
Contents

1 QCD Evolution Implementation 1

2 Interpolation 1

3 Splitting Functions Treatment 3

4 Solution of the DGLAP Equation 4
4.1 The Non Singlet . 5
4.2 The Singlet . 5

5 Alternative Solutions of the DGLAP Equation 6

6 Small-x Resummation using Hell 7

A A Remark on the Interpolation Functions 9

1 QCD Evolution Implementation

The QCD DGLAP equation looks like this:

µ2 ∂qi(x, µ
2)

∂µ2
=

∫ 1

x

dy

y
Pij

(
x

y
, αs(µ

2)

)
qj(y, µ

2) (1)

Now let us make the following definitions t = ln(µ2), q̃(x, t) = xq(x, µ2),
P̃ij(x, t) = xPij(x, αs(µ

2)) so that eq (1) becomes:

∂q̃i(x, t)

∂t
=

∫ 1

x

dy

y
P̃ij

(
x

y
, t

)
q̃j(y, t) (2)

2 Interpolation

In order to numerically solve the above equation, we need to write PDFs as
interpolated functions over an x grid. In particular we want to have something
like this:

q̃(y, t) =

Nx∑
α=0

w(k)
α (y)q̃(xα, t) , (3)

where w
(k)
α are the interpolation functions of degree k we are looking for.

Using the Lagrange formula, we find that:

w(k)
α (x) =

k∑
j=0,j≤α

θ(x− xα−j)θ(xα−j+1 − x)

k∏
δ=0,δ 6=j

[
x− xα−j+δ
xα − xα−j+δ

]
. (4)

This automatically means that:

w(k)
α (x) 6= 0 for xα−k < x < xα+1. (5)

1

This way we have that eq. (2) becomes:

∂q̃i(x, t)

∂t
=
∑
α

∫ 1

x

dy

y
P̃ij

(
x

y
, t

)
w(k)
α (y)q̃j(xα, t) (6)

more in particular, if x is one of the grid points xβ , simplifying a bit the notation
we have that:

∂q̃i(xβ , t)

∂t
=
∑
α

[∫ 1

xβ

dy

y
P̃ij

(
xβ
y
, t

)
w(k)
α (y)

]
︸ ︷︷ ︸

Πij,βα(t)

q̃j(xα, t) . (7)

Given eq. (5), it follows the condition:

Πij,βα(t) 6= 0 for β ≤ α. (8)

In addition, the integral in eq. (7) which gives Πij,βα can be optimized again
using eq. (5) and it can be written as:

Πij,βα(t) =

∫ b

a

dy

y
P̃ij

(
xβ
y
, t

)
w(k)
α (y) (9)

where:
a = max(xβ , xα−k) and b = min(1, xα+1) . (10)

However, performing a change of variables, Πij,βα can also be written as:

Πij,βα(t) =

∫ d

c

dy

y
P̃ij(y, t)wα

(
xβ
y

)
(11)

where this time:

c = max(xβ , xβ/xα+1) and d = min(1, xβ/xα−k) . (12)

Verifying that eqs. (9) and (11) give the same numerical result provides a cross-
check of the correctness of the procedure.

Now, if rather than eq. (4), one uses a logarithmic interpolation of the form:

w(k)
α (x) =

k∑
j=0,j≤α

θ(x− xα−j)θ(xα−j+1 − x)

k∏
δ=0,δ 6=j

[
ln(x)− ln(xα−j+δ)

ln(xα)− ln(xα−j+δ)

]
(13)

over a logarithmically distributed grid, i.e. such that ln(xβ)−ln(xα) = (β−α)δx,
where the step δx is a constant, one has that:

w(k)
α (x) =

k∑
j=0,j≤α

θ(x− xα−j)θ(xα−j+1 − x)

k∏
δ=0,δ 6=j

[
1

δx
ln

(
x

xα

)
1

j − δ
+ 1

]
(14)

that in general means that w
(k)
α (x) ≡ w(k)

α [ln(x)− ln(xα)]. Therefore in eq. (11)
we have that:

w(k)
α

(
xβ
y

)
≡ w

(k)
α [ln(xβ)− ln(xα)− ln(y)]

= w
(k)
α [(β − α)δx− ln(y)]

(15)

2

which means that w
(k)
α (xβ/y) only depends on the difference (β − α) with the

consequence that also Πij,βα only depends on (β − α). Now, one can use this
information with eq. (8) to represent Πij,βα(t) as a matrix, where β is the row
index and α the column index. In this way Πij,βα(t) would look like this:

Πij(t) =

a0 a1 a2 · · · aNx
0 a0 a1 · · · aNx−1

0 0 a0 · · · aNx−2

...
...

...
. . .

...
0 0 0 · · · a0

 (16)

therefore, if one knows the first raw of the matrix above, i.e. Πij,0α(t), it
is possible to reconstruct the whole matrix. Of course, this feature must be
numerically verified but it makes the computation of the evolution operators
much faster because it reduces the number of integrals to be computed by a
factor Nx.

3 Splitting Functions Treatment

The general form DGLAP splitting functions is the following:

P̃ij(x, t) = xPRij (x, t) +
xPSij(t)

(1− x)+
+ PLij (t)xδ(1− x) (17)

where PRij (x, t) is the regular term that can be integrated without any problem

over any range, PSij(x, t) is instead the function that multiplies the singular term
which is regularized by means of the plus prescription whose definition, referring
to eq. (11), is:∫ d

c

dy
f(y)

(1− y)+
=

∫ d

c

dy
f(y)− f(1)θ(d− 1)

1− y
− f(1)θ(d− 1)

∫ c

0

dy

1− y
=

∫ d

c

dy
f(y)− f(1)θ(d− 1)

1− y
+ f(1) ln(1− c)θ(d− 1) .

(18)
Finally PLij (t) is the coefficient of the local term, i.e. the term proportional to

δ(1− x). Each of these terms has a perturbative expansion that at NkLO looks
like this:

P Jij(x, t) =

k∑
n=0

an+1
s (t)P

J,(n)
ij (x) with J = R,S, L (19)

Therefore one has that:

Πij,βα(t) =

k∑
n=0

an+1
s (t)

{∫ d

c

dy

[
P
R,(n)
ij (y)wα

(
xβ
y

)
+
P
S,(n)
ij

1− y

(
wα

(
xβ
y

)
− w(k)

α (xβ)θ(d− 1)

)]

+
[
P
S,(n)
ij ln(1− c)θ(d− 1) + P

L,(n)
ij

]
w(k)
α (xβ)

}
.

(20)

3

Moreover it is easy to see that w
(k)
α (xβ) = δβα, so that:

Πij,βα(t) =

k∑
n=0

an+1
s (t)

{∫ d

c

dy

[
P
R,(n)
ij (y)wα

(
xβ
y

)
+
P
S,(n)
ij

1− y

(
wα

(
xβ
y

)
− δβαθ(d− 1)

)]

+
[
P
S,(n)
ij ln(1− c)θ(d− 1) + P

L,(n)
ij

]
δβα

}
.

(21)
Calling:

Π
(n)
ij,βα =

∫ d

c

dy

[
P
R,(n)
ij (y)wα

(
xβ
y

)
+
P
S,(n)
ij

1− y

(
wα

(
xβ
y

)
− δβαθ(d− 1)

)]

+
[
P
S,(n)
ij ln(1− c)θ(d− 1) + P

L,(n)
ij

]
δβα ,

(22)

we have that:

Πij,βα(t) =

k∑
n=0

an+1
s (t)Π

(n)
ij,βα , (23)

and the integrals Π
(n)
ij,βα do not depend on the energy therefore, once the grid

(and the number of active flavours) has been fixed, they can be evaluate once
and for all at the beginning and used for the evolution to any scale.

It is not very easy to see that eq. (22) respects the symmetry described in
eq. (16). To show this, we distinguish two case: 1) d < 1 and 2) d = 1. In
the case 1), due to the presence of the Heaviside’s functions θ(d − 1), eq. (22)
reduces to:

Π
(n)
ij,βα =

∫ d

c

dy

[
P
R,(n)
ij (y) +

P
S,(n)
ij

1− y

]
wα

(
xβ
y

)
+ P

L,(n)
ij δβα , (24)

which evidently obeys eq. (16). In the case 2), instead, we have:

Π
(n)
ij,βα =

∫ 1

c

dy

[
P
R,(n)
ij (y)wα

(
xβ
y

)
+
P
S,(n)
ij

1− y

(
wα

(
xβ
y

)
− δβα

)]

+
[
P
S,(n)
ij ln(1− c) + P

L,(n)
ij

]
δβα ,

(25)

and apparently, if α = β, the term ln(1 − c) seems to break the symmetry.
However, this is not the case. In fact, from eq. (12), we know that in this
particular case:

c = max(xβ , xβ/xβ+1) =
xβ
xβ+1

(26)

because xβ+1 < 1. In addition, on a logarithmically distributed grid, xβ+1 =
xβ exp(δx), where δx is the constant step. Therefore, it turns out that:

ln(1− c) = ln

(
1− xβ

xβ+1

)
= ln[1− exp(−δx)] , (27)

4

that is a constant which does not depend on the indices α and β and therefore
does not break the symmetry given in eq. (16).

4 Solution of the DGLAP Equation

As a consequence of the DGLAP equation form, we can assume that q̃i(xβ , t) ≡
qi,β(t) evolves between the energies t and t0 according to the following (dis-
cretized) evolution equation:

q̃i,β(t) =
∑
γ,k

Mik,βγ(t, t0)q̃k,γ(t0) (28)

with the boundary condition Mik,βγ(t0, t0) = δikδβγ . It follows that eq. (7)
takes the form:

∂Mij,αβ(t, t0)

∂t
=
∑
γ,k

Πik,αγ(t)Mkj,γβ(t, t0)

Mij,αβ(t0, t0) = δijδαβ

(29)

which is a first order linear differential equation in the quantity Mij,αβ(t, t0)
that, as we actually do, can be numerically solved using the fourth order Adap-
tive Step-size Control Runge-Kutta algorithm. Using the arguments we dis-
cussed above, we do not need to compute all the entries of Πik,γα(t). In addi-
tion, as we have already shown, the perturbative contributions to Πik,γα(t) can
be precomputed before solving the differential equation in eq. (29).

4.1 The Non Singlet

The non-singlet case is the easiest one because the differential equations in
eq. (29) decouple in the flavour pair (i, j), and we can write them as:

∂M(i)
αβ(t, t0)

∂t
=

Nx∑
γ=0

P(i)
αγ(t)M(i)

γβ(t, t0)

M(i)
αβ(t0, t0) = δαβ

with i = +,−, V . (30)

As a further simplification, we can use the fact that at LO +, − and V all the
evolution operators are equal, therefore solving only one of them is enough. at
NLO instead only − and V are equal while at NNLO they are all different.

Now, given the symmetries carried by Πij,αβ , we can write:

P(i)
αγ = P(i)

0(γ−α)θ(γ − α) , (31)

so that eq. (30) becomes:
∂M(i)

αβ(t, t0)

∂t
=

Nx−α∑
δ=0

P(i)
0δ (t)M(i)

(α+δ)β(t, t0)

M(i)
αβ(t0, t0) = δαβ

with i = +,−, V . (32)

5

4.2 The Singlet

The singlet sector is totally analogous to the non-singlet one, the only difference
is that there is one additional summation over the flavours. In practice we have
that:

∂MSG
ij,αβ(t, t0)

∂t
=
∑
k

Nx−α∑
δ=0

PSG
ik,0δ(t)MSG

kj,(α+δ)β(t, t0)

MSG
ij,αβ(t0, t0) = δijδαβ

with i, j, k = q, g .

(33)

5 Alternative Solutions of the DGLAP Equa-
tion

In this section we show how it is possible to solve the DGLAP equation in an
alternative way with respect to that shown in the previous sections exploiting
the RGE of the running coupling αs. This will lead to a different equation that
admits two preturbatively equivalent solutions: the first, that we will refer to as
”exact” solution and that reproduces the solution seen above, and the second,
the so-called ”expanded” solution, that reproduces the solution usually adopted
in the N-space code (like NNPDF).

The starting point is the RGE:

µ2 ∂as
∂µ2

=
∂as
∂t

= β(as) , (34)

where:
as ≡

αs
4π

(35)

and:

β(as) = −a2
s

N∑
n=0

ansβn . (36)

where N represents the desired preturbative order. Using eq. (34) and eq. (23),
we can rewrite eq. (29) as:

∂Mij,αβ(t, t0)

∂as
= − 1

as

∑
γ,k

N∑
n=0

ansΠ
(n)
ik,αγ

N∑
n=0

ansβn

Mkj,γβ(t, t0)

Mij,αβ(t0, t0) = δijδαβ

(37)

Now there are two possibile way to solve eq. (37): either we solve directly
it numerically as it is or we first expand the term in the square brackets as
a series of as keeping only the terms up to order aNs and then we solve the
equation. It is obvious that the first way to solve eq. (37) must be numerical
equal to the solution of eq. (29). The second way instead is not numerically

6

equal but is perturbatively equivalent. This second solution is referred to as N-
space solution as it is usually used in the N-space approach because it permits
to solve analytically the DGLAP equation.

To expand the term in the square brackets, we notice that up to NNLO
(N = 2) we have that:

1
2∑

n=0

ansβn

=
1

β0

[
1− β1

β0
as +

(
β2

1

β2
0

− β2

β0

)
a2
s

]
+O(a3

s) , (38)

so that:

2∑
n=0

ansΠ
(n)
ik,αγ

2∑
n=0

ansβn

=
1

β0

{
Π

(0)
ik,αγ + as

[
Π

(1)
ik,αγ − b1Π

(0)
ik,αγ

]

+ a2
s

[
Π

(2)
ik,αγ − b1Π

(1)
ik,αγ +

(
b21 − b2

)
Π

(0)
ik,αγ

]}
+O(a3

s)

(39)
where we have defined:

bn ≡
βn
β0

. (40)

Finally, defining:

Π̃
(0)
ik,αγ ≡ Π

(0)
ik,αγ ,

Π̃
(1)
ik,αγ ≡ Π

(1)
ik,αγ − b1Π

(0)
ik,αγ ,

Π̃
(2)
ik,αγ ≡ Π

(2)
ik,αγ − b1Π

(1)
ik,αγ +

(
b21 − b2

)
Π

(0)
ik,αγ ,

(41)

we can write eq. (37) up to NNLO as:
∂Mij,αβ(t, t0)

∂as
= − 1

asβ0

∑
γ,k

[
2∑

n=0

ans Π̃
(n)
ik,αγ

]
Mkj,γβ(t, t0)

Mij,αβ(t0, t0) = δijδαβ

. (42)

Solving eq. (42) provides the so-called ”expanded” solution.

6 Small-x Resummation using Hell

The implemenatation of the small-x resummation in APFEL is done by interfacing
it to the code Hell by Marco Bonvini. Hell provides, amongst other things, the
small-x resummed singlet splitting functions (times x) up to NLL to be matched
to the unresummed LO, NLO and NNLO splitting functions. In practice, the
user can specify the logarithmic accuracy (LL or NLL) and, for each logarithmic
accuracy, the perturbative accuracy to which the rusummed splitting functions
are to be matched.

7

With the inclusion of the small-x resummation, the splitting functions Pij
in eq. (1) should be interpreted as:

Pij(x, αs) = PFO
ij (x, αs)︸ ︷︷ ︸

Already present in APFEL

+PRes−FO
ij (x, αs)︸ ︷︷ ︸
Provided by Hell

(43)

where ”FO” stands for Fixed Order and ”Res” for Resummed. The essential
difference between PFO

ij and PRes−FO
ij stems from the fact that the former admits

the usual pertubative expansion:

PFO
ij (x, αs) =

N∑
n=0

an+1
s P

(n)
ij (x) , (44)

while the latter, by definition, does not. This feature of PRes−FO
ij forbids to

precompute the perturbative coefficients in the r.h.s. of the DGLAP equation
before solving it. In principle then, one should recompute the integrals of the
splitting functions on the x-space interpolation grid at every step of the algo-
rithm that numerically solves the discretized DGLAP equation. This is clearly
very unefficient and would enormously inflate the computation time. In order
to keep the computation time under control, we use an interpolation grid also in
αs. In practice, we precompute the integrals of the resummed splitting function
over the x-space interpolation grid for several values of αs (logarithmically?)
distributed over a reasonable range, so that the values of the same integrals for
any value of αs needed during the numerical solution of the DGLAP equation
would be obtained by interpolation.

Using the notation of eq. (22), we have that the integral of the resummed
splitting functions on the x-space grid would take the form:

ΠRes
ij,βα(αs) =

∫ d

c

dyPRes−FO
ij (y, αs)wα

(
xβ
y

)
, (45)

so that eq. (29) would become:
∂Mij,αβ(t, t0)

∂t
=
∑
γ,k

[
Πik,αγ(t) + ΠRes

ij,βα(αs(t))
]
Mkj,γβ(t, t0)

Mij,αβ(t0, t0) = δijδαβ

. (46)

As we mentioned above, ΠRes
ij,βα cannot be expandend as a truncated series

of αs and thus we cannot precompute the perturbative coefficients making the
numerical solution of the DGLAP equation efficient. A possible way out is to

precompute ΠRes
ij,βα over a grid in αs, say α

(τ)
s with τ = 0, . . . ,m, so that, after

the initialization step, we have the set of integrals:

ΠRes
ij,βα,τ =

∫ d

c

dyPRes−FO
ij (y, α(τ)

s)wα

(
xβ
y

)
τ = 0, . . . ,m , (47)

and for obtaining the value of ΠRes
ij,βα for a generic value of αs we use the linear

interpolation. Supposing that α
(τ)
s ≤ αs < α

(τ+1)
s , we have that:

ΠRes
ij,βα(αs) =

(
α

(τ+1)
s − αs

α
(τ+1)
s − α(τ)

s

)
ΠRes
ij,βα,τ +

(
αs − α(τ)

s

α
(τ+1)
s − α(τ)

s

)
ΠRes
ij,βα,τ+1 (48)

8

There is a further complication that we need to deal with that is the number
of active flavours. In fact, any integral must be computed with the correct
number nf of active flavours. Assuming to be working in the VFNS (the FFNS
is instead trivial), what we need then is a grid in αs that has a node for each

crossing point, that is there must be one value of the index τ such that α
(τ)
s =

αs(mh) where mh is the mass of any heavy flavour and such that for αs < α
(τ)
s

there are, say, nf active flavours, while for αs ≥ α
(τ)
s there are nf + 1 active

flavours. This in practice means that the grid in αs has as many fixed points
as potentially active flavours. Unfortunately this is not enough because, when
considering the NNLO evolution in the VFNS, the evolution of αs, as well as that
of PDFs, has a discontinuity in correspondence of the heavy quark thresholds(1).
To overcome this problem we may assign to the point of the grid corresponding

to the heavy threshold mh two value, i.e. the values α
(τ)
s = αs(mh − ε) and

α
(τ+1)
s = αs(mh). This trick, in conjuction with the linear interpolation, does

to job without any further assumption.
We will now try to derive the form of the “expanded” solution in the pres-

ence of small-x resummation. In order to do so, we need to recognise that the
resummed spliiting functions in eq. (43) admit an expansion in αs for fixed

A A Remark on the Interpolation Functions

Just for the record, it is useful to derive the expression for the interpolation
functions given in eq. (4) and show how this is not the only possible choice.

Suppose we want to perform an interpolation of degree k of the test function
g in the point x. As is well known, we will need a subset of k + 1 consecutive
points on the total interpolation grids {xα, . . . , xα+k}. However, the relative
position between the point x and the subset of points used for the interpolation
is arbitrary. In principle, it is not even required that x is somewhere between xα
and xα+k. However, in this case one would talk about extrapolation rather than
interpolation and this is clearly not a convenient option because it would lead
to a substantial deteriotation in the accuracy with which g(x) is determined.
As a consequence, it is convenient to choose the subset of points in such a way
that xα < x ≤ xα+k. However, the ambiguity remains because there are k
possible choices of the subset of points accordind to which xα < x ≤ xα+1, or
xα+1 < x ≤ xα+2, and so on.

In particular, to derive eq. (4) we have assumed that:

xα < x ≤ xα+1 . (49)

Let’s see how eq. (4) comes out. Using the standard Lagrange interpolation
procedure, we can approximate the function g in x as:

g(x) =

k∑
i=0

`
(k)
i (x)g(xα+i) (50)

1A discontinuity appears also at NLO if factorization and renormalization scales are not
equal.

9

where `
(k)
i is the i-th Lagrange polynomial of degree k which can be written as:

`
(k)
i (x) =

k∏
m=0,m 6=i

x− xα+m

xα+i − xα+m
. (51)

However, as we said, we impose that eq. (50) applies only for the assumption
in eq. (49) is fulfilled. We can then generalize it by writing:

g(x) = θ(x− xα)θ(xα+1 − x)

k∑
i=0

g(xα+i)

k∏
m=0,m 6=i

x− xα+m

xα+i − xα+m
. (52)

Now, if we want to relax the restriction in eq. (49), we just have to sum over all
nodes of the global interpolation grid, that is:

g(x) =

Nx∑
α=0

θ(x− xα)θ(xα+1 − x)

k∑
i=0

g(xα+i)

k∏
m=0,m 6=i

x− xα+m

xα+i − xα+m
. (53)

Defining β = α+ i, we can rewrite the equation above as:

g(x) =

Nx∑
β=0

g(xβ)

k∑
i=0,i≤β

θ(x−xβ−i)θ(xβ−i+1−x)

k∏
m=0,m 6=i

x− xβ−i+m
xβ − xβ−i+m

, (54)

where the additional condition i ≤ β comes from the condition α ≥ 0. Eq. (58)
is clearly equivalent to eq. (4), assuming that:

w
(k)
β (x) =

k∑
i=0,i≤β

θ(x− xβ−i)θ(xβ−i+1 − x)

k∏
m=0,m 6=i

x− xβ−i+m
xβ − xβ−i+m

. (55)

Now, instead of starting from the assumption in eq. (49), we start from the
more general condition:

xα+t < x ≤ xα+t+1 with t = 0, . . . , k − 1 , (56)

we have that the interpolation formula would look like this:

g(x) =

Nx∑
α=0

θ(x− xα+t)θ(xα+t+1 − x)

k∑
i=0

g(xα+i)

k∏
m=0,m 6=i

x− xα+m

xα+i − xα+m
, (57)

that can be rearranged as:

g(x) =

Nx∑
β=0

g(xβ)

k∑
i=0,i≤β

θ(x− xβ−i+t)θ(xβ−i+t+1 − x)

k∏
m=0,m 6=i

x− xβ−i+m
xβ − xβ−i+m

.

(58)
Therefore the “generalized” interpolation functions are:

w
(k)
β,t(x) =

k∑
i=0,i≤β

θ(x− xβ−i+t)θ(xβ−i+t+1 − x)

k∏
m=0,m6=i

x− xβ−i+m
xβ − xβ−i+m

, (59)

and they assume that:

xα+t < x ≤ xα+t+1 with t = 0, . . . , k − 1 . (60)

10

