/// \file /// \ingroup tutorial_roostats /// \notebook -js /// TwoSidedFrequentistUpperLimitWithBands /// /// /// This is a standard demo that can be used with any ROOT file /// prepared in the standard way. You specify: /// - name for input ROOT file /// - name of workspace inside ROOT file that holds model and data /// - name of ModelConfig that specifies details for calculator tools /// - name of dataset /// /// With default parameters the macro will attempt to run the /// standard hist2workspace example and read the ROOT file /// that it produces. /// /// You may want to control: /// ~~~{.cpp} /// double confidenceLevel=0.95; /// double additionalToysFac = 1.; /// int nPointsToScan = 12; /// int nToyMC = 200; /// ~~~ /// /// This uses a modified version of the profile likelihood ratio as /// a test statistic for upper limits (eg. test stat = 0 if muhat>mu). /// /// Based on the observed data, one defines a set of parameter points /// to be tested based on the value of the parameter of interest /// and the conditional MLE (eg. profiled) values of the nuisance parameters. /// /// At each parameter point, pseudo-experiments are generated using this /// fixed reference model and then the test statistic is evaluated. /// The auxiliary measurements (global observables) associated with the /// constraint terms in nuisance parameters are also fluctuated in the /// process of generating the pseudo-experiments in a frequentist manner /// forming an 'unconditional ensemble'. One could form a 'conditional' /// ensemble in which these auxiliary measurements are fixed. Note that the /// nuisance parameters are not randomized, which is a Bayesian procedure. /// Note, the nuisance parameters are floating in the fits. For each point, /// the threshold that defines the 95% acceptance region is found. This /// forms a "Confidence Belt". /// /// After constructing the confidence belt, one can find the confidence /// interval for any particular dataset by finding the intersection /// of the observed test statistic and the confidence belt. First /// this is done on the observed data to get an observed 1-sided upper limt. /// /// Finally, there expected limit and bands (from background-only) are /// formed by generating background-only data and finding the upper limit. /// The background-only is defined as such that the nuisance parameters are /// fixed to their best fit value based on the data with the signal rate fixed to 0. /// The bands are done by hand for now, will later be part of the RooStats tools. /// /// On a technical note, this technique IS the generalization of Feldman-Cousins /// with nuisance parameters. /// /// Building the confidence belt can be computationally expensive. /// Once it is built, one could save it to a file and use it in a separate step. /// /// We can use PROOF to speed things along in parallel, however, /// the test statistic has to be installed on the workers /// so either turn off PROOF or include the modified test statistic /// in your $ROOTSYS/roofit/roostats/inc directory, /// add the additional line to the LinkDef.h file, /// and recompile root. /// /// Note, if you have a boundary on the parameter of interest (eg. cross-section) /// the threshold on the two-sided test statistic starts off at moderate values and plateaus. /// /// [#0] PROGRESS:Generation -- generated toys: 500 / 999 /// NeymanConstruction: Prog: 12/50 total MC = 39 this test stat = 0 /// SigXsecOverSM=0.69 alpha_syst1=0.136515 alpha_syst3=0.425415 beta_syst2=1.08496 [-1e+30, 0.011215] in interval = 1 /// /// this tells you the values of the parameters being used to generate the pseudo-experiments /// and the threshold in this case is 0.011215. One would expect for 95% that the threshold /// would be ~1.35 once the cross-section is far enough away from 0 that it is essentially /// unaffected by the boundary. As one reaches the last points in the scan, the /// theshold starts to get artificially high. This is because the range of the parameter in /// the fit is the same as the range in the scan. In the future, these should be independently /// controlled, but they are not now. As a result the ~50% of pseudo-experiments that have an /// upward fluctuation end up with muhat = muMax. Because of this, the upper range of the /// parameter should be well above the expected upper limit... but not too high or one will /// need a very large value of nPointsToScan to resolve the relevant region. This can be /// improved, but this is the first version of this script. /// /// Important note: when the model includes external constraint terms, like a Gaussian /// constraint to a nuisance parameter centered around some nominal value there is /// a subtlety. The asymptotic results are all based on the assumption that all the /// measurements fluctuate... including the nominal values from auxiliary measurements. /// If these do not fluctuate, this corresponds to an "conditional ensemble". The /// result is that the distribution of the test statistic can become very non-chi^2. /// This results in thresholds that become very large. /// /// \macro_image /// \macro_output /// \macro_code /// /// \author Kyle Cranmer,Contributions from Aaron Armbruster, Haoshuang Ji, Haichen Wang and Daniel Whiteson #include "TFile.h" #include "TROOT.h" #include "TH1F.h" #include "TCanvas.h" #include "TSystem.h" #include <iostream> #include "RooWorkspace.h" #include "RooSimultaneous.h" #include "RooAbsData.h" #include "RooStats/ModelConfig.h" #include "RooStats/FeldmanCousins.h" #include "RooStats/ToyMCSampler.h" #include "RooStats/PointSetInterval.h" #include "RooStats/ConfidenceBelt.h" #include "RooStats/RooStatsUtils.h" #include "RooStats/ProfileLikelihoodTestStat.h" using namespace RooFit; using namespace RooStats; using namespace std; bool useProof = false; // flag to control whether to use Proof int nworkers = 0; // number of workers (default use all available cores) // ------------------------------------------------------- void TwoSidedFrequentistUpperLimitWithBands(const char *infile = "", const char *workspaceName = "combined", const char *modelConfigName = "ModelConfig", const char *dataName = "obsData") { double confidenceLevel = 0.95; // degrade/improve number of pseudo-experiments used to define the confidence belt. // value of 1 corresponds to default number of toys in the tail, which is 50/(1-confidenceLevel) double additionalToysFac = 0.5; int nPointsToScan = 20; // number of steps in the parameter of interest int nToyMC = 200; // number of toys used to define the expected limit and band // ------------------------------------------------------- // First part is just to access a user-defined file // or create the standard example file if it doesn't exist const char *filename = ""; if (!strcmp(infile, "")) { filename = "results/example_combined_GaussExample_model.root"; bool fileExist = !gSystem->AccessPathName(filename); // note opposite return code // if file does not exists generate with histfactory if (!fileExist) { #ifdef _WIN32 cout << "HistFactory file cannot be generated on Windows - exit" << endl; return; #endif // Normally this would be run on the command line cout << "will run standard hist2workspace example" << endl; gROOT->ProcessLine(".! prepareHistFactory ."); gROOT->ProcessLine(".! hist2workspace config/example.xml"); cout << "\n\n---------------------" << endl; cout << "Done creating example input" << endl; cout << "---------------------\n\n" << endl; } } else filename = infile; // Try to open the file TFile *file = TFile::Open(filename); // if input file was specified byt not found, quit if (!file) { cout << "StandardRooStatsDemoMacro: Input file " << filename << " is not found" << endl; return; } // ------------------------------------------------------- // Now get the data and workspace // get the workspace out of the file RooWorkspace *w = (RooWorkspace *)file->Get(workspaceName); if (!w) { cout << "workspace not found" << endl; return; } // get the modelConfig out of the file ModelConfig *mc = (ModelConfig *)w->obj(modelConfigName); // get the modelConfig out of the file RooAbsData *data = w->data(dataName); // make sure ingredients are found if (!data || !mc) { w->Print(); cout << "data or ModelConfig was not found" << endl; return; } cout << "Found data and ModelConfig:" << endl; mc->Print(); // ------------------------------------------------------- // Now get the POI for convenience // you may want to adjust the range of your POI RooRealVar *firstPOI = (RooRealVar *)mc->GetParametersOfInterest()->first(); /* firstPOI->setMin(0);*/ /* firstPOI->setMax(10);*/ // ------------------------------------------------------- // create and use the FeldmanCousins tool // to find and plot the 95% confidence interval // on the parameter of interest as specified // in the model config // REMEMBER, we will change the test statistic // so this is NOT a Feldman-Cousins interval FeldmanCousins fc(*data, *mc); fc.SetConfidenceLevel(confidenceLevel); fc.AdditionalNToysFactor(additionalToysFac); // improve sampling that defines confidence belt // fc.UseAdaptiveSampling(true); // speed it up a bit, but don't use for expected limits fc.SetNBins(nPointsToScan); // set how many points per parameter of interest to scan fc.CreateConfBelt(true); // save the information in the belt for plotting // ------------------------------------------------------- // Feldman-Cousins is a unified limit by definition // but the tool takes care of a few things for us like which values // of the nuisance parameters should be used to generate toys. // so let's just change the test statistic and realize this is // no longer "Feldman-Cousins" but is a fully frequentist Neyman-Construction. // fc.GetTestStatSampler()->SetTestStatistic(&onesided); // ((ToyMCSampler*) fc.GetTestStatSampler())->SetGenerateBinned(true); ToyMCSampler *toymcsampler = (ToyMCSampler *)fc.GetTestStatSampler(); ProfileLikelihoodTestStat *testStat = dynamic_cast<ProfileLikelihoodTestStat *>(toymcsampler->GetTestStatistic()); // Since this tool needs to throw toy MC the PDF needs to be // extended or the tool needs to know how many entries in a dataset // per pseudo experiment. // In the 'number counting form' where the entries in the dataset // are counts, and not values of discriminating variables, the // datasets typically only have one entry and the PDF is not // extended. if (!mc->GetPdf()->canBeExtended()) { if (data->numEntries() == 1) fc.FluctuateNumDataEntries(false); else cout << "Not sure what to do about this model" << endl; } // We can use PROOF to speed things along in parallel // However, the test statistic has to be installed on the workers // so either turn off PROOF or include the modified test statistic // in your $ROOTSYS/roofit/roostats/inc directory, // add the additional line to the LinkDef.h file, // and recompile root. if (useProof) { ProofConfig pc(*w, nworkers, "", false); toymcsampler->SetProofConfig(&pc); // enable proof } if (mc->GetGlobalObservables()) { cout << "will use global observables for unconditional ensemble" << endl; mc->GetGlobalObservables()->Print(); toymcsampler->SetGlobalObservables(*mc->GetGlobalObservables()); } // Now get the interval PointSetInterval *interval = fc.GetInterval(); ConfidenceBelt *belt = fc.GetConfidenceBelt(); // print out the interval on the first Parameter of Interest cout << "\n95% interval on " << firstPOI->GetName() << " is : [" << interval->LowerLimit(*firstPOI) << ", " << interval->UpperLimit(*firstPOI) << "] " << endl; // get observed UL and value of test statistic evaluated there RooArgSet tmpPOI(*firstPOI); double observedUL = interval->UpperLimit(*firstPOI); firstPOI->setVal(observedUL); double obsTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*data, tmpPOI); // Ask the calculator which points were scanned RooDataSet *parameterScan = (RooDataSet *)fc.GetPointsToScan(); RooArgSet *tmpPoint; // make a histogram of parameter vs. threshold TH1F *histOfThresholds = new TH1F("histOfThresholds", "", parameterScan->numEntries(), firstPOI->getMin(), firstPOI->getMax()); histOfThresholds->GetXaxis()->SetTitle(firstPOI->GetName()); histOfThresholds->GetYaxis()->SetTitle("Threshold"); // loop through the points that were tested and ask confidence belt // what the upper/lower thresholds were. // For FeldmanCousins, the lower cut off is always 0 for (Int_t i = 0; i < parameterScan->numEntries(); ++i) { tmpPoint = (RooArgSet *)parameterScan->get(i)->clone("temp"); // cout <<"get threshold"<<endl; double arMax = belt->GetAcceptanceRegionMax(*tmpPoint); double poiVal = tmpPoint->getRealValue(firstPOI->GetName()); histOfThresholds->Fill(poiVal, arMax); } TCanvas *c1 = new TCanvas(); c1->Divide(2); c1->cd(1); histOfThresholds->SetMinimum(0); histOfThresholds->Draw(); c1->cd(2); // ------------------------------------------------------- // Now we generate the expected bands and power-constraint // First: find parameter point for mu=0, with conditional MLEs for nuisance parameters RooAbsReal *nll = mc->GetPdf()->createNLL(*data); RooAbsReal *profile = nll->createProfile(*mc->GetParametersOfInterest()); firstPOI->setVal(0.); profile->getVal(); // this will do fit and set nuisance parameters to profiled values RooArgSet *poiAndNuisance = new RooArgSet(); if (mc->GetNuisanceParameters()) poiAndNuisance->add(*mc->GetNuisanceParameters()); poiAndNuisance->add(*mc->GetParametersOfInterest()); w->saveSnapshot("paramsToGenerateData", *poiAndNuisance); RooArgSet *paramsToGenerateData = (RooArgSet *)poiAndNuisance->snapshot(); cout << "\nWill use these parameter points to generate pseudo data for bkg only" << endl; paramsToGenerateData->Print("v"); RooArgSet unconditionalObs; unconditionalObs.add(*mc->GetObservables()); unconditionalObs.add(*mc->GetGlobalObservables()); // comment this out for the original conditional ensemble double CLb = 0; double CLbinclusive = 0; // Now we generate background only and find distribution of upper limits TH1F *histOfUL = new TH1F("histOfUL", "", 100, 0, firstPOI->getMax()); histOfUL->GetXaxis()->SetTitle("Upper Limit (background only)"); histOfUL->GetYaxis()->SetTitle("Entries"); for (int imc = 0; imc < nToyMC; ++imc) { // set parameters back to values for generating pseudo data // cout << "\n get current nuis, set vals, print again" << endl; w->loadSnapshot("paramsToGenerateData"); // poiAndNuisance->Print("v"); RooDataSet *toyData = 0; // now generate a toy dataset for the main measurement if (!mc->GetPdf()->canBeExtended()) { if (data->numEntries() == 1) toyData = mc->GetPdf()->generate(*mc->GetObservables(), 1); else cout << "Not sure what to do about this model" << endl; } else { // cout << "generating extended dataset"<<endl; toyData = mc->GetPdf()->generate(*mc->GetObservables(), Extended()); } // generate global observables // need to be careful for simpdf. // In ROOT 5.28 there is a problem with generating global observables // with a simultaneous PDF. In 5.29 there is a solution with // RooSimultaneous::generateSimGlobal, but this may change to // the standard generate interface in 5.30. RooSimultaneous *simPdf = dynamic_cast<RooSimultaneous *>(mc->GetPdf()); if (!simPdf) { RooDataSet *one = mc->GetPdf()->generate(*mc->GetGlobalObservables(), 1); const RooArgSet *values = one->get(); RooArgSet *allVars = mc->GetPdf()->getVariables(); *allVars = *values; delete allVars; delete one; } else { RooDataSet *one = simPdf->generateSimGlobal(*mc->GetGlobalObservables(), 1); const RooArgSet *values = one->get(); RooArgSet *allVars = mc->GetPdf()->getVariables(); *allVars = *values; delete allVars; delete one; } // get test stat at observed UL in observed data firstPOI->setVal(observedUL); double toyTSatObsUL = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData, tmpPOI); // toyData->get()->Print("v"); // cout <<"obsTSatObsUL " <<obsTSatObsUL << "toyTS " << toyTSatObsUL << endl; if (obsTSatObsUL < toyTSatObsUL) // not sure about <= part yet CLb += (1.) / nToyMC; if (obsTSatObsUL <= toyTSatObsUL) // not sure about <= part yet CLbinclusive += (1.) / nToyMC; // loop over points in belt to find upper limit for this toy data double thisUL = 0; for (Int_t i = 0; i < parameterScan->numEntries(); ++i) { tmpPoint = (RooArgSet *)parameterScan->get(i)->clone("temp"); double arMax = belt->GetAcceptanceRegionMax(*tmpPoint); firstPOI->setVal(tmpPoint->getRealValue(firstPOI->GetName())); // double thisTS = profile->getVal(); double thisTS = fc.GetTestStatSampler()->EvaluateTestStatistic(*toyData, tmpPOI); // cout << "poi = " << firstPOI->getVal() // << " max is " << arMax << " this profile = " << thisTS << endl; // cout << "thisTS = " << thisTS<<endl; if (thisTS <= arMax) { thisUL = firstPOI->getVal(); } else { break; } } histOfUL->Fill(thisUL); // for few events, data is often the same, and UL is often the same // cout << "thisUL = " << thisUL<<endl; delete toyData; } histOfUL->Draw(); c1->SaveAs("two-sided_upper_limit_output.pdf"); // if you want to see a plot of the sampling distribution for a particular scan point: /* SamplingDistPlot sampPlot; int indexInScan = 0; tmpPoint = (RooArgSet*) parameterScan->get(indexInScan)->clone("temp"); firstPOI->setVal( tmpPoint->getRealValue(firstPOI->GetName()) ); toymcsampler->SetParametersForTestStat(tmpPOI); SamplingDistribution* samp = toymcsampler->GetSamplingDistribution(*tmpPoint); sampPlot.AddSamplingDistribution(samp); sampPlot.Draw(); */ // Now find bands and power constraint Double_t *bins = histOfUL->GetIntegral(); TH1F *cumulative = (TH1F *)histOfUL->Clone("cumulative"); cumulative->SetContent(bins); double band2sigDown = 0, band1sigDown = 0, bandMedian = 0, band1sigUp = 0, band2sigUp = 0; for (int i = 1; i <= cumulative->GetNbinsX(); ++i) { if (bins[i] < RooStats::SignificanceToPValue(2)) band2sigDown = cumulative->GetBinCenter(i); if (bins[i] < RooStats::SignificanceToPValue(1)) band1sigDown = cumulative->GetBinCenter(i); if (bins[i] < 0.5) bandMedian = cumulative->GetBinCenter(i); if (bins[i] < RooStats::SignificanceToPValue(-1)) band1sigUp = cumulative->GetBinCenter(i); if (bins[i] < RooStats::SignificanceToPValue(-2)) band2sigUp = cumulative->GetBinCenter(i); } cout << "-2 sigma band " << band2sigDown << endl; cout << "-1 sigma band " << band1sigDown << " [Power Constraint)]" << endl; cout << "median of band " << bandMedian << endl; cout << "+1 sigma band " << band1sigUp << endl; cout << "+2 sigma band " << band2sigUp << endl; // print out the interval on the first Parameter of Interest cout << "\nobserved 95% upper-limit " << interval->UpperLimit(*firstPOI) << endl; cout << "CLb strict [P(toy>obs|0)] for observed 95% upper-limit " << CLb << endl; cout << "CLb inclusive [P(toy>=obs|0)] for observed 95% upper-limit " << CLbinclusive << endl; delete profile; delete nll; }