAlDStbzLrl5Lmp0aWXT7x3aRpfenZiGK3bx+YmhHHyTVvu/jOctJfnAG8du0a\ns4EjQFIFAADQANapAgAAaABJFQAAQANIqgAAABpAUgUAANAAkioAAIAGkFQBAAA0gKQKAACgASRV\nAAAADSCpAgAAaABJFQAAQANIqgAAABpAUgUAANAAkioAAIAGkFQBAAA0gKQKAACgASRVAAAADSCp\nAgAAaMC3+h7A/1hr+x4CgGNCCH0PQR0iFaCNnkjVaVKV53me58652Wx269atLMu89+kT9GwXACPL\nHpxz8/k8fSTLMudcnufbvhWRCtBDVaTqbvrPe19Vldy+deuWRKXZbNbZAABMk3POWuu9n81mZVmG\nEEIIZVnmeV4URZ7ntaM7ANhNd5WqoiiyLDPGfP7553Ijy7KYZgFAexZrS7Fw7r333u9QrwKAmo4q\nVdZaSaQ4IgTQGQk4zjmzOvhIatXZkACMWGNJVa2ELkd+8UHJqKqqktJULFDJ4wDQOOdcURQy8WeM\nKYqi7xEBGLlmpv+cc+lEnvc+TvYVRRFCSI8XL1y4kGWZdJbR7wmgJfP5XIKPRKEG3zltjCWIAYjs\n/hEhxhdp/DTGyP8lkYqNC5u8D+EJ0GPou6S1djabOeekcaqqqkZ+naFvFmBkVO2SDVSq5JdJD92q\nqorzenmez+fzDVsW1pwYqWeTASNg7Z0NnvVB6+NoUwhBOhAkr+K0GABta+vsv/1PpSGLAlqyWUY1\nBrHR0x2ptatz6gyABilaUd2QSAGrbZ4JhXC11ZEMlCz+yckxwHDFMKg2yrWSVKVLpXvvN49itH8C\nS21VW7L2zoYRZ/3TrLXGKI1cO5DFP1k9ARioQZTYW0mqpI9KbldVVZblhi8kkQIaMYjo07Gt+jvN\n0VnMxhhSMaBfAwpojfXMW2vj2X/GmDzPpS108QJ/a94hvUuCBUQbFr23DT0nVqrGtBvGJCm15heM\nZy7XtsPINgug3GJYqwUuVbtkY5Wq2q+025Uf9GwXoBEdH2CFcJXWq1Wk2rR54TwGMdqwgL6cmFFp\n02Kj+g4nANJThaFQW45WHnH6NZvNtopLUqyKzQwAOjO4dEooKpqpquABa/SVUXUcU0a2S8r0X5pX\nvf766y+99NLrr78enyDVLOdcnuexpYHpP6BjW2VUqnZJXUsqAL1rPGEaxNHVFEhz53w+l8rTiy++\n+I9//CP9ae3iWmVZSg8W039AlwZaoxKK8jsa1dGqNspLA9rVd6Dq+K9ZMdr85je/kUrV5hfXGvFm\nAfq1Wzqlapf8v74HcExI9D0WjAoZ1ZRZa2sZUhpkJH9KL2JzYh+VXa2F4QOTMOgCVcT0H1A3xD0Z\na5RlKSsjZFkWG6riUi+SVM3n88172DnqAxqx5nB3oHFYV1LF2X9o20B3VOxDLqscxSX05Kc7LOxJ\npAJ2sOGMwbooHXc9rfudrqSK8ITdqF3gAHpIp1T6SJobbXVxLSIVsKEmVyQewvS6rqQK2AEZFfa3\n1cW1qFQBJ2p4IeIhZFSGpArKNZswMfeHVZxz3nvJltLWq6VIpID1mmyWWkynFO+Aik5EVHVWJDRo\n9kp22NYEd8lNLq7F4i/Aek2ex7dBRqUqUmkaCqFqSlhjUz9VoaoNct7fthfUGv1mAXbW8LIIm9Wo\nVO2SmoaiabugVZSgBmF8u+TiOlI7/ILj2yxAI9rNqFbvdKp2SV2LfwKLyKjQiDzPsyyTDvSyLLMs\n2/n6M6z2CdT0lVFpQ6M6mtfwSR9AQ9JVFWJb+g70HBYDvetlyk8tKlVoGAscQCdZNEHWoEqXpOpz\nTMDAkVHVKJqJVDUtip1RphqN8e2S+ZGiKOQReqqA3SwN9b1kVKp2SU1D4ey/UYh7GjnT0KkKVY3b\nZPWEpYhUmLgG0qkTZ9632a1URSpd038h0fdYAIyNJFLWWu/9Dpf8i4hUmCZr72yXUVm7/L/1hrxb\n0aiOLdAvheHy3hdFEc/4q6pK1QEuoNmq4L8undrNwHfJjipVcqKNtVaODp1z1trdau/oCxkVBs05\nN5vNYme6pFM0qgPrralOLc+oNqlFHb3Fkv8GrqOkSsJZCEHOvpnP5xLR9qnAQzMaqqBQUykU61Rh\nChpLp5YmT8PPn5bqaPrPey/dDLXV9jhMHCISJgyRc64oCimQO+eqqjLG7FYvZ9IQI7bLtZBXHV1M\nb0/prlFdzmSuqkpSK2utBDUA6ECe57KcujGmqqosy8iNgNSq0pTZuTo1PY1VqmqXJo0n18iD1tqy\nLJ1z8/lcniyFK9qqlKBfCqMnsYjqOLCI6lRTmkmqYi1dpGfZFEURQijLUlbbkwfjBSIIcBqQUWEi\nnHPEHCC19Wl9hnRqnQbOKI6tmmVZSuVJ/i/BS8pRmzSkc3pzX7ZKqmiomo6R7ZLpwV6ske9wrgyL\nf2Icmlwlode9QFWkaqBSJb9MGmikX0Fuy/W2Noxca06l0bPJRoyECSMmV/2Lt/d5K8IRBm27dGr9\nKa7sC8e1dfbf/s1ShK1GMLUHiMVDO5Z0wdSQTrVN14rqJFLNIqMCUrWeKjkZmdNlMAVbpFPkUnto\nZUmFLMti5EpL7idiSb0eMfeHcYtnH0suJV0KZFQYvS3W8FyzGPqoV+xsUGPtXbJoQlxYL66Znj5+\n4jtQqWpW3JFImLCDke2S8aSZ+Hvt9guObLNgxDatTg28NKVql2ylUuWck+U9rbVbHQtSqQLQHqmg\n10rp/Q0HaNHJ1SmpS1GaalSL+Z0s77nFUDQlm+NApQr7GNkuKUsqzGYzY8x8Ps+yrKqq3SpV6d0x\nbSKMw6p0Kn3GutcP7U9aVaRqsVF9h2aFNFrp2UYARiDP8xBCPNjz3ser1myL6ASd9kqn+KtugqL8\nTlWyOQ5UqrAPdsml2CzQ6YSMarzLoKvaJXUtqQAAALYy2XRKIV1JFdN/W2EZKgCYMtIpbXQlVSRS\nmyOjAoAp2yWj4h/ZlulKqtAGGqoAYExIp9TSlVQx/bcDciagJRKRZrMZVwmEHosZFemUHq0s/rmz\nkOh7LAAmLc/z2WwWQpjP56wRCg2WXnCGjEoVXZUqAFDCOZfnuaRTXCIQ/WK+byh0VaoAoDMxZxKy\nLmiaSDnniqLYeY1QoBHrMqql15nh8jL9oVKlEWf2AW1zzlVVFe/KRWyyLDPGFEURQnDOee9pRUC/\nVs73sVyCSorWIeWKWmLbjIpGdbRE1TrFzYrRpixLmdqL166R23mez+fz+Pz4NDPqzQJtav8ckE4t\npWqX1FWp0rNdhoKMCtiBhJr0QK6qKilTGWMko1oTjuzqC6gRxNCI5QUq0in1dCVVSJEwAV3avBud\nzAmtWpJRmWvGXlvyVP4UlSGpAoDtsKIe2rM8o1rEH55KJFUAYLIsi2cCeu/jVOBSJFJoSb2JinRq\naEiqAMCknelVVa1fRoFKFdpwckbFH5t6upIqQhWAXsgCChKCsixb319FdEKzKFCNhq6kilAFoDO1\ngOO9l/U/exoOJooC1ZjoSqoAoEcbZlTU1NEUMqqR6egyNVJXt9bKxd6dc9ZajggBDBGXfkcj0owq\nmGv1jIqrzQxQR+uQygrFkkuFEOT/8cFvhqJpUdQexd2MdarQL3bJpbj2A/ZHgapBqiJVd5UqSaHS\nNYurqqJYBWBwqFRhHycUqAwZ1YB111NVu5xWvNLWpPIqrpQMAJNFgWr0GqtU5Xkel84zSWlKHrTW\neu9lpk8W1nPO1V4yemRUADBZFKimoJlKlXOuqqp413tfFIXM9BVFEUIoy7IoCnO0AExVVdKXsH6F\nvSmjoQpQi7P/sK3/NcuyBtWoNdDeFeNLWZYylxen9kzSor7J+4w7PNGBjmEZ/S65GzYLtnJCOmXI\nqPalapdsYPpvsVszrVqlfVQnsqvtP04AALokGdXyyT7Dogkj1Faj+m7t53qSTQAAdhbTqeU/5h+7\nkdK1ojqdCgD0I1JhPWvvkE5NUytJVZZl8bQ+OdevjU8BgF6QSGGVdQUq/mwmoJWkKu2jqqpq81P8\nCFUAgIFaWaDin7bJaCWpcs7Jxf7M0RoKG76QojoAYIiWZ1T8QzYxjSVVtRzIe7/DaukkUgCAYVk5\n5ce/aNPTYqP6pK4/A2A6qKkjokCFFGf/AcB2iE4QZFSo0ZVUEaoAAPox5YeldCVVw61UcbFkAJgI\nClRYRVdSNaxEKiKjAoCJIKPCGg1c+w9b4WrKADBQZFRYT1elauhImABglJY3UZFO4ThdSdVwe6oA\nAGNFgQob0pVUkUgB0I/Dv0kho8LmdCVVAKAfidREsG4CtkVSBQBAHQUq7EBXUkVRHQDQOzIq7EZX\nUkUiBQDoEVN+2IeupAoAgL5QoMKeWPwTAAAyKjSApAoAjDEmz3Pvfbzrvc/zvPYgxoqMCo0gqQIA\n45yrqire9d4XRSG34w2M1ZKMKgQyKuxAV08VZ/8B6F4aeYRzLssyqVHlee6cc851PzB0YHlGBexE\nV6UqJPoeC4CpWIw5adUqz/P5fN75oNAFMio0S1dSBQBK5Hne9xDQLjIqNK6jpMp7b6211jrn4m3R\nzQAAoCl2tb6Hhk2RUaENHSVVzrnZbBZCmM/neZ5LsT3LsrIsuxkAAGwuNlQZY7z3WZalPw2r9TBW\nbI+MCi3pqFHdey/nJ8fYFDtAuxkAAGwu7aOqqqp2+McpNUNHRoWWdHf2n6z4EuNUURSUqQDoFBsV\njDFZltUO/0ikBs3aO8e+P75NNKex6b/16+ZZa733tXOSKVMB0COEkAYl731ZliGExcU/aaIarvrE\nHxkVGtVMUnXiunllWRZFYa2V6T9ZA6aRjwaAlqw68KOJaqCWL5sONMfuHxTisVpZlhKD5P+xa0qW\nztvkfQYaoeSq5saYEK72OxKgQcPdJVvFZhkomtPHStUu2UClqsF18zhRGYB+hKbBIaNCN9pqVN+t\nX0pPsgkAqxCphoWMCp3h2n8AgNEio0KXWkmq1q+btwaJFAD9OPwbCjIqdKyVpGr9unlrEKoA6Ed0\nGgQyKnSvlaRq/bp5gxNP7gMADAUZFbrXWFJVO3SL16XZ5000IKMCUENNXT+WTUcvFK3uoGqpiWjz\npIpFqjAyOnfJ3rFZ9GPZ9ElRtUty9t+myJkAQD+WTUePdCVV2hIpAMCA0JyOfulKqjRXqgBAEKl0\nIqNC73QlVYQnAPoRqRQio4IGDVz7DwCAHpFRQQmSKgDAsJFRQQld0390KgAAtsKSVNBDV1JFIgVA\nPw7/9GBJKqiiK6kCAP1IpJRgSSpoQ08VAGB4aE6HQroqVRTVAQAnIqOCTrqSKhIpAMCJyKigE9N/\nAIBBSeY0jCGjgiIkVQCAwbD2zrH7ZFTQhKQKADAMLKAA5XT1VAGAfpxS0wsWUIB+upIqQhUA/YhO\nvaA5HfrpSqoIVQCAJWhOxxDQUwUA0I2MCgPRUVLlvbfWWmudc/FunufdfDoAYKjIqDAcHSVVzrnZ\nbBZCmM/nxpiiKEIIeZ5777sZAABgcFhAAcPSXaUqz/M8z7Msk0RKMiqKVQCAVVhAAcPSXU+VJFVV\nVcldmQckqQKgGQX1PtUm/gD1GkuqaqEnlqbkQWut914Sqfh8MioAmjnn4nEgukYrFQaomSUVaqHH\ne18URZZl5qh9qizLoiiMMVmWySSgLElVlmUjAwCAZlnKJD0io8IwNZBULYYe51zaO+Wcc86la1BR\nTgegnIQsUqv+kVFhOBqY/gsh1BbtTKtWeZ7LGX+bsKvtP04AwACkAZ+MCoPS1orqu/VLsaI6AP3W\nHOYRxPbFITSGTNdlarj2HwD9iE4dYTtjaFpJqmJDlTHGey8d65sgVAHQj8O/tjDxh4FrJalK+6iq\nqtr8FD9CFQD9iE6tYOIPw9dKUuWck6v7maM1FDZ8IaEKgCpLgxKHf61jq2KYGkuqapHFe7/DVWgI\nVQD0Izo1j4k/jEKLjeo7nABIqAKAyWHiD2PB2X8AsB0iVYvYnhgyXUkV4QmAfkSqJjHxhxFp7ILK\nAAAAU6arUkVRHYB+RKrGUKbCuOhKqghPAPQjUjWD/nSMDtN/AIC+kadiFHRVqiiqA9CPSNUAJv4w\nRrqSKsITAP2IVPti4g8jxfQfAKA/ZKgYEZIqAECHmPjDeOma/qNTAYB+RKrdMfGHUdOVVBGeAOhH\npGoGmxGjw/QfAKATTPxh7EiqAADtY+IPE0BSBQDoFmUqjJSunioA0I9G9a0x8Ydp0JVUEaoA6Ed0\n2g4Tf5gMXUkVoQoAxowgj1GjpwoA0Bom/jAlJFUAgHYw8YeJ6Sip8t5ba621zjljjD0idwEAY1PL\nqChTYQJsN21MeZ7nee6cs9aGEOT/9aEse7B31t6RGyFc7XckQMd07pK9Y7Nsiok/dELVLtldpUry\nqizL5BGpVHXz6QCATpFRYZK666mSpKqqKmNMWZYhhNlslud5ZwMAgEbYRN9jUYnNgqlqLKnK89x7\nH+/G0pQ8aK313ksHlfc+fSYADEtI9D0W9dhEmJJm1qlyzkkJSnjvi6KQmb6iKEIIZVkWRWGMybIs\nz/OiKObzuWFhKgAYGSb+MGENJFWLBXDnXJZlUo6S/nTnXJo/kUsBwAgx8Ydpa2D6b7EGnlat8jyX\notQm7Gr7jxMA0B0OnjE9bV2mZv8OdKpZADAkTPxh8rj2HwBgb8wnAC0lVbGhyhjjvY9rU50oneYj\nwQKghKrVBQeAbYWpamWdqrgelTGmqqrNr0XDicoAVJFLbPU9CvWY+AOMMS1VqpxzMRLJGgobvpBK\nFQBV8jyXK2v1PRAAA9BYpSqEkCZP3ntZNn2rdT6pVAFo2/qVin2ipwEODWUq4EiLjeo7nABIpQpA\nq05cqZhrZwHYGWf/AZiKDVcq7n5gA0aZCkh0d0FlAOjXzisV117FMsUAltJVqWL6D0DH9pzvm3Sk\nokwFHKcrqZp0eAIwEEQqAEsx/QdgunZeqRiUqYBFuipVTP8B6FLaR1VVVVmWm7yKSAVgKV1JFeEJ\nQJd2W6mYSEWZClhKV1IFAG2rpUSyzudW7epUqgAsRVIFYOq2PQFw6okUZSpgBV1JFcd/AABgoHQl\nVSRSAPSb9OEfZSpgNV1JFQDoN7lECsBmWKcKALAZylTAWlSqAGA7k57+A7AaSRUAbGeiiRRlKuAk\nupIqjv8AAMBA6UqqSKQAQCPKVMAGdCVVAKAfNXUAS5FUAcB2JpdIUaYCNtPRkgpyyVJrrXMufaSb\nTwcAAGib7eaQK8/zPM+dc9Z+84mSUaWfHn+kirV35EYIV/sdCdAxnbtk7ya3WShTQTdVu2R3lSrJ\nq7IsM8bkeT6bzbr5aAAAgA50t6K6JFVVVXnvq6qSB733nQ0AALAdylTANhpLqvI8TzOkWJqSB621\n3vvYUJVlmTxOUgVgcGyi77EAUKSZs/+cc7H4ZIzx3hdFITN9RVGEEMqyLIrCGJNlWZppxTQLAIZC\nTwNHuyhTAVtqIKlaPFZzzsValPSnO+cWw9BUAhMAAJiABqb/Qgi19CitWuV5Pp/PN3wru9r+4wQA\nbIoyFbC9thb/zPN8z3egjgUAAAZE14rqJFIAoAthGdhYK0lVbKgyxnjvpWN9E1xRCwD6R8cFsJNW\nkqq0j6qqqrIsN3whiRQA/Tj8A7BUK0mVcy5e2k/WUNjwhYQqAPqNPDrRog7sqrGkqhZlvPey/uc+\nbwIAADAULTaq73ACIJUqAOgTZSpgD5z9BwAA0IDuLqgMAFCNMhWwH12VKqb/AADAQOmqVIVE32MB\nMHVyjawpXvedCAzsRFdSBQBK5Hk+m81CCPP5PK5mPGYs+Ansjek/AFjCOZfnuaRT+1/MFMAU6KpU\nMf0HoD0xSRKyll580Cfkyc65oig2vybEgNGiDjRBV6UKAFrinKuqKt713hdFIVcmLYoihFArR8mV\nITjAA7A5qydkWKtoMJG1d+RGCFf7HQnQMZ275G5ia0FZlpI8yf9jUUrqUktfkr7KjGuzfIMyFYZM\n1S6pa/oPANqw2FSQVq3Sa8DXXiJqRSy7Wmu/AYAB0DX9R6M6gM7s3H4+qlGpcwoAAAqvSURBVOhE\nmQpojq6kalShCsBIcfgHYCldSRUAdCPLsngmoPdeOtY3NM5EapS/FNAtkioAU5T2UVVVtdW6CeOp\nVNEEBjSKpArAFMmKCZIeZVm2VX/VsBMpAK0hqQIwFbVkSNb53KFdfTyVqmgcvwXQN11J1QhDFQDF\ndjsBkOgEYCldSRWhCgA6QkMV0DRdSRUA6EdNHcBSHa2oLg2h1lq5EESe59ZaLvwOYIjGdun3cfwW\ngAIdJVXOudlsFkKYz+fe+6qqJBjVLrYFAOgCc39AC7qrVMklS+XU5RCCXDGeYhWAweFifwCW6u6C\nypJUpRcxNUeXiAeAARnV9N8IfgVAjcaSqjzP0wwplqbkQWut914m++RHMiFIUgUAAMahmbP/ZC4v\n3vXeF0Uh19IqiiKEUJZlURTmaOXiqqqkbL7VpSEAAA1g1hJoRwNJ1WJXgXMuXqxUilLOubROPoaa\nOYCpYkkFAEs1MP232FiQVq3Sq5aeyK62/zgBoBHj6aka+vgBZdpa/HP/0/oGH60AQCGOUYHW6FpR\nnUQKAAAMVCtJVWyoMsZ476VjfRN0KgBAR4ixQNNaSarSPqqqqjY/xY9ECgAADFQrSZVzTi72Z47W\nUNjwhVSqAOg34EhFQxXQpsaSqlpk8d7LIp/7vAkAKESkArBUi43qO5wAOODjPwAYEAIs0ALO/gOA\naWDuD2hZdxdUBgAAGDFdlSqm/wCgdURXoB26kioSKQBoBXN/QPt0JVUAoB81dQBL6UqqCFUA9Bt0\ndLLmgwGPHtBNV1I16FAFAPqFcLXvIQCjxdl/ADB2NFQBnSCpAgAAaABJFQBMhTUf9D0EYMx0JVU2\n0fdYAEyaXBXeWuuc63ss+zl2AhANVUCLrJ7ecGsVDSay9o7cIBhhanTukp3J8zzPc+dcbTsMb7Ok\nx6jDGjmwAVW7pK5KFQAo4b2XvCrLsr7H0gzm/oC26VpSAQD64r2Pt/M8N0fFqvl83teQmkW5HWgb\nlSoAU5HneZo5xVqUPJgnjDHWWu/9mBqqALSNpArAJDjnqqqKd733RVHI7XgjVZZlURTW2tFM/wFo\nm6L2rtoZf0oGRqM6JktV++eeYngpyzJO7ZmjKb/Yk77hWw1psxz94tZ8QBDDKKnaJXVVqkKi77EA\nGI/FqJJWrbZtnLKrNTbiRrCYAtAtGtUBTJQUq3bAUR+ApTqqVNWW0ZOlX9Qd1QHABvSWplZgMQWg\nGx3NRNaW0ZP/O+e89/FkHFXTohE9VZgsnbvkPqy1q3qqzPElFda/yWA2S8z5hjJgYHuqdsmOpv8k\neYrL6JVlaY7OZ+5mAACQSvuoqqqSoLQhe6xXSUs0rxtIFQ0Yk+4a1aVYFZtDJSoNfg0YAMPknMuy\nTKbwsizb6gCPU2oALNVYUrV+Vb3aMnpFUZRluWGxHQAaEUJIkyfvfVmWIYRtY9EAeqqSgdFQBXSm\nmaTqxFX10mX0JH7JXab/APRotxCkvVJVX/OPflCgIw30VC0eq0ldPXaAOuecc2n0URqJAGDojgdk\naz4g2gKdaaBS1eCqeoNZUg/AhOkNTYsZFWUqoENtnf23c1G96YEAQMOURioyKqBvui5To/X471rf\nA1hO2Vb6H50D0zkqo3hgGBLFGZXav3CdA9M5KqN4YKq0klTFhipjjPeea7wDQIsUZ1TApLQy/bfz\nqnpKi+oAkNC1+CcZFaBGK0mVXH9G4s5Wq+rpClUAsIyi6ERGBWjSWFJVizLxujT7vElq/cV92vvp\niRgYA5vswLCo0y+rnlGtW5JK7V8RA2NgbQ+sSy02qrOwJwC0pdY1PJB/coBx6+iCyhti+g+Afv1H\nKjIqQCVdSZVJrlFl7Z3azxYf6eanAJDq+ZCPjArQStE8JWtgANroiQ969B6p0q+EoAkYTZFKVVKl\nt1zECTUAtIhZnZroDUAoSqoAAACGS9FlavI8j+uwK5HneZ7nzrm+B3KMrFWhcGBR7/MjqTzP47WP\ntJ2R6pzT9j0652rXMte2V/aOSLUhItVWiFRbURuptDSqO+eqqup7FMdYa2Xl0vl8Pp/P9ZT0iqKI\nA5P1wPoe0TGq4pQxpqqqrVag7Uye51VVzWYzVd9juqG899r2yt4RqTZHpNoKkWoreiNVUCAOpizL\nvsfyjdlsFjeOXGZHydjSgaW3lZAhqRqVqsFE8kcVb2dZ1utwlsuyTOfA+kKk2hyRaluqBhMRqbal\nYvpPhtL3KI7J8zzudfGRnsZyjHNO/srliEHVxaq99/P5vLbd+iUHVVJXV/INChmY914q6koO/lJy\n8KdwYD0iUm2OSLUVItXO1EWq/vK5OqPmGCslO95sNut7IMfEcKBqi8mGSo9sehe/Pm0HpvHfGLmh\n5zArUvhnr4S2/U4QqTZHpNockWpbWr65oDJUyR+Tqi8sJX/lfY/iGzKYsiwlKGj7KoOyyZH0u1MV\n3IXC+Ro99PwVRUSqzRGptkKk2pai0ej5MxI6s3I5lJHbqv7EF4ugGr7NsizTYSgZVViIBXoGJrIs\nU/svdO+0fVlEqq0QqbZCpNqWlj/0oOzbigcxUd8j+kb6J67q+C9SFUDTg1FtxzRqBxaU7YzaqNo4\nRKqdEak2pHZgQdnOKBRtIFVbZ7GtUufY9IwqUhWqguLNlfbJqhqYtm9QG1XfF5FqZ9r+ztVuLiLV\nVlhRfZDiqSI9j2M4ZB3CvkexhNqBAfsjUm1LbUBQOzBtSKoAAAAaoGKdKgAAgKEjqQIAAGgASRXQ\nEe/9Dpcbc87JWsZ2Qby+6TvvvPPOO+8YYz7//PP0CWvWjF4cjFygdLdBAhgNItVe+u6UB6Zit3NV\n4kuMMVmWLT15Xp7z2WefyXM+++yzEMLNmzeNMXJ71TunS7zE62fJp2w7TgDjQKTaB0kV0JFy4dKk\ntaAwm81kLTu5hkZ8RH5qVi+ZLW9rFhaBTK8zuviJtdWDzNH50jpPVAbQDSLVPtQNCBirGALkhgSO\nGCDkdiyDS1QyycIwq47/3n777bfffluesOpob+knlsnVMBbXTW5jCwDQj0i1D3UDAsYqhqr0QC2u\npFyLIEtDVY38yBhzeHgoFfUYqmpT/OmBYHo7flD6YO1zAUwKkWof31r8/QG0bekyevJg/NHiwomz\n2Sy2fKYuXrxYe0QiV1VVt27dkhvGmMW+ztlsNp/PnXNVVUmIFFmWsdYfACLVtjj7D1Bqk0jxzjvv\nvP322/GuBCZjzIULFy5cuJA+s1aQTz+iFiLNUWgDgBMRqY7pu1QGTEUsqqd9l+aowG6O6ttSZt+w\nU+EHP/jB4eGhPEGO+W7evJneXfOJ8a5Z6Bs1+orqALpBpNoHSRXQkfRclcUDm7SmbZKe0HgezeIR\nUe2kmJCEJyF3V32iiK0S6YMcbgGTRaTaB9f+A/pRa0RwzsXitrW2LMs8z733RVGs2Uk//fTTxTaF\nzz//3BhTK6ovfuIqzjnvvTwZwMQRqbZCUgWoIL2Z0o8p3ZfxcQlbXY6EsABgKSLVejSqAyqEEGaz\nmfde/h8frxXb2yYD6PITAQwIkWo9jYkeAADA4FCpAgAAaABJFQAAQANIqgAAABpAUgUAANAAkioA\nAIAGkFQBAAA0gKQKAACgASRVAAAADSCpAgAAaABJFQAAQANIqgAAABpAUgUAANCA/weegC2SkooG\nywAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "c.cd(1)\n", "hmass = hvol.Clone(\"hmass\")\n", "hmass.SetTitle(\"effective number of nuclei\")\n", "hmass.SetYTitle(\"\")\n", "hmass.Scale(6.022e23 * 1e6 ) # the 10^6 is for gr -> m3 of water\n", "hmass.Draw()\n", "\n", "c.cd(2)\n", "haeff = hmass.Clone(\"haeff\")\n", "haeff.SetTitle(\"effective Area\")\n", "haeff.SetYTitle(\"area (m^{2})\")\n", "haeff.Multiply( hxsec )\n", "haeff.Draw(\"Lhist\")\n", "\n", "# -- draw the effective area directly from the w2 for comparison --\n", "haeff2 = TH1D(\"haeff2\",\"effective area\", 24, 1,7 )\n", "f.roottree().Draw( \"log10(mc_trks[0].E)>>+haeff2\",\"w[1]/mc_trks[0].E\" ,\"goff\")\n", "haeff2.Scale ( 1 / ( ngen * log(10) * haeff.GetBinWidth(1) * 3600.0 * 24 * 365 * 4*pi ))\n", "haeff2.SetLineColor(2)\n", "haeff2.Draw(\"Lhist same\")\n", "\n", "c.Draw()\n", "\n" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Compare this to the effective area computed directly from the w2 weight: (but note the Earth-survival probability is at this stage not yet included) in the effective volume.\n", "\n", "Okay, so the effective volume is basically just the effective area, devided by the cross section and\n", "(depending on how you want to define it) the Earth absorption propbability. So we can plot it in one go like so:" ] }, { "cell_type": "code", "execution_count": 99, "metadata": { "collapsed": false }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "TFile::Append:0: RuntimeWarning: Replacing existing TH1: hv (Potential memory leak).\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYwAAAF0CAIAAAC/mplpAAAABmJLR0QAAAAAAAD5Q7t/AAAXBUlE\nQVR4nO3dz48U1frH8edccavbURMhCMzgjtnqvVWTGGExQMS9Jl8TCLi4RsCFmkzNwo0iMSSSwMLE\nP8AxIgsdF1V1r9uZWYoo7uTq3yDO+S7OcKa6u/p3dZ+nqt6vENJddHed6en+cM5Tp04Za60AgFb/\nCN0AABiEkAKgGiEFQDVCCoBqhBQA1QipJjDGGGPc7dOnTxtjFhcXK3nZp59+evrXmXjvcRyH2jv0\nIKRq74UXXhCRV155RUQuX7589+7dY8eOra6uTvZqxphjx45V2T5gOgdCNwDT+u2330Tkhx9+8FtW\nV1c//fTT6V+ZOXTQgJ5UbVy6dOnIkSPGmCNHjly6dMltdN0od+Py5cvXr18Xkbt3754+fdptf/vt\nt/2z3n777eILnj171hiztLR09uxZt8X1oX755Rd34/nnn3/++edF5MUXX3z99deLzy1uOXXqlN9F\nacvPnTt3/PjxflsuX768uLjohqiXL1/uffqVK1e6Rq+Li4tXrlwRkTfffPPQoUPub2PMoUOH/Mbe\n0WLxrShtJ5SyqIOLFy+635dPpYsXL1prDx8+7O4ePnz43Xff9b/W1dVVa+3Jkye7nnXp0iX3gu7u\n4uKi+/4vLi5aa48ePeq2Hz161D3mqaee8g/2jTl37pyIfPDBB9baYkr2+0S99tprIvL+++/7LSKy\ntLRkrfVt9mNM13L3mCiKrLUucIsvKCKnT5+21kZR5J518ODBgwcP+h/f33avMPitgHKEVD24b1fx\nrv/eFm+77/y7777b71nu7pkzZ0Tk6tWrbrvLKf8Yl1C2EFLFVCru0XXoTp482a+dxe0ulWxnZnXl\nWtfPNWJI+SRyT3/jjTdK21n6VkA/hns14L9jfsurr77qt/dz6tQpEfE9CPcKDx48EJE7d+6IyMcf\nf+y237t3z8VWP1999ZWI/PTTT36Liy33at99913vLnrdu3fP3fj6669F5KOPPnKDu2KN34Vs6aBv\ngCzL3A3Xgfryyy+7HuCaVPpWQD9Cqgbc12lzc9M8trm5OfRZv/76q4jcvHnTP6v4teyq8nzzzTdD\nX3BjY0NEXCnKxZbbhSno9813vacPPvigeNfpPZh4//79oY0Zy+C3AspxdK82Xn311WJnSkRu3rw5\n4PFHjhx58ODB4N7W6M6dO7exsfHhhx9ubGx0VcFH2cXGxoYxZmNjw3XHXN7NWVVvBeaMkKoBn00+\nlU6ePLm5uTk4pLzPP//c3fBHtRYXF3/++Wf/gLNnz965c+fq1at+ANjrq6++cikjIj6kXA6W7qLX\n0tLSvXv37t27t7S05LZ8+umn169fv3v3rp8w4fpQpRO1rly5cu3aNXdjhB+6w1jthDaEVA3cvHlz\nc3Nzc3Pz5MmTrpiyubnZ1avq9d133xljfJA9ePDgwYMHri5z5syZTz75ZGlpyZWiukpU/Rw/ftz1\ng9xYr3cX33//vd9F6dNdWcrVs5xjx47dv3//9OnT7oabido1yctl1rfffnvt2rUrV65MMAVswFuB\nGghduceo+v3iine7ju51DXCKx7O6KuX+SF/x9eXx0T3Hhcvx48eLrRqwi34/QtfGrn5T8cH+sF3x\nMe5gX/Honn+KK5yX7m6sdkIVY5lVXB/+mzbiQM9xczj9SKfovffek54+1DvvvCMin332WSW7GIU/\nnDegl+RGeW7EN7Ep24kgCCkAqjEFAYBqhBQA1QgpAKoRUgBUI6QAqEZIAVCNkAKgGiEFQDVCCoBq\nhBQA1QgpAKoRUgBUI6QAqEZIAVCNkAKgGiEFQDVCCoBqYS7EYIwJsl8A0wiykK+Wq8WwijGgXKi+\nRbCQIpUAjIKaFADVCCkAqhFSAFQjpACoRkgBUI2QAqAaIQVANUIKgGqEFADVCCkAqhFSAFQLdu5e\n18mKnMoHoBQnGANQjeEeANUIKQCqEVIAVCOkAKhGSAFQTcsa5wCUMOa2yILIH9aeD90WEUIKQNHO\njhVZdSG1s2NPnAh/YScTZL6SMWH2C6CXMbcL91atPLe3XX4XuVt8ZJC+FT0pAHusXOjcsCDypMhf\nYVrzGIVzoAnyfNqhSU9CicifwRNKGO4BdbezY5eX/+eqSNvbz0xSRSq76qeRh1tbC8vLpvCoQHFB\nSAH10llCEpFVkWcf3344dhWpJ6GM3Co9uhfqa0tNCqi1AyILVgr9HflijDFabx9KX/eBkAJqzMpb\nIm91bvk/d8PIrUHPLIunKltWnVn133zPMEmS9fX1KIqyLOv9VwATKisk9WWtFGdp9tbIR/g+Nqcm\nlWXZysqKPO42uh8sjuM4jpMk2dsrIQVMbKx4GsVoX8bm1KTiOLbWuoU3syyLoshtLPakAEyiXzx1\nZcfIKbY3JDS3lZwBU4p5UoBextw25o4xt8WY8uixtqQf5DZaO7gsNaRopcYkIdXVLcqyzI3mSvtK\neZ77Z02wL6Cphk6/dKfRWTlbNs2yTzz1MHLL/enc+LAuCSUiYse0trYmImmaurtpmopIFEVuWOcf\n5m+77V07mmC/QGNsb++K/C7yt8jv29u7+/8gMsofkVvT7fTh1tbu8Cf0CPW1Ha8S5i/xkqap6xm5\nv10fqqs6Pvh1xtovUBd5bqOoZ3rk4+mX5X2ikfnuz2QlpCnXYAn1tR1vuOcD1fOjORGJ43h9fX3E\nlzIDjdUqQIOdHfuvf9k4ln/+0+7s2L0qkjFijJUL7s/EL17JAM3a89ae0VwjL1XB0b3Jik30pNAA\nxS7SCZH/uDs/iixP8aKPvxqFk/L+3NpaWF6uWbhUhaN7wEhK6tyTdpF2tneN/G7kbyMPt7d2/cG4\nrlr4iRPG2mfT1Fj7TPFE37aZNqSKU8n9rCigSYrjuOIgbpTn7h9cK8TQWOkTx+2NJ2fa4V6xDpXn\nuTvYNwousw7NiisNWLmwP44b/Cz5vTA6M7J3MK4c6TOiaUMqSZIsy1ziRFE0en2KVIJ+I43jCp9k\nK5JlNo6fmWGb2qeaY4puPucYe2UKAjQbNpQrHmir3cGyiTXnBOOR9trzISCzEMr+zKaB2WRk96WX\n5MYNaW0NuzknGI+IVEJwOzv23/+W//5XiovGlbBWRNLMUkUKguWD0SK9C+/6yzeV4CPaqXU9KSCs\nfkXx/VNP5tgYDEBIoXWGxhNUoXCOlimrjr/80m6bK+Ijat1wj1TCvPVZNC7L7I9UxBWjcI52qM/F\nUdSqx1ItQI3snRJcep4dCVUfhBQayJ0SHMX/KI8nEqpWgtWkOMEYFeqaALV/SnDXw+QWn7PaoXCO\nRmF6QfMwTwr107uO+IDlCow8FPl29o3CrFCTQp30XUe8jJHdl1/a3dpasPa8/zPnBmN6TEGAar1n\n24k8KzLSKcEZpwRXqnWTOYHxHRh0PrB0TywgoZqBo3vQovSKdTLC8piuKM5Qrqk4uofw/LpOL79s\nb9yQEyf2l6Ab8ilxl9WdfQsREDUphNFZbBqt0vRYlu4ylJs/alJorWGVJqfw9Yhn1xbowxQEhGTl\ngpW3Bjxg/4p1aCuGewhkwFUP+GyoxCoIaKzuC5T3mX6Zpbt0mtArWEiZTqGagZkqnyDey1qxTLxE\nOYZ7qNh4h+34GNQHwz00zwGRBSumNKH2KuLAMExBwOw8svJE71ZWTcFYGO5hNvrVnlBbTOZEg7Cm\nOKpDTQpVI6FQKXpSqA7xhBmgJ4WKkFCYDUIKVSChMDPMOMfk8rxsEjmntqBSwULKdgrVDExm/+qb\nXfhVomrMk8JIei+I0LsIlJ+lyUq+jcQ8KdRI9zJ1Rr4Q+StUa9BsFM4xtq5l6ow8JKEwOwz3MKbO\nMvnLL+3euCHLyxz6aD6Ge6iDzoTK0t0fWQQKM0ZPCiPrnWqANqEnBcWYq4lwKJxjGBIKQRFSGIiE\nQmgM99AfRSgoQE8KJfZOyisioRAIJxijQ/lJeSQUwmEKQtsNPSmPM/LgcEkraFB6Uh4QEoVz7LFy\noWuLkYci3wZpDOAx3IOIlEw14KQ8dGHGOcLpSShOyoMe9KTajbmaGBmFc8wdCYU6IKTaJc8fxxAJ\nhZogpNrCzdKMY+H6LqgXCueN1TtLU+RZK90dKCO3yCdoRk+qJQ6ILJQmVJDWAKOjJ9USj6w8UbxP\nPKEumILQGoU61PbWLrM0Ma5QX1tCqh2KlXLeeUyEeVKYGVbCQZ3NNqSyLHPLRWVZNtMdoS/WrkPN\nzbb/FsdxHMdJknR1FBnuzQ8DPVSkmcO9PM/jOHa36UwFQEKh/mYbjVmWraysuNv0pOaNgR4qVdee\nVBzHxS5SlmVuiOc2ZlmWpil5FAAJhaaYKqSSJMnz3N8t9pvcjTiOV1ZWjDFra2vT7AhTIaFQZ5P3\n3/wlXtI0dYUn97frQ/mSeb/n0r2aIUpRmIH6DfestV0tLvaq4jheX18f8HQz0MStArOi0DAVn7vn\nj+UNRU9qJihFoXGYcd5cJBQaocqQiqLIH+nLsiyKogpfHMNRikITVTncK9ah8jxP03TAg7sKT4z+\npkUpCg1VZU8qSZIoilzlO4qiwfUp26nCZrSNMbcpRaHBqj+m6OZzDtkrUxAqsrNjl5f/13FtdN5Y\nzEbr1pPq2kJmja5z8fLVYkJ1rbdp7fl5NQrN17orGJNKVTjQ0YcSEXlS5K8wbQFmgykINWblreJd\nIw9JKDQPywfXWWHUbOTh1tYCK5djdlo33MO0CgmVpbs2Jp7QTBTO64k5B5i71vWkSKXJkVBoEwrn\ndUNCoWUIqVohodA+hFRtkVBoh2A1KU4wHhuLHKCVKJzXBIscoK0Y7tUBpSi0GCGlHgmFdiOkVMvz\nzkgiodA+nBajFAtFAQ5H9xQZsFBU17+yUBTag6N7Oh0QWSjeN/IFy7CgnahJ6fTIyhP+DgtFoc1Y\nT0qrwnB4e2uXhaIQXOtWQcAgHavZ3bIkFFqMnpRKnAEDfUJ9balJ6UNCAQVMQQCgGlMQlKEbBXRi\nuAdANUJKK7pRgIgQUrqwaBTQg5ACoBohpQYlc6AMIQVANUJKB7pRQB+EFADVmHGuAN0ooD9mnANQ\njeFeaHSjgIEIKQCqEVJq0I0CyhBSQXEeDDAMIQVANUIqHErmwAgIKQCqEVIBGHObbhQwIkJq3nZ2\nrMhq6FYAtcElrWbOmNudG1atPLf/r3Kr+G/Wnp9Lo4CxcUmrljggstC55ckwDQFqIlhImU6hmjF3\nj0T+8HeMPBT5K2BrAP0Y7s1dIZG3t3aXuYQ6aiLU15aQmjuO66GeqEm1QyGhukrmAErRk5ovulGo\nLXpSLUBCAeMjpACoRkiFQDcKGBkhNS8tmgsGVImQAqAaITUXlMyBSRFSAFQjpOaLbhQwJkJq9iiZ\nA1MgpACoRkjNGCVzYDozDym3XFSSJLPeEYBGmu0Zg3Ecx3GcJEnXqYltOcGYbhQapJnrSWVZtrKy\nEkWRu72/V0IKqJtmhlQcx+7v9fX1Vvek2vDDounqulRLHMfFLlKWZW6I5zbmeZ4kiStIFR/WCsw8\nAKowVUglSZLnub/rBnfutruRpunKyooxJooi16sCgLFM3n/zl3hJ09QP6+Rxj8mXzPs9t+HDPapR\naJz6DfestV0tLvaqXB1qwNPNQBO3CkDDHKj25UYf0zW8J+W15McEZqbikGo5d0V1KxdCNwRojipn\nnEdR5A/hZVnmpkcBwDSq7EkV61B5nqdpOuDBXYWnxoz+OrpRTfmhgICqDKkkSbIsc+kzdM5BY1LJ\n29mxIquhWwE0TfXHFN18ziF7bcQUBFeBKli18tz+vxYuUGzt+Xk1CpiV+k1B6KetkzYPiCx0bnky\nTEOAZgm2nlTjJkY9EvnD3zHyUOSvgK0BGiPQac2NGO512dmxJ5b3Qn97a3d5uQHJC+xr5ioIfffa\nxJDiVBg0W3NqUgBQoWAzzps6T0pEjNxqzg8DhMZwrzoscYdGY7gHACUIqYo0YRYFoBEhBUA1CudV\na8wPAugQLKSak0oAZonhHgDVCKkqUDUHZoaQAqAaIVUpCm1A1Ti6B0A1ju4BUI3h3tSomgOzREgB\nUI2Qqg4DWGAGCCkAqhFSAFRjCsJ0qJoDM8YUBACqMdyrCJkLzAYhBUA1QgqAaoTUFKiaA7NHSAFQ\njZCqAlVzYGYIKQCqEVKToiAFzAUzzgGoxozzqTXmBwFUYrgHQDVCCoBqhNREqJoD80JIAVCNkJoO\nVXNgxggpAKoRUgBUI6TGR9UcmCNCCoBqhNQUqJoDs0dIAVCNE4wBqMYJxmOiag7MF8M9AKoRUpOq\naU8QqBtCCoBqhBQA1QipcVA1B+aOkAKgWrApCPVizG0R2S+VUzUH5oWeFADVCCkAqhFSo7JyIXQT\ngDYipACoRkiNj6o5MEeEFADVCCkAqhFSw+3sWKrmQCizncxZXNkuTdM4jme6u6q4qZsFq7bPv1p7\nfj5NAlprtj0pa621Nk1TEalLQvU4ILLg7xj5W+TJgK0B2mYew70kSVxO1dMjkT8Kd/8U+StYW4D2\nMVMu4xvHcZIkvpeUZVmSJCLiN2ZZtrKy0rUXY6bd71wVBq3bW7vLy6yFgDYK9bWdqieVJEme5/6u\nyyN3299IkmRtbW2avahCQgFzNnk0+qK4r4j7rpO77TpZpelbp55UoRtl5BaVcrRW/XpSrihe3FLs\nVcVxvL6+Lv2vCmMGmrhVABqm4ikIox/Cq01P6jEjt0I3AWgjJnMORJ8OCK3KkIqiyBWkRCTLsiiK\nKnxxAO1U5XDP16FEJM/zwXOjanCZ9c6SecCGAG1WZUglSZJlmUufKIoG16c0phIAfao/pphl2dDy\neT2mIPielLX+fD2mIKC16jcFoZ/anqPXiZI5oEOwS1rVoCYFQIFgIVWbVKpLO4GGCjPI1F6TKvby\nNLcTmKPm1KQAoELUpHrQjQI0oSYFQDWGe/0Ro4AChFQnpkcByhBSAFSjcF5AyRzQh8I5ANUY7pUh\nQAE1CKnHKJkDKhFSAFQjpESEkjmgV7CQ0nwNK23t6ULzJqa5baK+eaFwdK+TzlYBLcZwj5I5oBoh\nBUA1QqqAsR6gj9KQGlxBHFpfHOPp44/1ptz70AdMWT2d9d7b3LxZ/+qHmt/3QhOlIQUATrtPMGZ6\nFKAeUxAAqBbsajHz32kv/5OraA2gXpi4aHWPpnAh9aDtANBXsOGeCmQToB5H9wCoFiak4jjOsizI\nrgeL4ziO4yRJQjekRJZlmpvnKSk4FsVx7E9lj+M4dHNKJEmi8zebJEnXWgDz/+YGGO4lSZLn+fz3\nO5QxJoqiOI7X19fX19e1VetWVlZ887Is05nyChNKRPI8d29d6IaUi+M4z/O1tTWFv9nim5ZlWZhv\nrp0vv980Tee868HW1tb8u5GmqbYWFptXvK2Ka5jCtilskuc+bP52FEVBmzNIFEVBmjfv4Z7b65x3\nOoo4jv13zG8J1JYSSZK4T7P7nzaKotAt6pZl2fr6etd7qIHrmLgRn6rfqeOal2WZG+up6kYVuW5U\nmObNPxddSKnqpxS5r9na2lrohpTwEaDw3XNvWrFfoIT/hers6Pn/b9wNtT2pgF8KQqqD+7joTCjP\nfZpDt6KDa1Kapi4IdP5yrcqBfPG3qTDinbAVBkJqn+b/x1xHwN1W+FHu7aHr+f2maVpsjKq22Z7v\nv7bmOVEUBfyfm5Da47sAXugWdSh+lBX2pDyFAVrs3Ok85qC8eTb0F5aQ2tNbitbcQm1t8xSGlFX/\n1hWPNihsXvDfabvP3asbf6AqcDvqyc2GDd2KvpQ3LyBCCoBqnLsHQDVCCoBqhBQA1QgpAKoRUgBU\nI6QAqEZIAVCNkAKgGiEFQDVCCoBqhBQA1QgpAKoRUgBUI6QAqEZIAVCNkAKgGiEFQDVCCoBqhBQA\n1QgpAKoRUgBUI6QAqEZIAVDt/wFRtR9tGCmRBgAAAABJRU5ErkJggg==\n", "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "hv = TH1D(\"hv\",\"effective volume\", 24, 1,7 )\n", "f.roottree().Draw( \"log10(mc_trks[0].E)>>hv\",\"w[1]/mc_trks[0].E/w2list[2]/w2list[4]\")\n", "hv.Scale( 1 / ( 6.022e23 * 1e6 * ngen * log(10) * hv.GetBinWidth(1) * 3600.0*24*365 * 4*pi ) )\n", "\n", "hv.Draw()\n", "hvol.SetLineColor(2)\n", "hvol.Draw(\"Lhist same\")\n", "ROOT.gPad.Draw()\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": false }, "outputs": [], "source": [ "\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "collapsed": true }, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.6" } }, "nbformat": 4, "nbformat_minor": 0 }