
Intrinsic Charm Implementation

Valerio Bertonea

aPH Department, TH Unit, CERN, CH-1211 Geneva 23, Switzerland

Abstract

In these set of notes I will describe the strategy to include the intrinsic charm (IC) contribution to the FONLL structure
functions as implemented in APFEL. I will first consider the massive sector (and its massless limit), where the IC
implies the presence of the charm in the initial state with the consequence of additional diagrams to be include in the
computation. I will the consider the massless sector where the presence of an IC implies a retratment of the PDF
matching conditions at the charm threshold.
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1 Intrinsic Charm Contribution to the Massive Structure Functions

Assuming the presence of IC in the proton, the massive structure functions with Nf = 3 light flavours acquire
a further contribution coming from the presence of a massive charm in the initial state. As a consequence,
the massive structure functions get a term that is proportional to a static charm PDF, i.e. a PDF that, being
massive, does not evolve according to the DGLAP equantion. Such a contribution starts already at order α0

s

and has the novel effect to “allign” the massive scheme to the massless scheme in terms of power counting
because, contrary to what happens without IC, the two sectors start at α0

s.

1.1 Order α0
s Contributions

In order to write explicitly the form of such LO contributions to the DIS structure functions, I consider eq. (2)
of Ref. [1] where the function Q1 schould be indentified with the charm PDF. It should be noticed that in the
Nf = 3 scheme, such PDF does not obey the DGLAP equation because, due to the presence of the mass of the
charm mc, no large collinear logarithms appear in the calculation and thus there is no need to resum them.

From eq. (2) of [1] one reads that the O(α0
s) IC contributions to the massive structrure functions are given

by:

FFF,IC
1 (x,Q2) = S+Σ++ − 2m1m2S−

2∆ c(χ) (1.1a)

FFF,IC
2 (x,Q2) = S+∆

2Q2 2xc(χ) (1.1b)

xFFF,IC
3 (x,Q2) = 2R+xc(χ) (1.1c)

wherem1 andm2 are the masses of the incoming and outcoming quarks, respectively, while ∆ ≡ ∆(m2
1,m

2
2,−Q2)

with the function ∆ defined as:

∆(a, b, c) =
√
a2 + b2 + c2 − 2(ab+ ac+ bc) (1.2)

1
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and:
Σ±± = Q2 ±m2

2 ±m2
1 (1.3)

χ = x

2Q2 (Σ+− + ∆) (1.4)

The quantities S± and R±, instead, are linked to the EW couplings and depend on the vector boson that strikes
the heavy quark with mass m1 in the initial state. Notice that in eq. (1.1) the PDF c does not depend on any
factorization scale and, as mentioned before, the reason is that it is a static distribution of non-perturbative
origin that does not evolve according to the DGLAP equation.

In practice, assuming the presence of IC in the proton, the massive (FF) structure functions become:

FFF
i (x,Q2) −→ FFF

i (x,Q2) + FFF,IC
i (x,Q2) with i = 1, 2, 3 (1.5)

Now, for a purely electromagnetic process, where only a γ strikes the charm, one has:

S+ = S− = e2
c and R+ = 0 (1.6)

Moreover, in this case both the incoming and the outcoming quarks are of the same flavour (charm) therefore
we have m1 = m2 = mc. Under this conditions one finds:

FFF,IC
1 (x,Q2) = 1

2
√

1 + 4λ
e2
cc(χ) (1.7a)

FFF,IC
2 (x,Q2) =

(√
1 + 4λ

)
e2
cxc(χ) (1.7b)

xFFF,IC
3 (x,Q2) = 0 (1.7c)

with:
χ = x

2

(
1 +
√

1 + 4λ
)

= x

η
, (1.8)

where I have defined:

η = 2Q2

Σ+− + ∆ = 2
(

1 +
√

1 + 4λ
)−1

= 2
(

1 +
√

1 + 4λ
)−1

, (1.9)

with λ = m2
c

Q2 .
For a neutral current process, where all the γ, the Z and the interference γZ contributions are considered,

one has:

S± = Bc(B̃c) = e2
c − 2ecVeVcPZ + (V 2

e +A2
e)(V 2

c ±A2
c)P 2

Z and R+ = Dc = −2ecAcAePZ + 4VcAcVeAeP 2
Z

(1.10)
with:

Vc = 1
2 −

4
3 sin2 θW and Ac = 1

2 (1.11)

and
Ve = −1

2 + 2 sin2 θW and Ae = −1
2 (1.12)

the vector and the axial coupling of charm and electron to the Z and where:

PZ = 1
4 sin2 θW (1− sin2 θW )

Q2

Q2 +M2
Z

(1.13)

Here, exactly as in the electromagnetic case, m1 = m2 = mc so that one ends up with:

FFF,IC
1 (x,Q2) = Bc + 2λ(Bc − B̃c)

2
√

1 + 4λ
c(χ) , (1.14a)

FFF,IC
2 (x,Q2) =

(√
1 + 4λ

)
Bcxc(χ) , (1.14b)

xFFF,IC
3 (x,Q2) = 2Dcxc(χ) . (1.14c)
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Finally, for a charged current process, where a charged boson W± strikes the charm, one has:

S+ = 2|Vcs|2 , S− = 0 , and R+ = |Vcs|2 (1.15)

if the outcoming quark is a strange or an anti-strange, and:

S+ = 2|Vcd|2 , S− = 0 , and R+ = |Vcd|2 (1.16)

if the outcoming quark is a down or an anti-down.
In this case m1 = mc but m2 = 0 with the consequence that:

FFF,IC
1 (x,Q2) = |Vcj |2c(x) (1.17a)

FFF,IC
2 (x,Q2) = 2 (1 + λ) |Vcj |2xc(x) (1.17b)

xFFF,IC
3 (x,Q2) = 2|Vcj |2xc(x) (1.17c)

with j = d, s. Note that in this case η = 1 and thus χ = x.
In order to take into account the possible contributions due to intrinsic charm, one has to consider all

diagrams contributing to a given process. As far as the neutral current (electromagnetic) case is concerned, one
has to consider also the presence of c in the proton which, summed to the contribution of the c, gives:

FFF,IC
1 (x,Q2) = 1

2
√

1 + 4λ
Bcc

+(χ) = 1
2xBc

η2

2− η

[
1 + 2(1− η)

η2

(
1− B̃c

Bc

)]
χc+(χ) (1.18a)

FFF,IC
2 (x,Q2) = 2

√
1 + 4λ

1 +
√

1 + 4λ
Bcχc

+(χ) = (2− η)Bcχc+(χ) (1.18b)

xFFF,IC
3 (x,Q2) = 4

1 +
√

1 + 4λ
Dcχc

−(χ) = 2ηDcχc
−(χ) (1.18c)

where:
c± = c± c (1.19)

therefore:

FFF,IC
L (x,Q2) = FFF,IC

2 (x,Q2)− 2xFFF,IC
1 (x,Q2) = 1

2

(
1 + B̃c

Bc

)
41− η

2− ηBcχc
+(χ) (1.20)

In the charged current case, instead, one has to distinguish between neutrino and anti-neutrino scattering.
The neutrino scattering gives as a result the following structure functions:

F ν,FF,IC
1 (x,Q2) = (|Vcd|2 + |Vcs|2)c(x) (1.21a)

F ν,FF,IC
2 (x,Q2) = 2 (1 + λ) (|Vcd|2 + |Vcs|2)xc(x) (1.21b)

xF ν,FF,IC
3 (x,Q2) = 2(|Vcd|2 + |Vcs|2)xc(x) (1.21c)

F ν,FF,IC
L (x,Q2) = 2λ(|Vcd|2 + |Vcs|2)xc(x) (1.21d)

The anti-neutrino scattering instead gives as a result the following structure functions:

F ν,FF,IC
1 (x,Q2) = (|Vcd|2 + |Vcs|2)c(x) (1.22a)

F ν,FF,IC
2 (x,Q2) = 2 (1 + λ) (|Vcd|2 + |Vcs|2)xc(x) (1.22b)

xF ν,FF,IC
3 (x,Q2) = 2(|Vcd|2 + |Vcs|2)xc(x) (1.22c)

F ν,FF,IC
L (x,Q2) = 2λ(|Vcd|2 + |Vcs|2)xc(x) (1.22d)

It should be pointed out that since the charm quark belongs to the sea it is symmetric under isospin symmetry
and thus all the above structure functions are the same for proton and neutron.
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1.2 Massless Limit
When implementing the FONLL scheme, one also needs to consider the massless limit of the massive structuture
functions (FF0). To this end, we just need to take the limit for mc → 0 of eqs. (1.24), (1.25) and (3.5).
Considering that:

η −→
mc→0

1 ⇒ χ −→
mc→0

x , (1.23)

one finds :
FFF0,IC

1 (x,Q2) = 1
2Bcc

+(x) (1.24a)

FFF0,IC
2 (x,Q2) = Bcxc

+(x) (1.24b)

xFFF0,IC
3 (x,Q2) = 2Dcxc

−(x) (1.24c)

FFF0,IC
L (x,Q2) = 0 (1.24d)

and:
F ν,FF0,IC

1 (x,Q2) = (|Vcd|2 + |Vcs|2)c(x) (1.25a)

F ν,FF0,IC
2 (x,Q2) = 2(|Vcd|2 + |Vcs|2)xc(x) (1.25b)

xF ν,FF0,IC
3 (x,Q2) = 2(|Vcd|2 + |Vcs|2)xc(x) (1.25c)

F ν,FF0,IC
L (x,Q2) = 0 (1.25d)

and:
F ν,FF0,IC

1 (x,Q2) = (|Vcd|2 + |Vcs|2)c(x) (1.26a)

F ν,FF0,IC
2 (x,Q2) = 2(|Vcd|2 + |Vcs|2)xc(x) (1.26b)

xF ν,FF0,IC
3 (x,Q2) = 2(|Vcd|2 + |Vcs|2)xc(x) (1.26c)

F ν,FF0,IC
L (x,Q2) = 0 (1.26d)

1.3 Order αs Contributions
We can now turn to describe the NLO contributions to the IC component of the DIS structure functions.
The explicit expressions can be found in Appendix C of Ref. [1]. The main difficulty here is the fact that are
particularly involved and it is not possible to identify the singular terms from the regular ones. As a consequence,
in this case we have to adopt a different strategy.

As we know, when convoluting a coefficient function with a PDF, say, f(y) interpolated over an x-space grid
to obtaing the structure function F (x,m1,m2) the resulting expression is(1):

F (xβ ,m1,m2) = xβ

ˆ 1

xβ

dy

y
C̃

(
xβ
y
,m1,m2

)
f(y) =

Nx∑
α=0

Γβα(m1,m2)xαf(xα, t) , (1.27)

with:
Γβα(m1,m2) =

ˆ d

c

dy C̃ (y,m1,m2)w(k)
α

(
xβ
y

)
, (1.28)

where w(k)
α is the order-k interpolation functions on the grid node α and:

c = max(xβ , xβ/xα+1) and d = min(1, xβ/xα−k) . (1.29)

On the other hand, as it usually happens when mass effects are taken into account, the phase-space available
to the process gets reduced and this is reflected by the fact that the convolution between coeffient functions
and PDFs needed to obtain the structure functions takes the following form:

F (x) = x

ˆ 1

χ

dz

z
C(z)f

(χ
z

)
= x

ˆ 1

χ

dz

z
C
(χ
z

)
f(z) , (1.30)

1 Note that the factor xβ in front of the intergral in eq. (1.27) is not always included in the definition of the structure functions.
In particular, while F2 and FL include it, F1 and and F3 do not so we need to keep it in mind in what follows.
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where χ = x/η with η ≤ 1 given in eq. (1.9) and where we have dropped all the unnecessary mass dependencies.
Usually, expressions for the coefficient functions are given in this form. However, in order to write this integral
in the form given in eq. (1.27), that is in such a way that lower bound of the integral is not the rescaled variable
χ but the physical Bjorken x, one needs to perform the change of variable y = ηz, so that:

F (x) = x

ˆ η

x

dy

y
C

(
y

η

)
f

(
x

y

)
= x

ˆ 1

x

dy

y
C̃(y)f

(
x

y

)
, (1.31)

with:
C̃(y) ≡ θ

(
1− y

η

)
C

(
y

η

)
. (1.32)

The kind of expressions we have to deal with have this apparently simple form:

C(z) = R(z)
(1− z)+

+ Lδ(1− z) , (1.33)

where R is a regular function in z = 1, that is:

R(1) = lim
z→1

R(z) = K , (1.34)

K being a finite function of the masses, and L is also constant in z and depends only on the masses.
Now, plugging eq. (1.32) into eq. (1.28) and taking into account eq. (1.33), we have that:

Γβα =
ˆ d

c

dy θ

(
1− y

η

)
C

(
y

η

)
w(k)
α

(
xβ
y

)
=
ˆ d̄

c

dy C

(
y

η

)
w(k)
α

(
xβ
y

)

=
ˆ d̄

c

dy

[
1

(1− y/η)+
R

(
y

η

)
+ δ

(
1− y

η

)
L

]
w(k)
α

(
xβ
y

)

=
ˆ d̄

c

dy
1

1− y/η

[
R

(
y

η

)
w(k)
α

(
xβ
y

)
−R(1)w(k)

α

(
xβ
η

)
θ(d̄− η)

]

+
[
R(1) ln

(
1− c

η

)
θ(d̄− η) + L

]
ηw(k)

α

(
xβ
η

)
.

(1.35)

where we have redefined:
d̄ = min(η, xβ/xα−k) . (1.36)

Finally, changing the integration variable in z = y/η, we have:

Γβα = η

ˆ d̄/η

c/η

dz
1

1− z

[
R (z)w(k)

α

(
xβ
ηz

)
−R(1)w(k)

α

(
xβ
η

)
θ(d̄− η)

]

+ η

[
R(1) ln

(
1− c

η

)
θ(d̄− η) + L

]
w(k)
α

(
xβ
η

)
.

(1.37)

As a remark, it should be noted that the Heaviside function θ(d̄ − η) is indeed superflous because the same
condition is guaranteed by the form of the interpolation functions. As a consequence, we can simply write:

Γβα = η

ˆ d̄/η

c/η

dz
1

1− z

[
R (z)w(k)

α

(
xβ
ηz

)
−R(1)w(k)

α

(
xβ
η

)]

+ η

[
R(1) ln

(
1− c

η

)
+ L

]
w(k)
α

(
xβ
η

)
.

(1.38)

Explicit expressions for the functions R and L for the structure functions xF1, F2 and xF3 can be extracted
Appendix C of Ref. [1]. The relative expressions for FL can be constructed using the usual relation:

FL(x,Q) = F2(x,Q)− 2xF1(x,Q) . (1.39)
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Using the same notation of Ref. [1] and dropping an overall factor αs/4π, we can write the O(αs) contribution
to the “reduced” structure functions as:

xF̂QS
(1)

i = x

ˆ 1

χ

dz

z
2Ĥq

i (z)c
(χ
z

)
with i = 1, 2, 3 , (1.40)

and:
2Ĥq

i (z) = 2CF
[
(Si + Vi)δ(1− z) + (1− z)

(1− z)+

ŝ−m2
2

8ŝ N−1
i f̂Qi (z)

]
. (1.41)

The standard structrure functions can be recovered just by applying the correct kinematic factors. We will do
this in the next section where we will consider the NC and the CC sectors separately.

It is now easy to identify the function C(z) in eq. (1.30) with 2Ĥq
i (z). As a consequence, we also have that

the function C̃(y) in eq. (1.31) is equal to:

C̃(y) = θ

(
1− y

η

)
2Ĥq

i

(
y

η

)
. (1.42)

Finally, comparing eq. (1.41) to eq. (1.33), we can easily make the following identifications:

R(z) = 2CF (1− z) ŝ−m
2
2

8ŝ N−1
i f̂Qi (z) ,

L = 2CF (Si + Vi) .
(1.43)

In the following, we will treat the NC and the CC cases separately, showing how to implement the O(αs)
corrections to the relative structure functions keeping into account all the relevant kinematic factors. To do
so, using eq (7) of Ref. [1], we write here the general correspondence between the standard and the reduced
structure functions that holds at all orders in perturbation theory:

2xF1 = S+

[
Σ++ − 2m1m2

S−
S+

∆

]
xF̂QS1 ,

F2 = S+

[
∆
Q2

]
xF̂QS2 ,

xF3 = R+ [2] xF̂QS3 ,

FL =
[

2S+

S+ + S−

]
NC only

(F2 − 2xF1)

(1.44)

Notice that we have factorized a factor which in APFEL is included a posteriori when constructing the structure
functions and that thus does not go into the coefficient functions. The factors in the square bracket goes into
the coefficient functions with the exception of the factor in front of FL that must be included only the NC case
to balance the factor in the r.h.s. of eq. (1.20)

In the NC case, we have:
m1 = m2 = mc

S+ = Bq
S− = B̃q
R+ = Dq

(1.45)

In addition, the parameter η to be used in eq. (1.38) takes the form:

η = 2
1 +
√

1 + 4λ
. (1.46)

Finally, to obtain the coefficient functions to implement, one just needs to multiply the functions R and L given
in eq. (1.43) by the kinematical factor that multiplies the respective xF̂QS

(1)

i in the equation above.
In the CC case, where the outcoming parton is massless (either a strange or a down quark), the kinematics

is simpler than in the NC case. In addition, no mass singularies are caused by the masslessness of the outcoming
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parton. Therefore the limit m2 → 0 can safely be taken. In fact, in the CC case for a strange+down quark in
the final state,we have:

m1 = mc

m2 = 0
S+ = 2(|Vcs|2 + |Vcd|2)
S− = 0
R+ = |Vcs|2 + |Vcd|2

(1.47)

However, for numerical reasons we cannot really set m2 = 0. We set it instead to a small number. As a further
simplification:

η = 1 (1.48)

As a consequence, eq. (1.38) reduces to:

Γβα =
ˆ d

c

dz
1

1− z

[
R (z)w(k)

α

(xβ
z

)
−R(1)δαβ

]
+ [R(1) ln (1− c) + L] δαβ . (1.49)

1.4 Massless Limit
What is left to be done to allow us to implement the FONLL scheme with IC to O(αs) is to compute and
implement the massless limit, i.e. m1 = mc → 0, of the O(αs) coeffient functions. We do not really need to
compute these coeffient functions because in Ref. [1] the authors show that the logarithmically divergent part
of all coefficient functions is equal to:

D(x,m1, µF ) = 2CF
[

1 + x2

1− x

(
ln µ

2
F

m2
1
− 1− 2 ln(1− x)

)]
+

= 2CF

{(
ln µ

2
F

m2
1
− 1
)[

(1 + x2) 1
1− x

]
+
− 2

[
(1 + x2) ln(1− x)

1− x

]
+

}
.

(1.50)

We can now manipulate this expression using the following property of the plus-prescripted distributions:

[g(x)f(x)]+ = [g(x)]+ f(x)− δ(1− x)
ˆ 1

0
dy [g(y)]+ f(y) , (1.51)

so that:

D(x,m1, µF ) = 2CF

{
ln µ

2
F

m2
1

(
2
[

1
1− x

]
+
− (1 + x) + 3

2δ(1− x)
)

− 4
[

ln(1− x)
1− x

]
+
− 2

[
1

1− x

]
+

+ 2(1 + x) ln(1− x) + (1 + x) + 2δ(1− x)
}

= 2CF

{
− 4

[
ln(1− x)

1− x

]
+

+ 2
(

ln µ
2
F

m2
1
− 1
)[

1
1− x

]
+

+ 2(1 + x) ln(1− x)−
(

ln µ
2
F

m2
1
− 1
)

(1 + x) +
(

3
2 ln µ

2
F

m2
1

+ 2
)
δ(1− x)

}
.

(1.52)

Finally, what we need to do to obtain the massless limit is to add to the MS zero-mass coeffient functions
the term in eq. (1.52).

In order to complete the picture, we need to consider one additional term that comes out when applying the
FONLL recipe. In particular, in the presence of IC the matching conditions for PDFs need to be generalized to
allow for the presence of an intrinsic component of a particular the charm quark below its threshold (e.g. see
eq. (8) of Ref. [2]). Such a matching condition reads:

c(3)(x) = c(4)(x, µF )− α
(4)
s (µF )

4π

[
D(x,m1, µF )⊗ c(4)(x, µF ) + ln µ

2
F

m2
1
P (0)
qg ⊗ g(4)(x, µF )

]
+O(α2

s) . (1.53)
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with:

P (0)
qg (x) = 2TR

[
x2 + (1− x)2] . (1.54)

As we will see below, the additional piece to be added to the FONLL structure function in the presence of IC
is:

∆F (x,Q) =
[
C(3) (x,Q, µF ,m2

1
)
− C(3,0) (x,Q, µF ,m1)

]
⊗ c(3)(x) , (1.55)

where C(3) and C(3,0) are the massive IC coefficient function and its massless limit, respectively.

Combining eq. (1.53) and eq. (1.55) up to O(αs) and dropping all dependencies, leads to:

∆F = x
[(
C(3),0 − C(3,0),0

)
+ α(3)

s

(
C(3),1 − C(3,0),1

)]
⊗

[
c(4) − α(4)

s

(
D ⊗ c(4) + ln µ

2
F

m2
1
P (0)
qg ⊗ g(4)

)]

= x
[(
C(3),0 − C(3,0),0

)
+ α(4)

s

(
C(3),1 − C(3,0),1

)]
⊗ c(4)

− α(4)
s x

(
C(3),0 − C(3,0),0

)
⊗
(
D ⊗ c(4) + ln µ

2
F

m2
1
P (0)
qg ⊗ g(4)

)
.

(1.56)

It is clear that the last line of the equation above originates from the matching conditions and is not contained
in the massive coefficient functions. Therefore it has to be added by hand. We then need to understand how to
treat these additional terms and the starting general consideration is that for all structure functions(2):

C(3),0 ∝ δ(1− χ) = δ(1− x/η) ,
C(3,0),0 ∝ δ(1− x) . (1.57)

2 In some cases, like the massless limit of FL, the proportionality constant is simply zero. In some other cases, like in the CC
sector, it turns out that χ = x.
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As a consequence, the four additional terms can be written on the grid as follows:

xβC
(3),0 ⊗D ⊗ c(4) ∝ η

ˆ 1

xβ/η

dyD(y,m1, µF )xβ
ηy
c(4)

(
xβ
ηy
, µF

)

=
ˆ 1

xβ

dzθ(η − z)D
(
z

η
,m1, µF

)
xβ
z
c(4)

(xβ
z
, µF

)

=
Nx∑
α=0

[
η

ˆ d/η

c/η

dy D (y,m1, µF )w(k)
α

(
xβ
ηy

)]
xαc

(4)(xα, µF )

xβC
(3,0),0 ⊗D ⊗ c(4) ∝

ˆ 1

xβ

dyD(y,m1, µF )xβ
y
c(4)

(
xβ
y
, µF

)

=
Nx∑
α=0

[ˆ d

c

dy D (y,m1, µF )w(k)
α

(
xβ
y

)]
xαc

(4)(xα, µF )

xβC
(3),0 ⊗ P (0)

qg ⊗ g(4) ∝ η

ˆ 1

xβ/η

dyP (0)
qg (y)xβ

ηy
g(4)

(
xβ
ηy
, µF

)

=
ˆ 1

xβ

dzθ(η − z)P (0)
qg

(
z

η

)
xβ
z
g(4)

(xβ
z
, µF

)

=
Nx∑
α=0

[
η

ˆ d/η

c/η

dy P (0)
qg (y)w(k)

α

(
xβ
ηy

)]
xαg

(4)(xα, µF )

xβC
(3,0),0 ⊗ P (0)

qg ⊗ g(4) ∝
ˆ 1

xβ

dyP (0)
qg (y)xβ

y
g(4)

(
xβ
y
, µF

)

=
Nx∑
α=0

[ˆ d

c

dy P (0)
qg (y)w(k)

α

(
xβ
y

)]
xαg

(4)(xα, µF )

(1.58)

It should be noted that, being Pqg a regular functions, the third and fourth equations can be implemented as
they are. The second equation instead is identical to the additional term computed to implement the massless
limit of the massive struncture functions and thus it does not need to be recomputed. Finally, the only term
that needs some more care is that in the first equation. However, it can be easily computed using the same
procedure follwed to derive eq. (1.38).

2 The FONLL Structure Functions

Once the inclusion of the IC into the massive sectors has been established, one can construct the FONLL
structure functions using the usual recipe but now including the additional contributions. Calling FFONLL

i the
usual FONLL structure functions without IC and FFONLL,IC

i the structure function with IC, the relation is:

FFONLL,IC
i = FFF

i + FFF,IC
i +D(Q2)

[
FZM
i − FFF0

i − FFF0,IC
i

]
= FFONLL

i +
[
FFF,IC
i −D(Q2)FFF0,IC

i

]
= FFONLL

i + ∆FFONLL,IC
i

(2.1)

where D(Q2) is a damping factor needed to quench undesired possibly large subleading terms at small energies.
In the rest of theses notes I will concentrate on the implementation of the ∆FFONLL,IC

i in APFEL.
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3 The Implementation

At O(α0
s) there is no convolution between PDFs and coefficient functions and the charm PDFs appear directly

in the expressions. According to whether one considers CC or NC heavy-quark-initiated processes, PDFs enter
either as xc(x), where x is the measured Bjorken variable, or as χc(χ), where χ is the rescaled variable defined
in eq. (1.8). Now, in order to achive a proper implementation of the FONLL scheme in APFEL, I need to know
all the component of the struncture functions (massive and massless) on the same x-space interpolation grid,
defined as {xα}, , α ∈= 0, . . . , Nx. At LO, this essentially means knowing both xc(x) and χc(χ) on the same
grid. But choosing to tabulate xc(x), such that in the CC case:

FCC(xα) ∝ xαc(xα) = c̃(xα) =
Nx∑
β=0

δαβ c̃(xβ) , (3.1)

in the NC case, using the usual interpolation formula, the structure function can be expanded as:

FNC(xα) ∝ χ(xα)c(χ(xα)) = c̃(χ(xα)) =
Nx∑
β=0

w
(k)
β (χ(xα))c̃(xβ) =

Nx∑
β=0

w
(k)
β

(
xα
η

)
c̃(xβ) . (3.2)

As a consequence, in the APFEL framework, quantities to store are δαβ and w(k)
β (xα/η) to be combined in a

proper way to the other coefficient functions. First of all, let us compute case by case the quantity ∆FFONLL,IC
i .

In the NC case one has:

∆FFONLL,IC
2 (xα) =

Nx∑
β=0

Bc

[
(2− η)w(k)

β

(
xα
η

)
−D(Q2)δαβ

]
c̃+(xβ) (3.3a)

xα∆FFONLL,IC
3 (xα) =

Nx∑
β=0

Dc

[
2ηw(k)

β

(
xα
η

)
−D(Q2)2δαβ

]
c̃−(xβ) (3.3b)

∆FFONLL,IC
L (xα) =

Nx∑
β=0

Bc

[
1− 1

2

(
1− B̃c

Bc

)]
41− η

2− ηw
(k)
β

(
xα
η

)
c̃+(xβ) (3.3c)

Finally, the CC case is slightly simpler:

∆F ν,FONLL,IC
2 (xα) =

Nx∑
β=0

2(|Vcd|2 + |Vcs|2)
[
(1 + λ)−D(Q2)

]
δαβ c̃(xβ) (3.4a)

xα∆F ν,FONLL,IC
3 (xα) =

Nx∑
β=0

2(|Vcd|2 + |Vcs|2)
[
1−D(Q2)

]
δαβ c̃(xβ) (3.4b)

∆F ν,FONLL,IC
L (xα) =

Nx∑
β=0

2(|Vcd|2 + |Vcs|2)λδαβ c̃(xβ) (3.4c)

and:

∆F ν,FONLL,IC
2 (xα) =

Nx∑
β=0

2(|Vcd|2 + |Vcs|2)
[
(1 + λ)−D(Q2)

]
δαβ c̃(xβ) (3.5a)

xα∆F ν,FONLL,IC
3 (xα) =

Nx∑
β=0

2(|Vcd|2 + |Vcs|2)
[
1−D(Q2)

]
δαβ c̃(xβ) (3.5b)

∆F ν,FONLL,IC
L (xα) =

Nx∑
β=0

2(|Vcd|2 + |Vcs|2)λδαβ c̃(xβ) (3.5c)

Now, since structure functions in APFEL are expressed in the so-called evolution basis {Σ, g, V, V3, . . . }, we
only need to re-express the charm PDFs in terms of the distributions in the evolution basis. In particular, it is
easy to show that:

c+ = 1
6Σ− 1

4T15 + 1
20T24 + 1

30T35 , (3.6)
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and:
c− = 1

6V −
1
4V15 + 1

20V24 + 1
30V35 . (3.7)

In addition:
c = 1

2(c+ + c−) and c = 1
2(c+ − c−) . (3.8)

It should finally be noticed that the LO coefficient functions on the grid as written in eqs. (3.3) and (3.4)
are non-singlet like and as such should be treated.

In the NC sector, the IC contributions to the massive stucture functions represent the only possible non-
singlet contribution(3). As a consequence, the IC fills the non-singlet “slot” and does not interfere with the
non-IC part making the implementation in APFEL easier. Unfortunately this is not the case in the CC sector
where instead the IC contribution overlaps with the non-IC one in a non-trivial way. In fact, even at LO the
CC IC diagrams have a different kinematics as compared to the non-IC ones and thus their combination on the
interpolation grid is not strightforward. What we need to do in APFEL is creating a new ad hoc slot for the
IC contrbutions in such a way that it does not interfere with the other contributions(4).

To conclude the section on LO implementation, we mention that, since the contributions reported above
are to be included to the NF = 3 massive scheme (be it full or asymptotic), heavy quark PDFs different from
charm, i.e. bottom and top, do not contribute. As a consequence, it turns out that:

T24 = T35 = Σ ,
V24 = V35 = V ,

(3.9)

and thus eq. (3.8) can be written as:

c = 1
8(Σ− T15 + V − V15) and c = 1

8(Σ− T15 − V + V15) . (3.10)

References

[1] S. Kretzer and I. Schienbein, Phys. Rev. D 58 (1998) 094035 [hep-ph/9805233].

[2] R. D. Ball, V. Bertone, M. Bonvini, S. Forte, P. G. Merrild, J. Rojo and L. Rottoli, arXiv:1510.00009
[hep-ph].

3 This is essentially due to the fact that, requiring that the incoming photon (or Z) only couples to the charm, the photon vertex
is never directly connected with the light initial state.

4 In order not to burden APFEL with any additional big array, we exploit the fact that the massive CC coefficient functions
are presently known up to O(αs) and up to this order no pure-singlet contribution is present. We then “artificially” place the IC
contribution in the pure-singlet slot bearing in mind that if ever the O(α2

s) corrections to this process, which contain a pure-singlet
contribution, will be computed, we will need to move the IC contribution in a real new slot.


	Intrinsic Charm Contribution to the Massive Structure Functions
	Order s0 Contributions
	Massless Limit
	Order s Contributions
	Massless Limit

	The FONLL Structure Functions
	The Implementation

