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Abstract

In this document I will descrive the old and the new DIS module embedded in APFEL.
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1 Computing DIS Structure Functions on a Grid: the New DIS Module

In order to speed up and optimize the compution of the DIS structure functions in APFEL we decided to use the
same technology used for the PDF evolution. In fact, up to version 2.0.0, the computation of such observables
in APFEL was perfomed by directly convoluting PDFs with the coefficient functions by mean of a numerical
integration.

Now the aim is that of precomputing on a grid the convolution of the coefficient functions with a set of
interpolating polynomials. This way, the time consuming task of precomputing the coefficient functions of
the grid needs to be done only once and the numerical convolution with any PDF set is instead very fast.
In addition, as we will see below, this approach provides a very natural framework to combine precomputed
coefficient functions and evolution operators, so that any prediction of structure functions at any scale Q can
be obtained very quickly by convolution with PDFs at some initial scale Q0. Ultimately, this is particularly
suitable for PDF fits.

1.1 Zero Mass Structure Functions
A structure function in the Zero-Mass (ZM) scheme is given by the following convolution:

F (x,Q) =
∑
i=g,q

x

ˆ 1

x

dy

y
Ci

(
x

y
, αs(Q)

)
qi(y,Q) , (1.1)

Now, defining t = ln(Q2), C̃(n)
i (y, t) = yC

(n)
i (y, αs(Q)) and q̃i(y, t) = yqi(y,Q), the integral above can be

written as:

F (x, t) =
∑
i=g,q

ˆ 1

x

dy

y
C̃i

(
x

y
, t

)
q̃i(y, t) . (1.2)

But, using a suitable interpolation basis, we can write:

q̃i(y, t) =
Nx∑
α=0

w(k)
α (y)q̃i(xα, t) , (1.3)

so that eq. (1.2) becomes:

F (x, t) =
∑
i=g,q

Nx∑
α=0

[ˆ 1

x

dy

y
C̃i

(
x

y
, t

)
w(k)
α (y)

]
q̃i(xα, t) . (1.4)

Now let’s assume that x is on the grid, so that x = xβ . This way we have:

F (xβ , t) =
∑
i=g,q

Nx∑
α=0

[ˆ 1

xβ

dy

y
C̃i

(
xβ
y
, t

)
w(k)
α (y)

]
︸ ︷︷ ︸

Γi,βα(t)

q̃(xα, t) . (1.5)

Using the same arguments presented in the evolution code notes, we have that:

Γi,βα(t) 6= 0 for β ≤ α , (1.6)

and:

Γi,βα(t) =
ˆ d

c

dy

y
C̃i (y, t)w(k)

α

(
xβ
y

)
(1.7)

with:
c = max(xβ , xβ/xα+1) and d = min(1, xβ/xα−k) . (1.8)

The same symmetries holding for the splitting function case hold also here.



1.1 Zero Mass Structure Functions 3

1.1.1 Coefficient Functions Treatment

The structure of the DIS coefficient functions is very similar to that of splitting functions with only one small
complication, that is the presence of a more divergent singular term. In practice the structure of the DIS
coefficient functions is the following:

C̃i(x, t) = xCRi (x, t) + xCS1
i (t)

[
1

1− x

]
+

+ xCS2
i (t)

[
ln(1− x)

1− x

]
+

+ xCLi (t)δ(1− x) . (1.9)

The term proportional to CS2
i can be treated, considering that:

ˆ d

c

dy

[
ln(1− y)

1− y

]
+
f(y) =

ˆ d

c

dy
ln(1− y)

1− y [f(y)− f(1)θ(d− 1)]

+ 1
2f(1) ln2(1− c)θ(d− 1)

(1.10)

On the same line of splitting functions, we know that the coefficient functions ha the following perturbative
expansion:

CJi (x, t) =
N∑
n=0

ans (t)CJ,(n)
i (x) with J = R,S1, S2, L (1.11)

Therefore one has that:

Γj,βα(t) =

N∑
n=0

ans (t)
{ ˆ d

c

dy

[
C
R,(n)
i (y)wα

(
xβ
y

)
+ C

S1,(n)
i + C

S2,(n)
i ln(1− y)

1− y

(
wα

(
xβ
y

)
− δβαθ(d− 1)

)]

+
[
C
S1,(n)
i ln(1− c)θ(d− 1) + 1

2C
S2,(n)
i ln2(1− c)θ(d− 1) + C

L,(n)
i

]
δβα

}
.

(1.12)

Calling:

Γ(n)
i,βα(t) =

ˆ d

c

dy

[
C
R,(n)
i (y)wα

(
xβ
y

)
+ C

S1,(n)
i + C

S2,(n)
i ln(1− y)

1− y

(
wα

(
xβ
y

)
− δβαθ(d− 1)

)]

+
[
C
S1,(n)
i ln(1− c)θ(d− 1) + 1

2C
S2,(n)
i ln2(1− c)θ(d− 1) + C

L,(n)
i

]
δβα ,

(1.13)

we have that:

Γi,βα(t) =
N∑
n=0

ans (t)Γ(n)
i,βα , (1.14)

and the integrals Γ(n)
i,βα do not depend on the energy therefore, once the grid (and the number of active flavours)

has been fixed, they can be evaluate once and for all at the beginning and used for the convolution at any scale.
Now, assuming to have computed the evolution operator Mij,αβ(t, t0) between the scales t = ln(Q2) and

t0 = ln(Q2
0) on the same grid where we have computed the operator Γi,βα(t), one can esily combine the two

obtaining the prediction for the structure function F on the grid in terms of PDFs at the initial scale Q0 just
by performing the following convolution:

F (xα, t) = Γi,αβ(t)Mij,βγ(t, t0)q̃j(xγ , t0) (1.15)

where a sum of the repeated indeces is understood.
Before proceeding to treatment of the massive coefficient functions, we stress that in the massless scheme,

for obviuos kinematical reasons, there is no need to distinguish between charged- and neutral-current coeffi-
cient functions. The difference between the two cases appears only at the level of structure functions where
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the coefficient functions are comvoluted with different combinations of PDFs and combined according to the
structure of the couplings to quarks of the Z/γ∗ vector bosons in the neutral-current case and the W± in the
charged-current case.

It is opportune at this point to mention that, when considering charged-current observables at NLO in the
massive scheme, there is a further contribution to be added to eq. (1.9) that has the form:

CSLi (t) d
dx
δ(1− x) . (1.16)

Starting from the relation:
x
d

dx
δ(x) = −δ(x) , (1.17)

one can easily show that:
d

dx
δ(1− x) =

[
δ(1− x)

1− x

]
+
. (1.18)

To make sure that this identity is correct, we try to convolute both the r.h.s. and the l.h.s. of eq. (1.18) with
the test function f(x), such that f(1) = 0, to see what is the result and whether the results are equal. Using
the l.h.s. we have:

ˆ 1

x

dy f(y) d

dx
δ(1− y) = f(y)δ(1− y)

∣∣∣1
x︸ ︷︷ ︸

=0

−
ˆ 1

x

dy
df(y)
dy

δ(1− y) = −df(y)
dy

∣∣∣∣
y=1

, (1.19)

while using the r.h.s.(1):
ˆ 1

x

dy f(y)
[
δ(1− y)

1− y

]
+

=
ˆ 1

x

dy
f(y)− f(1)

1− y δ(1− y) = lim
ε→0+

ˆ 1

x

dy
f(y)− f(1)

1− y δ(1− ε− y) =

− lim
ε→0+

f(1)− f(1− ε)
ε

= −df(y)
dy

∣∣∣∣
y=1

.

(1.20)

So the results are equal and the distributions in eq. (1.18) when convoluted with a test function extract its
derivative in y = 1, up to a minus sign.

At the end of the day one has to include inside the curly brackets of eq. (1.12) the term:

− CSL,(n)
i

dw
(k)
α (xβ)
dx

(1.21)

In addition, when using a Lagrange interpolation, one can show that the first derivative of the Lagrange
polynomials have the form:

dw
(k)
α (xρ)
dx

=



k∑
σ=0
σ 6=α

1
xα − xσ

ρ = α

1
xα − xρ

k∏
σ=0
σ 6=α,ρ

xρ − xσ
xα − xσ

ρ 6= α

(1.22)

The relation in eq. (1.22) is proved in the “Lagrange_derivative.pdf” notes.

1.2 Massive Structure Functions
Now we can proceed considering the massive structure functions. When computing structure functions in
the massive scheme, there is a further complication that complicates a fast precomputation of the cefficient
functions on the x-space grid and it is the fact that the coefficients of the perturbative expansion of the massive

1 Since the delta function selects the point y = 1 in the following integral, the “incomplete” integral of plus-prescripted function
does not give rise to any residual logarithm of the form ln(1 − x).
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coefficient functions carry an intrinsic dependence on the scale of the process. This prevents a scale independent
pre-tabulation of the coefficient functions on on x-space grid.

One possible way out is to pre-tabulate the coefficient functions, not only on an x-space grid, but also on a
Q-space grid, where Q is the scale at which the structure functions are evaluated. Actually the most efficient
way of precomputing the massive coefficient functions is on ξ-space grid, where ξ is defined as:

ξ = Q2

m2
H

. (1.23)

where mH is the mass of the heavy quark under consideration. In fact, for dimentional reasons, massive
coefficient functions depend on the scale Q through ξ. Neglecting for the moment the dependence on the renor-
malization and on the factorization scales, the massive coefficient functions allow for the following expansion:

Ci(x,Q,mH) =
∑
n

ans (t)C(n)
i (x, ξ) . (1.24)

Given this relation, the massive analogous of the eq. (1.25) is:

Γi,βα(Q,mH) =
∑
n

ans (t)Γ(n)
i,βα(ξ) . (1.25)

In order not to recompute the operator Γ(n)
i,βα(ξ) any time that ξ changes, we can tabulate the on a grid in ξ,

{ξ1, . . . , ξτ , . . . , ξNξ}, defining:
Γ(n)
i,βα,τ = Γ(n)

i,βα(ξτ ), . (1.26)

and then interpolate to obtain the operator for a generic value of ξ. We have chosen to use a linear interpolation
so that:

Γ(n)
i,βα(ξ) = c(0)(ξ)Γ(n)

i,βα,τ + c(1)(ξ)Γ(n)
i,βα,τ+1 , (1.27)

with:
c(0)(ξ) = ln ξτ+1 − ln ξ

ln ξτ+1 − ln ξτ
and c(1)(ξ) = ln ξ − ln ξτ

ln ξτ+1 − ln ξτ
, (1.28)

provided that ξτ ≤ ξ < ξτ+1.
To conclude, once the operators Γ(n)

i,βα,τ have been precomputed, the operator for a generic value of ξ can be
quickly computed by interpolation.

1.2.1 Neutral Current Coefficient Functions

As far as the neutral current coefficient functions are concerned, beyond LO(2), a close analytical form is not
available and only a semi-analitical form [2] which is not suitable for a fast numerical implementation. The
authors of Ref. [1] have used a simple parametrization to fit the exact coefficient functions. Such parametrization
is actually meant to be used in Mellin space, however it can equally be used in x space providing a fast and
accurate enough alternative to the original implemetation. The parametrization of Ref. [1] has the form:

C(x, ξ) = θ(ρ− x)(ρ− x)−κ
K∑
k=0

ak(ρ)xk with ρ = ξ

ξ + 4 , (1.29)

and the authors provide the numerical values of κ, K and ak(ρ) for all the relevant coefficient functions at LO
(O(αs)) and NLO (O(α2

s)) tabulated on a ξ-space grid for large enough range in ξ. Note the presence of the
θ-function that has the scope of reducing the phase scace available for the process due the production of two
heavy quarks in the final state.

In APFEL we make use of the parametrization above only for the NLO coefficient functions as the exact
form of the LO ones is available in Ref. [3] and compact enough for an efficient implementation. In addition,
also for the pure singlet NLO coefficient functions (sometimes called gluon-radiation terms) we employ the
analytical expressions given in Appendix A of Ref. [4].

We finally remark that massive coeffient functions for the neutral current structure functions are presently
known only for F2 and FL. For the parity-violating structure function F3 we thus use the massless coefficient
functions.

2 We remind that, in the neutral current case, the LO is order αs.
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As far as the massless limit of the massive (massive-zero) coefficient functions is concerned, exact expressions
up to O(α2

s) have been evaluated in Ref. [4] and reported in Appendix D. Such expressions are implemented in
APFEL

As in the massive case, massive-zero coefficient functions are know only for F2 and FL and again for the F3
structure function we use the massless coefficient functions.

1.2.2 Charged Current Coefficient Functions

We can now consider the charged-current sector. In this case, massive coeffincient functions are know only up to
O(αs) (NLO), therefore a proper computation of charged-current structure functions the NNLO version of the
FONLL scheme (called FONLL-C) is impossible. However, the best we can do when computing charged-current
structure functions in the FONLL-C scheme is to set the NNLO contributions to zero in the massive sectors
but keeping those in the massless sector, as well as using NNLO evolution for PDFs and αs.

The charged-current massive structure functions, like the other structure functions, are given by the convolu-
tion of PDFs with coefficient functions. Considering the heavy-quarkH structure functions in the approximation
of diagonal CKM matrix, the definitions are:

FH1 (x,Q,mH) = 1
2

ˆ 1

χ

dy

y

[
C1,q(y, ξ)s

(
χ

y
,Q

)
+ C1,g(y, ξ)g

(
χ

y
,Q

)]
(1.30)

FH2 (x,Q,mH) = χ

ˆ 1

χ

dy

y

[
C2,q(y, ξ)s

(
χ

y
,Q

)
+ C2,g(y, ξ)g

(
χ

y
,Q

)]
(1.31)

FH3 (x,Q,mH) =
ˆ 1

χ

dy

y

[
C3,q(y, ξ)s

(
χ

y
,Q

)
+ C3,g(y, ξ)g

(
χ

y
,Q

)]
(1.32)

with:
χ = x

(
1 + m2

H

Q2

)
= x

λ
, (1.33)

where:
λ = Q2

Q2 +m2
H

= ξ

1 + ξ
. (1.34)

Now, defining:
FHL (x,Q,mH) = FH2 (x,Q,mH)− 2xFH1 (x,Q,mH) , (1.35)

we have that:
FHL (x,Q,mH) = χ

ˆ 1

χ

dy

y

[
CL,q(y, ξ)s

(
χ

y
,Q

)
+ CL,g(y, ξ)g

(
χ

y
,Q

)]
, (1.36)

where we have defined:
CL,q(g)(y, ξ) = C2,q(g)(y, ξ)− λC1,q(g)(y, ξ) (1.37)

All the coefficient functions entering the structure functions above admit a perturbative expansion that at
NNLO reads:

Ck,q(g)(y, ξ) =
N∑
n=0

ans (Q)C(n)
k,q(g)(y, ξ) , k = 1, 2, 3, L . (1.38)

In the following we will truncate the expansion at NLO.
After the definitions above we can write down, first the LO coefficient functions. While at LO the gluon

coefficient functions are all zero (C(0)
k,g(y, ξ) = 0), the quark coefficient functions are:

C
(0)
1,q (x, ξ) = δ(1− x) ,

C
(0)
2,q (x, ξ) = δ(1− x) ,

C
(0)
3,q (x, ξ) = δ(1− x) ,

C
(0)
L,q(x, ξ) = (1− λ)δ(1− x) .

(1.39)
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The NLO charged-current massive coefficient have been computed and reported in Appendix A of Ref. [5].
However, before being implemented in APFEL they need some manipulation. We start defining:

KA = 1
λ

(1− λ) ln(1− λ) . (1.40)

In addition, in order to consider factorization scale variations, we also need to consider the splitting function:

P (0)
qq (z) = CF

[
1 + z2

(1− z)+
+ 3

2δ(1− z)
]

= CF

[
2

(1− z)+
− (1 + z) + 3

2δ(1− z)
]
, (1.41)

and we also define:

K2
F = Q2

µ2
F

. (1.42)

The explicit expressions of the NLO quark coefficient functions read:

C
(1)
1,q = 2CF

{(
− 4− 1

2λ − 2ζ2 −
1 + 3λ

2λ KA + 3
2 ln K

2
F

λ

)
δ(1− z)

− (1 + z2) ln z
1− z +

(
− ln K

2
F

λ
− 2 ln(1− z) + ln(1− λz)

)
(1 + z) + (3− z) + 1

λ2 + z − 1
λ

+ 2
[

2 ln(1− z)− ln(1− λz)
1− z

]
+

+ 2
(
−1 + ln K

2
F

λ

)[
1

1− z

]
+

+ λ− 1
λ2

[
1

1− λz

]
+ 1

2

[
1− z

(1− λz)2

]
+

}
, (1.43)

C
(1)
2,q = 2CF

{(
− 4− 1

2λ − 2ζ2 −
1 + λ

2λ KA + 3
2 ln K

2
F

λ

)
δ(1− z)

− (1 + z2) ln z
1− z +

(
2− ln K

2
F

λ
− 2 ln(1− z) + ln(1− λz)

)
(1 + z) + 1

λ

+ 2
[

2 ln(1− z)− ln(1− λz)
1− z

]
+

+ 2
(
−1 + ln K

2
F

λ

)[
1

1− z

]
+

+ 2λ2 − λ− 1
λ

[
1

1− λz

]
+ 1

2

[
1− z

(1− λz)2

]
+

}
, (1.44)

C
(1)
3,q = 2CF

{(
− 4− 1

2λ − 2ζ2 −
1 + 3λ

2λ KA + 3
2 ln K

2
F

λ

)
δ(1− z)

− (1 + z2) ln z
1− z +

(
1− ln K

2
F

λ
− 2 ln(1− z) + ln(1− λz)

)
(1 + z) + 1

λ

+ 2
[

2 ln(1− z)− ln(1− λz)
1− z

]
+

+ 2
(
−1 + ln K

2
F

λ

)[
1

1− z

]
+

+ λ− 1
λ

[
1

1− λz

]
+ 1

2

[
1− z

(1− λz)2

]
+

}
, (1.45)



8 1 Computing DIS Structure Functions on a Grid: the New DIS Module

C
(1)
L,q = 2CF (1− λ)

{(
− 4− 1

2λ − 2ζ2 −
1 + λ

2λ KA + 3
2 ln K

2
F

λ

)
δ(1− z)

− (1 + z2) ln z
1− z +

(
− ln K

2
F

λ
− 2 ln(1− z) + ln(1− λz)

)
(1 + z) + 3

+ 2
[

2 ln(1− z)− ln(1− λz)
1− z

]
+

+ 2
(
−1 + ln K

2
F

λ

)[
1

1− z

]
+

− 2
[

1
1− λz

]
+ 1

2

[
1− z

(1− λz)2

]
+

}
+ 2CF [λKAδ(1− z) + (1 + λ)z]

. (1.46)

In order to proceed with our manipulations we need to define the generalized or incomplete +-prescription:
ˆ 1

x

dz [f(z)]+ g(z) =
ˆ 1

x

dz f(z) [g(z)− g(1)]− g(1)
ˆ x

0
dz f(z)︸ ︷︷ ︸
−Rf (x)

=

ˆ 1

x

dz
{

[f(z)]+ +Rf (x)δ(1− z)
}
g(z) .

(1.47)

where the +-prescription in the r.h.s of the equation above should be understood in the usual way independently
of the integration bounds.

Often the residual Rf (x) function can be evaluated analytically by performing the integral, however some-
times it need to be evaluated numerically performing the integral in a numerical way. In particular the +-
prescripted functions that enter the expressions above give rise to the following residual functions that can be
computed analytically:

−
ˆ x

0

dz

1− z = ln(1− x) , (1.48)

−
ˆ x

0
dz

ln(1− z)
1− z = 1

2 ln2(1− x) , (1.49)

−
ˆ x

0
dz

1− z
(1− λz)2 = 1

λ2 ln(1− λx) + 1− λ
λ

x

1− λx , (1.50)

while we do not know how to solve analytically the integral:

R(x) = −
ˆ x

0
dz

ln(1− λz)
1− z (1.51)

therefore we will compute it numerically.
As a consequence, when convoluting the coefficient functions above with PDFs in the point x, we can treat

the +-prescripted functions using the standard definition at the price of adding to the local terms the following
functions:

C
(1)
1,q → C

(1)
1,q + 2CF

[
2 ln2(1− x)− 2R(x) + 2

(
−1 + ln K

2
F

λ

)
ln(1− x)

+ 1
2λ2 ln(1− λx) + 1− λ

2λ
x

1− λx

]
δ(1− z)

, (1.52)

C
(1)
2,q → C

(1)
2,q + 2CF

[
2 ln2(1− x)− 2R(x) + 2

(
−1 + ln K

2
F

λ

)
ln(1− x)

+ 1
2λ2 ln(1− λx) + 1− λ

2λ
x

1− λx

]
δ(1− z)

, (1.53)

C
(1)
3,q → C

(1)
3,q + 2CF

[
2 ln2(1− x)− 2R(x) + 2

(
−1 + ln K

2
F

λ

)
ln(1− x)

+ 1
2λ2 ln(1− λx) + 1− λ

2λ
x

1− λx

]
δ(1− z)

, (1.54)
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C
(1)
L,q → C

(1)
L,q + 2CF (1− λ)

[
2 ln2(1− x)− 2R(x) + 2

(
−1 + ln K

2
F

λ

)
ln(1− x)

+ 1
2λ2 ln(1− λx) + 1− λ

2λ
x

1− λx

]
δ(1− z)

. (1.55)

Now let us consider the gluon coefficient functions, that read:

C
(1)
1,g = 2TR

{
[z2 + (1− z)2]

[
ln
(

1− z
z

)
− 1

2 ln(1− λ) + 1
2 ln K

2
F

λ

]
+

4z(1− z)− 1+

(1− λ)
[
−4z(1− z) + z

1− λz + 2z(1− 2λz) ln 1− λz
(1− λ)z

]} , (1.56)

C
(1)
2,g = 2TR

{
[z2 + (1− z)2]

[
ln
(

1− z
z

)
− 1

2 ln(1− λ) + 1
2 ln K

2
F

λ

]
+

8z(1− z)− 1+

(1− λ)
[
−6(1 + 2λ)z(1− z) + 1

1− λz + 6λz(1− 2λz) ln 1− λz
(1− λ)z

]} , (1.57)

C
(1)
3,g = 2TR

{
[z2 + (1− z)2]

[
2 ln

(
1− z

1− λz

)
+ 1

2 ln(1− λ) + 1
2 ln K

2
F

λ

]
+

(1− λ)
[
2z(1− z)− 2z[1− (1 + λ)z] ln 1− λz

(1− λ)z

]}
,

(1.58)

C
(1)
L,g = 2TR

{
(1− λ)[z2 + (1− z)2]

[
ln
(

1− z
z

)
− 1

2 ln(1− λ) + 1
2 ln K

2
F

λ

]
+

4(2− λ)z(1− z)+

(1− λ)
[
−2(3 + 4λ)z(1− z) + 4λz(1− 2λz) ln 1− λz

(1− λ)z

]}
.

(1.59)

Since these functions do not contain any +-prescripted functions, they can be implemented as they are.
We now consider the massless limit of the above massive coefficient functions. We start considering that:

λ→ 1
KA → 0 , (1.60)

as consequence we find that the quark coefficient functions tend to:

C
(1)
1,q −→

mH→0
C

0,(1)
1,q = 2CF

{
−
(

9
2 + 2ζ2 −

3
2 lnK2

F

)
δ(1− z)

− (1 + z2) ln z
1− z −

(
ln(1− z) + lnK2

F

)
(1 + z) + 3

+ 2
[

ln(1− z)
1− z

]
+
−
(

3
2 − 2 lnK2

F

)[
1

1− z

]
+

}
(1.61)

C
(1)
2,q −→

mH→0
C

0,(1)
2,q = 2CF

{
−
(

9
2 + 2ζ2 −

3
2 lnK2

F

)
δ(1− z)

− (1 + z2) ln z
1− z −

(
ln(1− z) + lnK2

F

)
(1 + z) + 2z + 3

+ 2
[

ln(1− z)
1− z

]
+
−
(

3
2 − 2 lnK2

F

)[
1

1− z

]
+

}
(1.62)
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C
(1)
3,q −→

mH→0
C

0,(1)
3,q = 2CF

{
−
(

9
2 + 2ζ2 −

3
2 lnK2

F

)
δ(1− z)

− (1 + z2) ln z
1− z −

(
ln(1− z) + lnK2

F

)
(1 + z) + z + 2

+ 2
[

ln(1− z)
1− z

]
+
−
(

3
2 − 2 lnK2

F

)[
1

1− z

]
+

}
(1.63)

C
(1)
L,q −→mH→0

C
0,(1)
L,q = 4CF z (1.64)

The local term to be added to the quark coefficient functions, considering that:

R(x) −→
mH→0

1
2 ln(1− x)2 , (1.65)

are:
C

0,(1)
1,q → C

0,(1)
1,q + 2CF

[
ln2(1− x)−

(
3
2 − 2 lnK2

F

)
ln(1− x)

]
δ(1− z) , (1.66)

C
0,(1)
2,q → C

0,(1)
2,q + 2CF

[
ln2(1− x)−

(
3
2 − 2 lnK2

F

)
ln(1− x)

]
δ(1− z) , (1.67)

C
0,(1)
3,q → C

0,(1)
3,q + 2CF

[
ln2(1− x)−

(
3
2 − 2 lnK2

F

)
ln(1− x)

]
δ(1− z) , (1.68)

while no local term needs to be added to C0,(1)
L,q .

Now we turn to the gluon coefficient functions where we need to know that:

ln(1− λ) −→
mH→0

− ln
(
Q2

m2
H

)
(1.69)

so that:

C
(1)
1,g −→

mH→0
C

0,(1)
1,g = 2TR

{
[z2 + (1− z)2]

[
ln
(

1− z
z

)
+ 1

2 ln
(
Q2

m2
H

)
+ 1

2 lnK2
F

]
+ 4z(1− z)− 1

}
, (1.70)

C
(1)
2,g −→

mH→0
C

0,(1)
2,g = 2TR

{
[z2 + (1− z)2]

[
ln
(

1− z
z

)
+ 1

2 ln
(
Q2

m2
H

)
+ 1

2 lnK2
F

]
+ 8z(1− z)− 1

}
, (1.71)

C
(1)
3,g −→

mH→0
C

0,(1)
3,g = 2TR[z2 + (1− z)2]

[
−1

2 ln
(
Q2

m2
H

)
+ 1

2 lnK2
F

]
, (1.72)

C
(1)
L,g −→mH→0

C
0,(1)
L,g = 2TR [4z(1− z)] . (1.73)

We also note that in the limit mH → 0, the covolution integrals in eqs. (1.30), (1.31), (1.32) and (1.36) will
extend from x to 1 rather than from χ to 1.

As clear from the definitions in eqs. (1.30), (1.31), (1.32) and (1.36), in order to compute a give structure
functions for some given value of x, one needs to convolute the coefficient functions that we have written above
with PDFs in the rescaled point χ = x/λ > x, so in particular the convolution integral extends from χ to 1. This
is a kinematical consequence of the mass of the heavy quark involved that reduces the phase space available for
the process.

From the point of view of the implementation of the FONLL scheme in APFEL, given that the massive
scheme needs to be combined with the massless and the massive-zero schemes whose convolution integrals
extend from x to 1, it would be convinient to rewrite eqs. (1.30), (1.31), (1.32) and (1.36) in such a way that
the lower interagration bound is x rather than χ. To this end, let us consider the integral:

I =
ˆ 1

χ

dy

y
C(y)f

(
χ

y

)
, (1.74)

where χ = x/λ. By the change of integration variable z = λy, we can rewrite the integral above as:

I =
ˆ λ

x

dz

z
C
( z
λ

)
f

(
x

y

)
=
ˆ 1

x

dz

z
C̃(z, λ)f

(
x

y

)
, (1.75)
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where:
C̃(z, λ) = θ(λ− z)C

( z
λ

)
. (1.76)

In this way we have achived the goal of expressing the “reduced” convolution in eqs. (1.30), (1.31), (1.32)
and (1.36) as a “standard” convolution between x and 1. The price to pay is to consider the massive coefficient
functions during the integration as explicit functions of the variable z/λ and to cut off the region z > λ by
means of the Heaviside θ-function. Of course, this does not neet to be done in the massive-zero case as the
convolution already extends between x and 1.

2 Target Mass Corrections

Kinematic corrections due to the finite mass of the target proton Mp which recoils against the photon might
be relevant in the small-energy region. The leading contributions to such corrections have been computed long
time ago in Ref. [6] and, denoting the target-mass corrected struture functions with ˜ , they take the form:

F̃2(x,Q) = x2

ξ2τ3/2F2(ξ,Q) + 6ρx3

τ2 I2(ξ,Q) ,

F̃L(x,Q) = FL(ξ,Q) + x2(1− τ)
ξ2τ3/2 F2(ξ,Q) + ρx3(6− 2τ)

τ2 I2(ξ,Q) ,

xF̃3(x,Q) = x2

ξ2τ
ξF3(ξ,Q) + 4ρx3

τ3/2 I3(ξ,Q) ,

(2.1)

where:
ρ =

M2
p

Q2 , τ = 1 + 4ρx2 , ξ = 2x
1 +
√
τ
, (2.2)

and:
I2(ξ,Q) =

ˆ 1

ξ

dy
F2(y,Q)

y2 , I3(ξ,Q) =
ˆ 1

ξ

dy
yF3(y,Q)

y2 . (2.3)

Using the interpolation formula, we have that:

F2(y,Q)
y2 =

∑
α

F2(xα, Q)
x2
α

w(k)
α (y) , (2.4)

therefore:
I2(ξ,Q) =

∑
α

F2(xα, Q)
x2
α

ˆ 1

ξ

dy w(k)
α (y) , (2.5)

while:
I3(ξ,Q) =

∑
α

xαF3(xα, Q)
x2
α

ˆ 1

ξ

dy w(k)
α (y) . (2.6)

In turn, again using the interpolation formula, we can write:

Jα(ξ) ≡
ˆ 1

ξ

dy w(k)
α (y) =

Nx∑
β=0

[ˆ 1

xβ

dy w(k)
α (y)

]
︸ ︷︷ ︸

Jβα

w
(k)
β (ξ) . (2.7)

Considering the fact that:
w(k)
α (y) 6= 0 for xα−k < y < xα+1 , (2.8)

it follows that:
Jβα = 0 for β > α (2.9)

and thus:

Jα(ξ) =
α∑
β=0

Jβαw
(k)
β (ξ) . (2.10)
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In addition, we can simplify the integral as follows:

Jβα =
ˆ d

c

dy w(k)
α (y) , (2.11)

where:
c = max(xβ , xα−k) and d = min(1, xα+1) . (2.12)

In conclusion, we can treat Jβα exactly in the same manner as the regular part of a massless coefficient function
or a splitting function and thus it can be precomputed and stored.

At the end of the day we have that:

I2(ξ,Q) =
Nx∑
α=0

α∑
β=0

w
(k)
β (ξ)Jβα

F2(xα, Q)
x2
α

, (2.13)

that can also be written as:

I2(ξ,Q) =
Nx∑
β=0

 Nx∑
α=β

Jβα
F2(xα, Q)

x2
α


︸ ︷︷ ︸

I2(xβ ,Q)

w
(k)
β (ξ) . (2.14)

Similarly:

I3(ξ,Q) =
Nx∑
β=0

 Nx∑
α=β

Jβα
xαF3(xα, Q)

x2
α


︸ ︷︷ ︸

I3(xβ ,Q)

w
(k)
β (ξ) . (2.15)

Gathering all pieces we finally find:

F̃2(x,Q) =
Nx∑
β=0

[
x2

ξ2τ3/2F2(xβ , Q) + 6ρx3

τ2 I2(xβ , Q)
]
w

(k)
β (ξ) ,

F̃L(x,Q) =
Nx∑
β=0

[
FL(xβ , Q) + x2(1− τ)

ξ2τ3/2 F2(xβ , Q) + ρx3(6− 2τ)
τ2 I2(xβ , Q)

]
w

(k)
β (ξ) ,

xF̃3(x,Q) =
Nx∑
β=0

[
x2

ξ2τ
xβF3(xβ , Q) + 4ρx3

τ3/2 I3(xβ , Q)
]
w

(k)
β (ξ) .

(2.16)

For the equations above is clear that in the case when Mp = 0, that implies ρ = 0, τ = 1 and ξ = x, all
structure functions reduce to the uncorrected formulas.

When considering the extraction of the DIS operator times the evolution operator like in eq. (1.15), one
should be careful with I2 and I3. Condidering that:

F (xα, Q) =
∑
γ,δ

∑
i,j

Γi,αγ(Q)Mij,γδ(Q,Q0)q̃j(xδ, Q0) (2.17)

we have that:

I(xβ , Q) =
Nx∑
α=β

Jβα
F (xα, Q)

x2
α

=
∑
γ,δ

∑
i,j

 Nx∑
α=β

JβαΓi,αγ(Q)
x2
α

Mij,γδ(Q,Q0)q̃j(xδ, Q0) , (2.18)

3 Renormalization and Factorization Scale Variation

In the previous sections, when discussing the implementation of the structure functions in APFEL, we assumed
that the renormalization scale µR and the factorization scale µF were identified to the scale pf the process Q. In
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this section, we want to relax this assumption and to do so we the expansion of the DGLAP and RG equation
for αs up to NLO, that is:

∂fi
∂ lnµ2

F

= αs(µF )
4π

[
P

(0)
ij (x) + αs(µF )

4π P
(1)
ij (x) + . . .

]
⊗ fj(x, µF ) , (3.1)

and:
∂

∂ lnµ2
R

(αs
4π

)
= −

(
αs(µR)

4π

)2 [
β0 + αs(µR)

4π β1 + . . .

]
. (3.2)

Defining:
ξR ≡

µR
Q

, ξF ≡
µF
Q

and as = αs
4π (3.3)

where Q is constant, and defining:
tR ≡ ln ξ2

R and tF ≡ ln ξ2
F , (3.4)

the equations above can be written as:

∂fi
∂tF

= as(tF )
[
P

(0)
ij + as(tF )P (1)

ij + . . .
]
⊗ fj(tF ) , (3.5)

and:
∂as
∂tR

= −a2
s(tR) [β0 + as(tR)β1 + . . . ] . (3.6)

Now, expanding fi(t) around t = tF we have:

fi(t) = fi(tF ) + ∂fi
∂t

∣∣∣∣
t=tF

(t− tF ) + 1
2
∂2fi
∂t2

∣∣∣∣
t=tF

(t− tF )2 + . . . (3.7)

Using eqs. (3.5) and (3.6), we have that:

∂fi
∂t

∣∣∣∣
t=tF

=
[
as(tF )P (0)

ij + a2
s(tF )P (1)

ij

]
⊗ fj(tF ) +O(a3

s)

∂2fi
∂t2

∣∣∣∣
t=tF

= a2
s(tF )

[
P

(0)
il ⊗ P

(0)
lj − β0P

(0)
ij

]
⊗ fj(tF ) +O(a3

s)

(3.8)

Chosing t = 0 in eq. (3.7), we finally have:

fi(0) =
{

1− as(tF )tFP (0)
ij + a2

s(tF )
[
−tFP (1)

ij + t2F
1
2

(
P

(0)
il ⊗ P

(0)
lj − β0P

(0)
ij

)]}
⊗ fj(tF ) +O(a3

s) . (3.9)

Now, using eq. (3.6), we easily find:

as(tF ) = as(tR)
[
1 + as(tR)β0(tR − tF ) +O(a2

s)
]
, (3.10)

which can be plugged into eq. (3.9) to give:

fi(0) =
{

1− as(tR)tFP (0)
ij + a2

s(tR)
[
−tFP (1)

ij + t2F
1
2

(
P

(0)
il ⊗ P

(0)
lj + β0P

(0)
ij

)
− tF tRβ0P

(0)
ij

]}
⊗fj(tF )+O(a3

s) .

(3.11)
Finally, setting tF = 0 in eq. (3.10), we find:

as(0) = as(tR)
[
1 + as(tR)β0tR +O(a2

s)
]
, (3.12)

Considering that and NNLO the ZM structure functions are written in terms of PDFs and coefficient functions
as:

F (tR, tF )/x =
[ 2∑
k=0

aks(tR)C̃(k)
i (tR, tF )

]
⊗ fi(tF ) +O(a3

s) , (3.13)

and that, up to subleading terms, the structure functions must be renormalization and factorization scale
independent, this requires that:

F (tR, tF ) = F (0, 0) . (3.14)
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But since:

F (0, 0)/x =
[ 2∑
k=0

aks(0)C̃(k)
i

]
⊗ fi(0) +O(a3

s) , (3.15)

where C̃(k)
i are the well-know ZM coefficient functions, using eqs. (3.11) and (3.12) in eq. (3.15) and finally

imposing the identity in eq. (3.14), we can find the explicit espression of the “generalized” coefficient functions
C̃(k)
i (tR, tF ). In fact:

F (0, 0)/x =
{
C̃

(0)
j

+ as(tR)
[
C̃

(1)
j − tF C̃

(0)
i ⊗ P

(0)
ij

]
+ a2

s(tR)
[
C̃

(2)
j + tRβ0C̃

(1)
j − tF

(
C̃

(0)
i ⊗ P

(1)
ij + C̃

(1)
i ⊗ P

(0)
ij

)

+ t2F
2 C̃

(0)
i ⊗

(
P

(0)
il ⊗ P

(0)
lj + β0P

(0)
ij

)
− tF tRβ0C̃

(0)
i ⊗ P

(0)
ij

]}
⊗ fj(tF ) +O(a3

s) .

(3.16)

Finally, using the identity in eq. (3.14), it is easy to find that:

C̃(0)
j (tR, tF ) = C̃

(0)
j

C̃(1)
j (tR, tF ) = C̃

(1)
j − tF C̃

(0)
i ⊗ P

(0)
ij

C̃(2)
j (tR, tF ) = C̃

(2)
j + tRβ0C̃

(1)
j − tF

(
C̃

(0)
i ⊗ P

(1)
ij + C̃

(1)
i ⊗ P

(0)
ij

)
+ t2F

2 C̃
(0)
i ⊗

(
P

(0)
il ⊗ P

(0)
lj + β0P

(0)
ij

)
− tF tRβ0C̃

(0)
i ⊗ P

(0)
ij .

(3.17)

Therefore, in the ZM-VFNS, in order to perform scale variation we need to precompute the additional convo-
lutions: C̃(0)

i ⊗ P
(0)
ij , C̃(0)

i ⊗ P
(1)
ij , C̃(1)

i ⊗ P
(0)
ij and C̃(0)

i ⊗ P
(0)
il ⊗ P

(0)
lj .

In order to proceed, it is opportune to specify the basis in which PDFs are expressed. As usual, the most
natural choice is the QCD evolution basis {Σ, g, V, V3, V8, V15, V24, V35, T3, T8, V15, T24, T35} and thus the indices
i, j and l in eq. (3.17) run between 1 and 13 over this basis. The advantage of this basis is the fact that the
splitting function matrix Pij is almost completely diagonalized. The starting point, is the usual definition that,
up to a factor x and omitting the convolution symbol ⊗, can be written as:

F = 〈e2
q〉

Cgg +
t∑

i=u
θ(Q2 −m2

i )
[
CPS + e2

i

〈e2
q〉
C+

]
︸ ︷︷ ︸

Ĉi

q+
i

 , (3.18)

where:

〈e2
q〉 =

t∑
i=u

e2
i θ(Q2 −m2

i ) . (3.19)

Now, in order to express the structunre function in eq. (3.18) in the evolution basis, we need to find the
tranformation such that:

q+
i =

6∑
j=1

Tijfj , (3.20)

where fj belongs to the evolution basis, that is: f1 = Σ, f2 = T3, f3 = T8 and so on. One can show that the
trasformation matrix Tij can be written as:

Tij = θ(j − i) 1− δijj
j(j − 1) j ≥ 2 ,

Ti1 = 1
6 ,

(3.21)
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with θ(j − i) = 1 for j ≥ i and zero otherwise. In addition, one can show that:

6∑
j=1

Tij = 0 , and
6∑
i=1

Tij = δ1j . (3.22)

Now, we can plug eq. (3.20) into eq. (3.18) and, using eq. (3.21), we get:

F = 〈e2
q〉

Cgg + 1
6 (C+ + nfCPS) Σ +

6∑
j=2

1
j(j − 1)

[
j∑
i=1

Ĉi − jĈj

]
fj

 , (3.23)

where we have transmuted the sum over u, d and so on into a sum between 1 and 6 and where we have defined:

nf =
6∑
i=1

θ(Q2 −m2
i ) . (3.24)

Now we need to express the term in sqauer brackets in terms of the usual coefficient functions C+ and CPS, in
particular:

j∑
i=1

Ĉi − jĈj =
j∑
i=1

θ(Q2 −m2
i )
(
CPS + e2

i

〈e2
q〉
C+

)
− jθ(Q2 −m2

j )
(
CPS +

e2
j

〈e2
q〉
C+

)
. (3.25)

Here we can distinguish two case, the first is Q2 < m2
j and under this assumption we have:

j∑
i=1

Ĉi − jĈj = C+ + nfCPS . (3.26)

If instead Q2 ≥ m2
j , then:

j∑
i=1

Ĉi − jĈj = KjC+ , (3.27)

with:

Kj = 1
〈e2
q〉

(
j∑
i=1

e2
i − je2

j

)
= 1
〈e2
q〉

(
j−1∑
i=1

e2
i − (j − 1)e2

j

)
. (3.28)

We can express both cases in one single formula as:
j∑
i=1

Ĉi − jĈj = θ(m2
j −Q2 − ε) [C+ + nfCPS] + θ(Q2 −m2

j ) [KjC+] . (3.29)

where ε is a small parameter that ensures that the case Q2 = m2
j is included in the second term of the r.h.s. of

eq. (3.30). Eq. (3.30) can aslo be written as:

j∑
i=1

Ĉi − jĈj = θ(nf − j) [KjC+] + θ(j − nf − 1) [C+ + nfCPS] . (3.30)

In addition, one can easily see that:

fj = θ(nf − j)fj + θ(j − nf − 1)Σ , (3.31)

and thus:

6∑
j=2

1
j(j − 1)

[
j∑
i=1

Ĉi − jĈj

]
fj = C+

 nf∑
j=2

Kj

j(j − 1)fj

+

 6∑
j=nf+1

1
j(j − 1)

 [C+ + nfCPS] Σ , (3.32)

but:
6∑

j=nf+1

1
j(j − 1) = 1

nf
− 1

6 , . (3.33)
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Moreover:
Kj

j(j − 1) = 1
〈e2
q〉

1
j(j − 1)

(
j∑
i=1

e2
i − je2

j

)
= 1
〈e2
q〉

1
j(j − 1)

6∑
i=1

e2
i [θ(j − i)− jδij ]︸ ︷︷ ︸
dj

. (3.34)

Finally, putting all pieces together, we find:

F = 〈e2
q〉
[
Cgg +

(
CPS + 1

nf
C+

)
Σ
]

+ C+

nf∑
j=2

djfj . (3.35)

It is interesting to separate the contributions coming from the different flavors. To do so, we just need to
separate the contributions coming from, say the k-th charge e2

k and this is easily done applying the following
replacement:

e2
i → δike

2
i . (3.36)

In this way we have that:
〈e2
q〉 → θ(Q2 −m2

k)e2
k , (3.37)

and:
dj →

e2
k [θ(j − k)− jδkj ]

j(j − 1) = θ(Q2 −m2
k)e2

k

[θ(j − k)− jδkj ]
j(j − 1) , (3.38)

so that the k-th component of the structure function F is:

F (k) = θ(Q2 −m2
k)e2

k


[
Cgg +

(
CPS + 1

nf
C+

)
Σ
]

+ C+

nf∑
j=2

[θ(j − k)− jδkj ]
j(j − 1) fj


= θ(Q2 −m2

k)e2
k


[
Cgg +

(
CPS + 1

nf
C+

)
Σ
]
− 1
k
C+fk + C+

nf∑
j=k+1

1
j(j − 1)fj


(3.39)

and it is such that:

F =
6∑
k=1

F (k) . (3.40)

In APFEL we split the total structure functions into a light component and three heavy quark components.
The light components is defined as:

F l =
3∑
k=1

F (k) = 〈e2
l 〉
[
Cgg +

(
CPS + 1

nf
C+

)
Σ
]

+ C+

nf∑
j=2

d
(l)
j fj . (3.41)

where:

〈e2
l 〉 =

3∑
i=1

e2
i , (3.42)

and:

d
(l)
j = 1

j(j − 1)

3∑
i=1

e2
i [θ(j − i)− jδij ] =



1
2 (e2

u − e2
d) , j = 2

1
6 (e2

u + e2
d − 2e2

s) , j = 3

〈e2
l 〉

j(j−1) , j ≥ 4

, (3.43)

no need of the θ-functions as the scale Q will always be above the strange threshold. This way the explicit form
of F l is:

F l = 〈e2
l 〉
[
Cgg +

(
CPS + 1

nf
C+

)
Σ
]

+ 1
2(e2

u−e2
d)C+T3+ 1

6(e2
u+e2

d−2e2
s)C+T8+〈e2

l 〉C+

nf∑
j=4

1
j(j − 1)fj . (3.44)
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The heavy-quark components are instead defined as:

F c = θ(Q2 −m2
c)e2

c


[
Cgg +

(
CPS + 1

nf
C+

)
Σ
]
− 1

4C+T15 + C+

nf∑
j=5

1
j(j − 1)fj

 ,

F b = θ(Q2 −m2
b)e2

b


[
Cgg +

(
CPS + 1

nf
C+

)
Σ
]
− 1

5C+T24 + C+

nf∑
j=6

1
j(j − 1)fj

 ,

F t = θ(Q2 −m2
t )e2

t

{[
Cgg +

(
CPS + 1

nf
C+

)
Σ
]
− 1

6C+T35

}
.

(3.45)

To conclude the treatment of all the structure functions, we should adda that eq. (3.35) is valid only for F2
and FL. However, F3 can be easily derived following the very same steps with the only differences are that: the
distributions {Σ, T3, T8, T15, T24, T35} must be replaced with {V, V3, V8, V15, V24, V35}, C+ must be replaced with
C−, the gluon and the pure-singlet coefficient functions are identically zero and the squared electric charges
replaced with the appropriate electroweak charges ci. Following this recipe, we find:

F3 = 〈c2q〉
1
nf
C−V + C−

nf∑
j=2

djgj , (3.46)

where gj belongs to {V, V3, V8, V15, V24, V35}.
Eq. (3.35), explicitly written in eqs. (3.44) and (3.45), is the final result that allows us to implement the

scale variation formulae given in eq. (3.17) in APFEL. The good aspect of eq. (3.35) if the fact that it is written
in terms of the fundamental coefficient functions Cg, C+ and CPS and PDFs appear in the evolution basis where
the splitting-function matrix diagonalizes. In particular, up to O(α2

s), we have that:

P
(k)
ij → P

(k)
ij i, j = g, q(Σ)

P
(k)
ij → δijP

(k)
+ i, j = T3, T8, V15, T24, T35

P
(k)
ij → δijP

(k)
− i, j = V, V3, V8, V15, V24, V35

(3.47)

Also, defining:
Cq = CPS + 1

nf
C+ , (3.48)

we can connect eq. (3.15) and eq. (3.35) by observing that:

C̃
(k)
j → 〈e2

q〉C
(k)
j j = g, q(Σ)

C̃
(k)
j → djC

(k)
+ j = T3, T8, T15, T24, T35

C̃
(k)
j → djC

(k)
− j = V3, V8, V15, V24, V35

(3.49)

where we have also considered the “minus” distributions that appear in the F3 structure function. Of course,
the same relations must hold also for eq. (3.13):

C̃(k)
j → 〈e2

q〉C
(k)
j j = g, q(Σ)

C̃(k)
j → djC(k)

+ j = T3, T8, T15, T24, T35

C̃(k)
j → djC(k)

− j = V3, V8, V15, V24, V35

(3.50)

with
Cq = CPS + 1

nf
C+ . (3.51)

In addition, in the following, we will make use of the following identity:

P
(0)
− = P

(0)
+ = P (0)

qq . (3.52)

Now, considering that CPS starts at O(α2
s), we can write:

C
(0)
− (x) = C

(0)
+ (x) = ∆SFδ(1− x)

C
(0)
j (x) = (∆SF/nf ) δqjδ(1− x) for j = q, g

(3.53)
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where ∆SF = 1 for F2 and F3 and ∆SF = 0 for FL. From eq. (3.17) it follows that:

C(0)
± (tR, tF ) = ∆SFδ(1− x)

C(1)
± (tR, tF ) = C

(1)
± −∆SFtFP

(0)
qq

C(2)
± (tR, tF ) = C

(2)
± + tRβ0C

(1)
± − tF

(
∆SFP

(1)
± + C

(1)
± ⊗ P (0)

qq

)
+ ∆SF

t2F
2

(
P (0)
qq ⊗ P (0)

qq + β0P
(0)
qq

)
−∆SFtF tRβ0P

(0)
qq ,

(3.54)

that can be rearranged as:

C(0)
± (tR, tF ) = ∆SFδ(1− x)

C(1)
± (tR, tF ) = C

(1)
± −∆SFtFP

(0)
qq

C(2)
± (tR, tF ) = C

(2)
± + tRβ0C

(1)
± − tFC

(1)
± ⊗ P (0)

qq

+ ∆SF
t2F
2

(
P (0)
qq ⊗ P (0)

qq − β0P
(0)
qq

)
−∆SFtF

[
P

(1)
± − (tF − tR)β0P

(0)
qq

]
.

(3.55)

The term in square brackets in the r.h.s. of the third line corresponds to what we would call P(1)
± (tR, tF ), that

is the NLO splitting function in the presence of scale variations (µR 6= µF ). This quantity is already evaluated
by APFEL and thus does not need to be recomputed.

Now, let us consider the singlet sector that, cosidering the fact that becomes:

C(0)
j (tR, tF ) = ∆SF

nf
δqjδ(1− x)

C(1)
j (tR, tF ) = C

(1)
j −

∆SF

nf
tFP

(0)
qj

C(2)
j (tR, tF ) = C

(2)
j + tRβ0C

(1)
j − tFC

(1)
i ⊗ P

(0)
ij

+ ∆SF

nf

t2F
2

(
P

(0)
qi ⊗ P

(0)
ij − β0P

(0)
qj

)
− ∆SF

nf
tF P̃

(1)
qj .

(3.56)

for j = g, q. Taking into account eq. (3.55) and considering also the fact that C(0)
PS = C

(1)
PS = 0 (i.e. CPS is

O(α2
s)), it is easy to see that:

C(0)
PS (tR, tF ) = 0

C(1)
PS (tR, tF ) = 0

C(2)
PS (tR, tF ) = C

(2)
PS − tFC

(1)
g ⊗ P (0)

gq + ∆SF

nf

t2F
2 P

(0)
qg ⊗ P (0)

gq −
∆SF

nf
tF

[
P̃ (1)
qq − P̃

(1)
+

] (3.57)

and also that:
C(0)
g (tR, tF ) = 0

C(1)
g (tR, tF ) = C(1)

g −
∆SF

nf
tFP

(0)
qg

C(2)
g (tR, tF ) = C(2)

g + tRβ0C
(1)
g − tFC

(1)
i ⊗ P

(0)
ig

+ ∆SF

nf

t2F
2

(
P

(0)
qi ⊗ P

(0)
ig − β0P

(0)
qg

)
− ∆SF

nf
tF P̃

(1)
qg ,

(3.58)
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where the term C
(1)
i ⊗ P

(0)
ig in the r.h.s. of the third line of eq. (3.58) should be interpreted as:

C
(1)
i ⊗ P

(0)
ig = 1

nf
C

(1)
+ ⊗ P (0)

qg + C(1)
g ⊗ P (0)

gg . (3.59)

Now we consider the massive scheme. In the neutral-current sector the leading-order coefficient functions
C

(0)
i are identically equal to zero and this simplifies substantially the structure of the massive coefficient functions

in the presence of scale variations:

C(0)
j (tR, tF ) = 0

C(1)
j (tR, tF ) = C

(1)
j

C(2)
j (tR, tF ) = C

(2)
j + tRβ0C

(1)
j − tFC

(1)
i ⊗ P

(0)
ij .

(3.60)

In addition, the factorization scale variation terms are already present in the implementation of the massive
coefficient functions in APFEL. As a consequence, only the renormalization variation terms need to be imple-
mented. This is a great facilitation because the renormalization variation terms do not require any further
convolution and thus no additional terms need to be computed during the initialization phase.

As far as the massive charged-current sector is concerned, no O(a2
s) are presently available and thus only

the first two lines of eq. (3.17) are actually needed. Also in this case the factorization scale variation terms are
already present in the implementation and again this avoids the precomputation of additional terms.

Now let us discuss how to implement in APFEL the additional terms needed to perform scale variations.
The only terms that are a bit more complicated to implement are those that require a convolution between two
splitting functions of between a plitting functions and a coefficient functions. More in particular, we only need
to compute the terms: P (0)

ij (x) ⊗ P (0)
jk (x) and C(1)

i (x) ⊗ P (0)
ij (x). In pricinple, these terms could be evaluated

analitically by computing the explicit convolution between the know expressions that are involved. However,
it seems easier in APFEL to compute these terms numerically using the ingredients that have already been
evaluated in the initialization stage. To show how to reduce these terms to known quantity, let us cosider the
following convolution:

F (xα) = xαC(xα)⊗Q(xα) = xα

ˆ 1

xα

dy

y
C(y)Q

(
xα
y

)
=
ˆ 1

xα

dy

y
yC(y)xα

y
Q

(
xα
y

)
=
ˆ 1

xα

dy

y
C̃(y)Q̃

(
xα
y

)
,

(3.61)
where xα is node of the x-space grid of APFEL and C̃(y) = yC(y) and Q̃(y) = yQ(y). Now, using the well-known
interpolation formula we can write:

ˆ 1

xα

dy

y
C̃(y)Q̃

(
xα
y

)
=
∑
β

[ˆ 1

xα

dy

y
C̃(y)w(k)

β

(
xα
y

)]
︸ ︷︷ ︸

Γαβ

Q̃(xβ) , (3.62)

where w(k)
β are the usual interpolation functions of degree k. Now suppose that in turn:

Q̃(xβ) = xβP (xβ)⊗ f(xβ) =
ˆ 1

xβ

dz

z
P̃ (z)f̃

(xβ
z

)
=
∑
γ

[ˆ 1

xβ

dz

z
P̃ (z)w(k)

γ

(xβ
z

)]
︸ ︷︷ ︸

Πβγ

f̃(xγ) , (3.63)

it follows that:
F (xα) = C̃(xα)⊗ P̃ (xα)⊗ f̃(xα) =

∑
β,γ

ΓαβΠβγ f̃(xγ) . (3.64)

The formula above clearly shows that the missing pieces can be easily obtained by properly multimplying the
precomputed splitting function matrices Πij,αβ and the coefficient function matrices Γi,αβ accordind to the scale
variation formulas derived above.

As an alternative to the numerical convolution of the new pieces arising when including renormalization- and
factorization-scale variations, one can try to compute the analytically the convolutions above. In fact, all the
terms involved in the new convolutions are usually simple enough to make the analytic computation possible
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using, for instance, Mathematica. This is advantageous because it avoids any inaccuracy of numerical origin
coming from the numerical convolution of the operators involved. In order to do so, we only need to know
how to treat some particular term that appear in the combinations. In particular, we need to be able to treat
terms in which Dirac δ-functions and +-prescripted functions are present at the same time. The most trivial
convolutions are those involving one or two δ-functions, that is:

δ(1− x)⊗ δ(1− x) = δ(1− x) ,(
lnn(1− x)

1− x

)
+
⊗ δ(1− x) =

(
lnn(1− x)

1− x

)
+

n ≥ 0 ,
(3.65)

that can be easily proven in Mellin space where the convolution ⊗ becomes a simple product and the δ-function
corresponds to the unity. The Mellin-space method can be used also in the cases where two +-prescripted
functions are involved. Up to O(α2

s) there are only two possible combinations, that are:(
1

1− x

)
+
⊗
(

1
1− x

)
+

= 2
(

ln(1− x)
1− x

)
+
− ln(x)

1− x − ζ(2)δ(1− x) ,

(
1

1− x

)
+
⊗
(

ln(1− x)
1− x

)
+

= 3
2

(
ln2(1− x)

1− x

)
+
− ζ(2)

(
1

1− x

)
+
− ln(x) ln(1− x)

1− x + ζ(3)δ(1− x) .

(3.66)

The relations in eq. (3.66) can be obtained rearranging, in Mellin space, the terms is such a way to reconstruct
the Mellin-transform of well-known terms.

Now, given the LO splitting functions (with expansion parameter αs/4π and such that they can be used to
evolve the singlet combination {q+, g}):

P (0)
qq (x) = 2CF

[
2
(

1
1− x

)
+
− (1 + x) + 3

2δ(1− x)
]
,

P (0)
qg (x) = 4nfTR

[
x2 + (1− x)2] ,

P (0)
gq (x) = 2CF

[
1 + (1− x)2

x

]
,

P (0)
gg (x) = 4CA

[(
1

1− x

)
+
− 2 + x− x2 + 1

x

]
+ 11CA − 4nfTR

3 δ(1− x) ,

(3.67)

we can compute the additional terms involving only combinations of splitting functions. In particular, we need
to compute:

P (0)
qq (x)⊗ P (0)

qq (x) , (3.68)

involved in the O(α2
s) non-singlet coefficient functions, and:

P
(0)
qg (x)⊗ P (0)

gq (x) ,

P
(0)
qi (x)⊗ P (0)

ig (x) = P (0)
qq (x)⊗ P (0)

qg (x) + P (0)
qg (x)⊗ P (0)

gg (x) .
(3.69)

present in the pure-singlet and in the gluon coefficient functions, respectively.
The convolution in eq. (3.68) can be easily computed by hand using eqs. (3.65) and (3.66) and the result is:

P
(0)
qq (x)⊗ P (0)

qq (x) = 4C2
F

[
8
(

ln(1− x)
1− x

)
+

+ 6
(

1
1− x

)
+
− 4 ln(x)

1− x − 4(1 + x) ln(1− x)

+ 3(1 + x) ln(x)− (x+ 5) +
(

9
4 − 4ζ(2)

)
δ(1− x)

]
.

(3.70)

As for eq. (3.69), where no convolutions of the kinds given in eqs. (3.65) and (3.66) are present, we can safely
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use Mathematica, obtaining:

P
(0)
qg (x)⊗ P (0)

gq (x) = CFnfTR

[
8
3

(
−4x2 − 3x+ 4

x
+ 3
)

+ 16(x+ 1) ln(x)
]
,

P
(0)
qi (x)⊗ P (0)

ig (x) = nfTRCA

[
16
(
2x2 − 2x+ 1

)
ln(1− x) + 16(4x+ 1) ln(x) + 4

3

(
−40x2 + 26x+ 17 + 8

x

)]
+ nfTRCF

[
16
(
2x2 − 2x+ 1

)
ln(1− x)− 8

(
4x2 − 2x+ 1

)
ln(x) + 4 (4x− 1)

]
+ n2

fT
2
R

[
−16

3 (2x2 − 2x+ 1)
]

(3.71)
Now we need to consider the additional terms involving combinations of splitting functions and coefficient

functions. Let us start considering FL and it is the easiest case. Here we have:

C
(1)
L,±(x) = 4CFx ,

C
(1)
L,q(x) = 1

nf
C

(1)
L,±(x) ,

C
(1)
L,g(x) = 4TRx(1− x) ,

(3.72)

and for the non-singlet case we need to compute:

C
(1)
L,±(x)⊗ P (0)

qq (x) = 4C2
F [(x+ 2) + 4x ln(1− x)− 2x ln(x)] . (3.73)

For the pure-singlet and the gluon coefficient functions, instead, we need to compute:

C
(1)
L,g(x)⊗ P (0)

gq (x) = CFTR

[
32
3

(
2x2 − 3 + 1

x

)
− 32x ln(x)

]
,

C
(1)
L,i(x)⊗ P (0)

ig (x) = CATR

[
64x(1− x) ln(1− x)− 128x ln(x) + 16

3

(
23x2 − 19x− 6 + 2

x

)]

+ CFTR

[
16
3 x ln(x)− 8

3
(
2x2 − x− 1

)]

+ nfT
2
R

[
−64

3 x(1− x)
]
.

(3.74)

Now we consider F2, for which we have:

C
(1)
2,±(x) = 2CF

[
2
(

ln(1− x)
1− x

)
+
− 3

2

(
1

1− x

)
+
− 2 ln(x)

1− x − (x+ 1) [ln(1− x)− ln(x)]

+ 2x+ 3−
(

2ζ(2) + 9
2

)
δ(1− x)

]
,

C
(1)
2,q (x) = 1

nf
C

(1)
±,2(x) ,

C
(1)
2,g (x) = 4TR

[(
x2 + (1− x)2) [ln(1− x)− ln(x)]− 8x2 + 8x− 1

]
.

(3.75)

Also in this case we need to compute C(1)
2,±(x)⊗ P (0)

qq (x) and C(1)
2,i (x)⊗ P (0)

ig (x).

4 Implementation of the Semi-Inclusive e+e− Annihilation

The implementation of the Semi-Inclusive e+e− Annihilation (SIA) in APFEL is not very complicated. The
reason for that is the fact that SIA is structurally identical to DIS. In fact, we can regard SIA as the time-like
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counterpart of DIS and the differences are only at the level of coefficient functions and splitting functions.
Considering that APFEL already implement the time-like evolution [7] (i.e. the time-like splitting functions),
the only thing to do is implement the respective coefficient functions. Presently the coefficient functions for
SIA are known up to O(α2

s) (NNLO) in the zero-mass scheme and they have been computed in Ref. [8] and the
x-space expressions of interest for the implementation in APFEL reported in Appendix C.

The way in which the SIA expressions are reported is slightly different from the standard way in which we
are used to see the DIS expressions. We would like to reduce the SIA expressions to the same form of DIS in
such a way to use the DIS module of APFEL also for the SIA cross sections. In particular the SIA cross section
is Ref. [8] expressed in terms of the three structure functions: FT , FL and FA. However, comparing the SIA
cross section with the DIS cross sections it is easy to realize that defining:

F2(x,Q) = FT (x,Q) + FL(x,Q) ,
FL(x,Q) = FL(x,Q) ,
FA(x,Q) = xF3(x,Q) ,

(4.1)

the SIA cross section reduces to the same structure of the DIS cross section.
Assuming that:

Fk(x,Q) =
∑
j=q,g

x

ˆ 1

x

dy

y
ck,j(αs(Q), x)Dj

(
x

y
,Q

)
, with k = 2, L, 3 , (4.2)

(note that, to uniform the notation, we understood the factor x in front of F3) where Dj is the fragmentation
function of the flavour j and where the coefficient functions ck,j allow for the perturbative expansion:

ck,j(αs(Q), x) =
N∑
n=0

αns (Q)c(n)
k,j (x) , (4.3)

we have that the leading-order cofficient functions are trivially:

c
(0)
k,g(x) = 0 , k = 2, L, 3 ,

c
(0)
L,q(x) = 0 ,

c
(0)
2,q(x) = c

(0)
3,q(x) = δ(1− x) .

(4.4)

Now we consider the NLO coefficient functions. Their explicit expressions are give in eqs. (C.13)-(C.17) of
Ref. [8] but, in order to write them in a form suitable for the implementation in APFEL, we need to isolate the
regular, soft-divergent and local terms and finally combine them according to eq. (4.1).

c
(1)
L,q(x) = 2CF

c
(1)
L,g(x) = 2CF

4(1− x)
x

c
(1)
2,q(x) = c

(1)
T,q(x) + c

(1)
L,q(x) = 2CF

[
2
(

ln(1− x)
1− x

)
+
− 3

2

(
1

1− x

)
+
− (1 + x) ln(1− x)

+21 + x2

1− x ln x+ 5
2 −

3
2x+

(
4ζ2 −

9
2

)
δ(1− x)

]

c
(1)
2,g(x) = c

(1)
T,g(x) + c

(1)
L,g(x) = 4CF

1 + (1− x)2

x
ln[x2(1− x)]

c
(1)
3,q(x) = 2CF

[
2
(

ln(1− x)
1− x

)
+
− 3

2

(
1

1− x

)
+
− (1 + x) ln(1− x)

+21 + x2

1− x ln x+ 1
2 −

1
2x+

(
4ζ2 −

9
2

)
δ(1− x)

]
c
(1)
3,g(x) = 0

(4.5)



23

It is interesting to notice that, as expected, the soft-singular part of the quark coefficient functions is exactly
the same as in DIS and this allows us to reuse part of the DIS coefficient functions.

5 Polarized DIS cross section and structure functions

Let us consider the differential cross sections for unpolarized and polarized Deep-Inelastic Scattering (DIS) (see
e.g. Eq. (19.16) of Sec. 19 in Ref. [9]):

d2σi

dxdy
= 2πα2

xyQ2 η
i
[
+Y+F

i
2 ∓ Y−xF i3 − y2F iL

]
d2∆σi

dxdy
= 2πα2

xyQ2 η
i
[
−Y+g

i
4 ∓ Y−2xgi1 + y2giL

]
,

(5.1)

where i = NC,CC, Y± = 1± (1− y)2, ηNC = 1, ηCC = (1± λ)2ηW (with λ = ±1 is the helicity of the incoming
lepton and ηW = 1

2

(
GFMW

4πα
Q2

Q2+M2
W

)2
), and

F iL = F i2 − 2xF i1

F iL = gi4 − 2xgi5 .
(5.2)

Because the same tensor structure occurs in the spin-dependent and spin-independent parts of the DIS hadronic
tensor (in the limitM2/Q2 → 0), the polarized cross section can be obtained from the unpolarized cross section
with the following replacement

F i2 → −2gi4 F i3 → +4gi1 F iL → −2giL . (5.3)

Note that the extra factor two is due to the fact that the total cross section is an average over initial-state
polarizations.

The polarized structure functions g4, g1 and gL are expressed as a convolution of coefficient functions, ∆ck,j ,
and polarized PDFs, ∆fj , (summed over all flavors j)

gk(x,Q) =
∑
j=q,g

x

ˆ 1

x

dy

y
∆ck,j(αs(Q), x)∆fj

(
x

y
,Q

)
, with k = 4, 1, L . (5.4)

The coefficient functions ∆ck,j allow for the usual perturbative expansion

∆ck,j(αs(Q), x) =
N∑
n=0

αns (Q)∆c(n)
k,j (x) , (5.5)

where the coefficients ∆c(n)
k,j (x) are known up to NLO, i.e. n = 1 (see e.g. [10] and references therein). At LO

they are

∆c(0)
4,q(x) = ∆c(0)

1,q(x) = δ(1− x)

∆c(0)
L,q(x) = 0 ,

∆c(0)
k,g(x) = 0 with k = 4, 1, L .

(5.6)
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At NLO they read

∆c(1)
4,q(x) = 2CF

{
2
[

ln(1− x)
1− x

]
+
− 3

2

[
1

1− x

]
+
− (1 + x) ln(1− x)

−1 + x2

1− x ln x+ 3 + 2x−
(

9
2 + 2ζ2

)
δ(1− x)

}
,

∆c(1)
4,g(x) = 0 ,

∆c(1)
1,q(x) = 2CF

{
2
[

ln(1− x)
1− x

]
+
− 3

2

[
1

1− x

]
+
− (1 + x) ln(1− x)

−1 + x2

1− x ln x+ 2 + x−
(

9
2 + 2ζ2

)
δ(1− x)

}
,

∆c(1)
1,g(x) = 4TR

{
(2x− 1) ln 1− x

x
− 4x+ 3

}
,

∆c(1)
L,q(x) = 2CF 2x ,

∆c(1)
L,g(x) = 0 .

(5.7)

In the NC case the couplings can be written as:
Bq(Q2) = −eqAq(Ve ± λAe)PZ + VqAq(V 2

e +A2
e ± 2λVeAe)P 2

Z ,

Dq(Q2) = ±1
2λe

2
q − eqVq(Ae ± λVe)PZ + 1

2(V 2
q +A2

q)
[
2VeAe ± λ(V 2

e +A2
e)
]
P 2
Z .

(5.8)

where λ corresponds to the polarization of the incoming lepton. It should be stressed that Bq multiplies g4 and
gL while Dq multiplies g1.

6 The χ Prescription in FONLL

As is well known, the original formulation of the FONLL matched scheme gives rise to discontinuities in corre-
spondence of the heavy quark thresholds arising from uncontrolled subleading terms. Such subleading terms can
however be numerically important especially arond the charm threshold where the numerical value of the strong
coupling αs is large. In order to remedy this unwanted feature different prescriptions have been introduced and
traditionally the FONLL schem DIS has been implemented using the so-called damping factor which directly
suppresses the unwanted subleading terms by means of a function that goes smoothly to zero at the threshold
and below and tends to one for energies much larger than the threshold itself.

As an alternative to the damping factor, one can damp the subleading terms close to the threshold by
mimicing in the subtraction terms the phase-space suppression given by the presence of one or more heavy
quarks in the final state. This is easily done juct by introducing the so-called slow-rescaling variable χ, that in
the NC case is:

χ = x

(
1 + 4m2

H

Q2

)
= x

η
, (6.1)

mH being the mass of the heavy quark, in the convolution between coefficient functions and PDFs in the zero-
mass and in the massless-limit bits of the FONLL structure function. In other words, the usual zero-mass Mellin
convolution becomes:

x

ˆ 1

x

dy

y
C

(
x

y

)
f(y)→ x

ˆ 1

χ

dy

y
C

(
χ

y

)
f(y) = x

ˆ 1

χ

dy

y
C(y)f

(
χ

y

)
. (6.2)

The question is how to treat the new integral on a discreet x-space grid. What we have done so far for the
massive integarls like that in the r.h.s. of the equation above is re-express it in terms of the physical Bjorken x
as:

x

ˆ 1

χ

dy

y
C(y)f

(
χ

y

)
(6.3)
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