////////////////////////////////////////////////////////////////////////////// // // TRolke // // This class computes confidence intervals for the rate of a Poisson // in the presence of background and efficiency with a fully frequentist // treatment of the uncertainties in the efficiency and background estimate // using the profile likelihood method. // // Author: Jan Conrad (CERN) 2004 // Updated: Johan Lundberg (CERN) 2009 // // Copyright CERN 2004,2009 Jan.Conrad@cern.ch, // Johan.Lundberg@cern.ch // // For information about the statistical meaning of the parameters // and the syntax, consult TRolke.cxx // ------------------ // // Examples are found in the file Rolke.C // -------------------------------------- // ////////////////////////////////////////////////////////////////////////////// #ifndef ROOT_TRolke #define ROOT_TRolke #include "TObject.h" #include "TMath.h" // Class definition. This class is not intended to be used as a base class. class TRolke : public TObject { private: Double_t fCL; // confidence level as a fraction [0.9 for 90% ] Double_t fUpperLimit; // the calculated upper limit Double_t fLowerLimit; // the calculated lower limit bool fBounding; // false for unbounded likelihood // true for bounded likelihood Int_t fNumWarningsDeprecated1; Int_t fNumWarningsDeprecated2; /* ----------------------------------------------------------------- */ /* These variables are set by the Set methods for the various models */ Int_t f_x; Int_t f_y; Int_t f_z; Double_t f_bm; Double_t f_em; Double_t f_e; Int_t f_mid; Double_t f_sde; Double_t f_sdb; Double_t f_tau; Double_t f_b; Int_t f_m; /* ----------------------------------------------------------------- */ /* Internal helper functions and methods */ // The Calculator Double_t Interval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m); // LIKELIHOOD ROUTINE Double_t Likelihood(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m, Int_t what); //MODEL 1 Double_t EvalLikeMod1(Double_t mu, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m, Int_t what); Double_t LikeMod1(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m); void ProfLikeMod1(Double_t mu, Double_t &b, Double_t &e, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m); Double_t LikeGradMod1(Double_t e, Double_t mu, Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m); //MODEL 2 Double_t EvalLikeMod2(Double_t mu, Int_t x, Int_t y, Double_t em, Double_t sde, Double_t tau, Int_t what); Double_t LikeMod2(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t y, Double_t em, Double_t tau, Double_t v); //MODEL 3 Double_t EvalLikeMod3(Double_t mu, Int_t x, Double_t bm, Double_t em, Double_t sde, Double_t sdb, Int_t what); Double_t LikeMod3(Double_t mu, Double_t b, Double_t e, Int_t x, Double_t bm, Double_t em, Double_t u, Double_t v); //MODEL 4 Double_t EvalLikeMod4(Double_t mu, Int_t x, Int_t y, Double_t tau, Int_t what); Double_t LikeMod4(Double_t mu, Double_t b, Int_t x, Int_t y, Double_t tau); //MODEL 5 Double_t EvalLikeMod5(Double_t mu, Int_t x, Double_t bm, Double_t sdb, Int_t what); Double_t LikeMod5(Double_t mu, Double_t b, Int_t x, Double_t bm, Double_t u); //MODEL 6 Double_t EvalLikeMod6(Double_t mu, Int_t x, Int_t z, Double_t b, Int_t m, Int_t what); Double_t LikeMod6(Double_t mu, Double_t b, Double_t e, Int_t x, Int_t z, Int_t m); //MODEL 7 Double_t EvalLikeMod7(Double_t mu, Int_t x, Double_t em, Double_t sde, Double_t b, Int_t what); Double_t LikeMod7(Double_t mu, Double_t b, Double_t e, Int_t x, Double_t em, Double_t v); //MISC static Double_t EvalPolynomial(Double_t x, const Int_t coef[], Int_t N); static Double_t EvalMonomial(Double_t x, const Int_t coef[], Int_t N); Double_t LogFactorial(Int_t n); Double_t ComputeInterval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m); void SetModelParameters(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m); void SetModelParameters(); Double_t GetBackground(); public: /* Constructor */ TRolke(Double_t CL = 0.9, Option_t *option = ""); /* Destructor */ virtual ~TRolke(); /* Get and set the Confidence Level */ Double_t GetCL() const { return fCL; } void SetCL(Double_t CL) { fCL = CL; } /* Set the Confidence Level in terms of Sigmas. */ void SetCLSigmas(Double_t CLsigmas) { fCL = TMath::Erf(CLsigmas / TMath::Sqrt(2.0)) ; } // The Set methods for the different models are described in Rolke.cxx // model 1 void SetPoissonBkgBinomEff(Int_t x, Int_t y, Int_t z, Double_t tau, Int_t m); // model 2 void SetPoissonBkgGaussEff(Int_t x, Int_t y, Double_t em, Double_t tau, Double_t sde); // model 3 void SetGaussBkgGaussEff(Int_t x, Double_t bm, Double_t em, Double_t sde, Double_t sdb); // model 4 void SetPoissonBkgKnownEff(Int_t x, Int_t y, Double_t tau, Double_t e); // model 5 void SetGaussBkgKnownEff(Int_t x, Double_t bm, Double_t sdb, Double_t e); // model 6 void SetKnownBkgBinomEff(Int_t x, Int_t z, Int_t m, Double_t b); // model 7 void SetKnownBkgGaussEff(Int_t x, Double_t em, Double_t sde, Double_t b); /* Deprecated interface method (read Rolke.cxx). May be removed from future releases */ Double_t CalculateInterval(Int_t x, Int_t y, Int_t z, Double_t bm, Double_t em, Double_t e, Int_t mid, Double_t sde, Double_t sdb, Double_t tau, Double_t b, Int_t m); // get the upper and lower limits based on the specified model bool GetLimits(Double_t& low, Double_t& high); Double_t GetUpperLimit(); Double_t GetLowerLimit(); // get the upper and lower average limits bool GetSensitivity(Double_t& low, Double_t& high, Double_t pPrecision = 0.00001); // get the upper and lower limits for the outcome corresponding to // a given quantile. bool GetLimitsQuantile(Double_t& low, Double_t& high, Int_t& out_x, Double_t integral = 0.5); // get the upper and lower limits for the most likely outcome. bool GetLimitsML(Double_t& low, Double_t& high, Int_t& out_x); // get the value of x corresponding to rejection of the null hypothesis. bool GetCriticalNumber(Int_t& ncrit,Int_t maxtry=-1); /* Get the bounding mode flag. True activates bounded mode. Read TRolke.cxx and the references therein for details. */ bool GetBounding() const { return fBounding; } /* Get the bounding mode flag. True activates bounded mode. Read TRolke.cxx and the references therein for details. */ void SetBounding(const bool bnd) { fBounding = bnd; } /* Deprecated name for SetBounding. */ void SetSwitch(bool bnd) ; /* Dump internals. Option is not used */ void Print(Option_t*) const; ClassDef(TRolke, 2) }; //calculate confidence limits using the Rolke method #endif