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Abstract
In this document I describe the extension of the DGLAP equation for complex values of the factorization

scale µ and the relative implementation in APFEL.

1 DGLAP on the Complex Plane
Let us start from the usual DGLAP evolution equation for the distribution f(1):

µ2 ∂f

∂µ2 = P (x, |αs(µ)|)⊗ f(x, µ) (1)

where ⊗ represents the usual Mellin convolution such that:

A(x)⊗B(x) ≡
ˆ 1

0
dz

ˆ 1

0
dyA(y)B(z)δ(x− yz) =

ˆ 1

x

dy

y
A(x)B

(y
x

)
=
ˆ 1

x

dy

y
A
(y
x

)
B(x) . (2)

Now we consider the RGE for the strong coupling αs. When considering complex values of the factorization
scale µ, one should keep in mind that it is the absolute value of the strong coupling αs, defined as2:

αs(µ) = g(µ)2

4π , (3)

that enters the DGLAP equation. The RGE for the strong coupling reads:

µ2 ∂αs
∂µ2 = β(αs) . (4)

Combining eq. (4) with the DGLAP equation in eq. (1), we obtain:

∂f

∂αs
= R (x, αs)⊗ f(x, αs) (5)

where:

R (x, αs) = P (x, |αs|)
β(αs)

= P̃ (x, αs)
β(αs)

. (6)

Writing the strong coupling as:
αs(µ) = |αs(µ)| eiθ(µ) , (7)

in eq. (6) we have defined:

P̃ (αs) =
∑
n

αn+1
s P̃ (n) with P̃ (n) = e−i(n+1)θ(µ)P (n) . (8)

The next fundamental step is the promotion of the factorization scale µ from a real to a complex variable:

µ→ η = µ+ iν . (9)
1At this stage it is not necessary to distinguish between singlet or non-singlet distributions. We will consider these cases

separately later once the formalism has been settled.
2It is crucial to recognize that |g(µ)|2 = |g2(µ)|.
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As a consequence, we need to promote also the strong the PDF f and the strong coupling αs to being complex
functions, that is:

f → F = f + ig ,
αs → ζs = αs + iξs .

(10)

This has as a further consequence that the DGLAP and the αs evolution equations in eqs. (1) and (4) become
complex differential equations:

η2 ∂F

∂η2 = P (x, ζs(η))⊗ F (x, η) , (11)

and:
η2 ∂ζs
∂η2 = β(ζs) , (12)

that can be again combined in:
∂F

∂ζs
= R (x, ζs)⊗ F (x, ζs) . (13)

The main goal is the solution of eq. (13). The starting observation is the fact that the complex function F
must be an analytical function of the complex variable ζs. This implies that the real and the complex parts of
F must obey the Cauchy-Riemann equations, that is:

∂f

∂αs
= ∂g

∂ξs

∂f

∂ξs
= − ∂g

∂αs

, (14)

so that the derivative of F with respect to ηs can be expanded as:

∂F

∂ζs
= ∂f

∂αs
+ i

∂g

∂αs
= ∂g

∂ξs
− i ∂f

∂ξs
. (15)

Now let us consider the function R. Being it a complex function, it can be split into a real and a complex part:

R = S + iT , (16)

and thus:
R⊗ F = (S + iT )⊗ (f + ig) = (S ⊗ f − T ⊗ g) + i(T ⊗ f + S ⊗ g) . (17)

We can now combine eqs. (15) and (17) into eq. (13). This allows us to obtain two sets of coupled real
differential equations that can be written in the following matricial form:

∂

∂αs

(
f

g

)
=
(
S −T
T S

)
⊗
(
f

g

)
, (18)

and:
∂

∂ξs

(
f

g

)
=
(
−T −S
S −T

)
⊗
(
f

g

)
. (19)

The solution of eqs. (18) and (19) allows one to obtain the dependence of the real functions f and g (i.e. the real
and the complex part of the “complex” PDF F ) on the real variables αs and ξs (i.e. the real and the complex
part of the “complex” strong coupling ζs) which in turn are functions of the complex factorization scale η. It
should be noticed that while solving eq. (18) the value of ξs should be kept constant and conversely while solving
eq. (19) the value of αs should be kept constant. Geometrically, this means that eq. (18) allows one to compute
the PDF evolution along the real axis in the complex plane of ζs while eq. (19) allows one to compute the PDF
evolution along the immaginary axis. Of course, a suitable combination of these evolution allows to reach any
point of the complex plane of ζs starting from any other point. This is strictly true only if no branch cut is
crossed during the evolution. Finally, it is interesting to notice that the splitting function matices in the r.h.s.
of eqs. (18) and (19) commute. This has the consequence that the order in which the derivarives with respect
of αs and ξs does not affect the result. Of course, this feature must be reflected in the solutions of eqs. (18)
and (19). In oder words, this means that, aslo on the complex plane, the evolution factor to be applied to the
initial state PDF only depends on the initial and the final point and not on the path followed to connect the
two points.

Now we need to extract the functions S and T from R and in the next section we will show their form at
leading order (LO) in QCD.
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1.1 Solution at LO
At LO in QCD we have that:

R (x, ζs) = P (x, ζs)
β(ζs)

= −P
(0)(x)
β0

1
ζs

= −P
(0)(x)
β0

αs − iξs
α2
s + ξ2

s

(20)

and thus:
S(x, αs, ξs) = −P

(0)(x)
β0

αs
α2
s + ξ2

s

and T (x, αs, ξs) = −P
(0)(x)
β0

−ξs
α2
s + ξ2

s

. (21)

Using eq. (21), eqs. (18) and (19) become:

∂

∂αs

(
f

g

)
= −P

(0)(x)
β0

1
α2
s + ξ2

s

(
αs ξs
−ξs αs

)
⊗
(
f

g

)
, (22)

and:
∂

∂ξs

(
f

g

)
= −P

(0)(x)
β0

1
α2
s + ξ2

s

(
ξs −αs
αs ξs

)
⊗
(
f

g

)
. (23)

In Mellin space, the Mellin convolution of the equations above becomes a simple product and can then be solved
more easily. In fact, the equations above in Mellin space become:

∂

∂αs

(
f

g

)
= −γ

(0)(N)
β0

1
α2
s + ξ2

s

(
αs ξs
−ξs αs

)(
f

g

)
, (24)

and:
∂

∂ξs

(
f

g

)
= −γ

(0)(N)
β0

1
α2
s + ξ2

s

(
ξs −αs
αs ξs

)(
f

g

)
. (25)

Defining:

F ≡
(
f

g

)
and R0 = γ(0)(N)

β0
, (26)

and considering that:
ˆ
dx

x

x2 + y2 = 1
2 ln(x2 + y2) and

ˆ
dx

y

x2 + y2 = atan
(
x

y

)
= π

2 − atan
(y
x

)
, (27)

the solution of eqs. (24) and (25) is:

F(N,αs, ξs) = F(N,αs,0, ξs) exp [−R0Γα] , (28)

and:
F(N,αs, ξs) = F(N,αs, ξs,0) exp [−R0Γξ] , (29)

with:

Γα =

 1
2 ln

(
α2

s+ξ2
s

α2
s,0+ξ2

s

)
−atan

(
ξs

αs

)
+ atan

(
ξs

αs,0

)
atan

(
ξs

αs

)
− atan

(
ξs

αs,0

)
1
2 ln

(
α2

s+ξ2
s

α2
s,0+ξ2

s

)  , (30)

and:

Γξ =

 1
2 ln

(
α2

s+ξ2
s

α2
s+ξ2

s,0

)
−atan

(
ξs

αs

)
+ atan

(
ξs,0
αs

)
atan

(
ξs

αs

)
− atan

(
ξs,0
αs

)
1
2 ln

(
α2

s+ξ2
s

α2
s+ξ2

s,0

)  . (31)

It is interesting to observe that, if the complex strong coupling ζs becomes real, i.e. ξs → 0, the matrices above
become:

lim
ξs→0

Γα = ln
(
αs
αs,0

)(
1 0
0 1

)
, (32)

and:
lim
ξs→0

Γξ = 0 , (33)

and thus the evolution in αs of the real part of the PDF f reduces to the expected one while no evolution in
ξs is left. As for the evolution in αs of the imaginary part of the PDF g, there is an evolution factor but it
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is decoupled from the real part and thus it has an effect only if the imaginary part of the initial scale PDF is
different from zero.

The solutions in eqs. (28) and (29) are written in a pretty formal way because they imply the exponential
of matrices. However, since Γα and Γξ are 2 by 2 matrices, their exponential in known a simple closed form. In
particular:

exp
(
a b
c d

)
= exp [(a+ d)/2]

∆

(
m11 m12
m21 m22

)
(34)

where:
∆ =

√
(a− d)2 + 4bc (35)

and:
m11 = ∆cosh

(
∆
2

)
+ (a− d)sinh

(
∆
2

)

m12 = 2b sinh
(

∆
2

)

m21 = 2c sinh
(

∆
2

)

m22 = ∆cosh
(

∆
2

)
− (a− d)sinh

(
∆
2

)
(36)

Given the structure of Γα and Γξ, we can simplify the formulas above. In the case of Γα the structure is:

Γα =
(
a −b
b a

)
(37)

with:

a = 1
2 ln

(
α2
s + ξ2

s

α2
s,0 + ξ2

s

)
= ln

(
|ζs|
|ζs,0|

)

b = atan
(
ξs
αs

)
− atan

(
ξs
αs,0

)
= θ − θ0 = ∆θ ,

(38)

and thus, after some simplifications, we find:(3):

exp [−R0Γα] = exp[−R0a]
(

cos (−R0b) − sin (−R0b)
sin (−R0b) cos (−R0b)

)
=
(
|ζs|
|ζs,0|

)−R0 (cos (−R0∆θ) − sin (−R0∆θ)
sin (−R0∆θ) cos (−R0∆θ)

)
.

(39)
For Γξ,the structure is exactly the same:

Γα =
(
c −d
d c

)
(40)

with:

c = 1
2 ln

(
α2
s + ξ2

s

α2
s + ξ2

s,0

)
= ln

(
|ζs|
|ζs,0|

)

d = atan
(
ξs
αs

)
− atan

(
ξs,0
αs

)
= θ − θ0 = ∆θ ,

(41)

and thus also here we find:

exp [−R0Γξ] = exp[−R0c]
(

cos (−R0d) − sin (−R0d)
sin (−R0d) cos (−R0d)

)
=
(
|ζs|
|ζs,0|

)−R0 (cos (−R0∆θ) − sin (−R0∆θ)
sin (−R0∆θ) cos (−R0∆θ)

)
.

(42)
3Notice that:

a+ ib = ln
(

ζs

ζs,0

)
.

4



Eqs. (39) and (42) are the main result of this section because they are the evolution factors in the real and
imaginary direction to be applied to the initial scale PDF. Considering that eqs. (39) and (42) have exactly the
same form they can combined in one single evolution factor with the following compact result:

F(N, ζs) = F(N, ζs,0)
(
|ζs|
|ζs,0|

)−R0 (cos [−R0(θ − θ0)] − sin [−R0(θ − θ0)]
sin [−R0(θ − θ0)] cos [−R0(θ − θ0)]

)
, (43)

where |ζs| and |ζs,0| are the absolute value of the initial and final values of the complex coupling while θ and θ0
are the respective phases such that:

ζs = |ζs| exp(iθ) and ζs,0 = |ζs,0| exp(iθ0) , (44)

which is equivalent to:

F (N, ζs) = F (N, ζs,0)
(
|ζs|
|ζs,0|

)−R0

e−iR0(θ−θ0) = F (N, ζs,0)
[
−R0 ln

(
ζs
ζs,0

)]
=
(
ζs
ζs,0

)−R0

, (45)

which is the straight LO solution of the Mellin version of eq. (13). We can thus deduce that, also beyond LO,
eq. (13) can be solved using the standard techniques.

Since the best way to solve eq. (13) is in N (Mellin) space, under the condition that the x-space PDF is also
complex the numerical inversion algorithm from N to x space needs to be adapted.

The inverse Mellin transformationis defined as:

F (x) = 1
2πi

ˆ c+i∞

c−i∞
dN x−NF (N) , (46)

where the real number c has to be such that the integral
´ 1

0 dxx
c−1F (x) is absolutely convergent. Hence c has

to lie to the right of the rightmost singularity of F (N) in the complex plane.
Under the assumption that F (N) is an analytical (or holomorphic) function, the Cauchy theorem states that

one can deform the integration path in a continuous way without changing the result of the integral, provided
that no pole of the function F (N) is crossed during the deformation. This allows us to cleverly choose a different
path that makes the solution of the integral in eq. (46) easy to implement in a numerical code. A possible choice
is the so-called Talbot path CT , such that eq. (46) is equivalent to:

F (x) = 1
2πi

ˆ
CT

dN x−NF (N) , (47)

where:
CT : {N(θ) = rθ(cot θ + i); θ ∈ (−π,+π)} (48)

being r a parameter possibly depending only on x. Performing a variable substitution in eq. (47) using eq. (48)
and defining t ≡ − ln x, one gets:

F (x) = 1
2πi

ˆ +π

−π
dθ

dN(θ)
dθ

etN(θ)F (N(θ))

= r

2π

ˆ +π

−π
dθ [1 + iσ(θ)] etN(θ)F (N(θ)) ,

(49)

with:
σ(θ) = θ + cot θ(θ cot θ − 1) . (50)

Usually the computation of the integral in the r.h.s. of eq. (49) is usually performed numerically using the fact
that F (N) is the Mellin tranform of a real function and thus, under this assumption, F (N∗) = F ∗(N). In the
case we are considering here, i.e. also the x-space PDF F (x) is a complex function, this assumption can no
longer be used. Defining:

G(θ) = r

2π [1 + iσ(θ)] etN(θ)F (N(θ)) , (51)

and using the trapezoidal method to solve the integral in eq. (49) one gets:

F (x) = δ

[
M−1∑
k=1

G(−π + kδ) + G(−π) +G(π)
2

]
, (52)
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where M is the number of equal intervals in which the integration range is divided and:

δ = 2π
M

(53)

is essentially the width of the single interval. One can show that the boundary terms G(−π) and G(π) in
eq. (52) vanish and thus, defining θk = −π + kδ, it becomes:

F (x) = r

M

M−1∑
k=1

[1 + iσ(θk)] etN(θk)F (N(θk)) . (54)

From eq. (48) one can easily see that N(−θ) = N∗(θ), while from eq. (50) it is evident that σ(θ) is an
odd function of θ. Moreover, F (N) being the Mellin transform of a real function, one automatically has that
F (N∗) = F ∗(N). Using this information, one gets:

F (x) = r

π

ˆ +π

0
dθRe

{
[1 + iσ(θ)] etN(θ)F (N(θ))

}
, (55)

where Re{ . . . } is the real part of its argument. Finally, eq. (55) can be solved numerically using, for instance,
the trapezoidal approximation.

At this point, in order to be able to implement in numerical code, it is necessary to distinguish between
non-slinglet and singlet distributions. In the case of the non-singlet distributions eqs. (39) and (42) can be
implemented exactly as they are written because the anomalous dimension γ(0) appearing in eqs. (24) and (25)
is a singled-valued function. In the singlet case instead γ(0) (and thus R0) is actually a 2 by 2 matrix of functions
and thus, since it appears in the exponential and in the trigonometric functions, eqs. (39) and (42) need to be
treated in a suitable way.
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