// @(#)root/tmva $Id$ // Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss, Eckhard von Toerne /********************************************************************************** * Project: TMVA - a Root-integrated toolkit for multivariate data analysis * * Package: TMVA * * Class : DecisionTreeNode * * Web : http://tmva.sourceforge.net * * * * Description: * * Node for the Decision Tree * * * * Authors (alphabetical): * * Andreas Hoecker - CERN, Switzerland * * Helge Voss - MPI-K Heidelberg, Germany * * Kai Voss - U. of Victoria, Canada * * Eckhard von Toerne - U. of Bonn, Germany * * * * Copyright (c) 2009: * * CERN, Switzerland * * U. of Victoria, Canada * * MPI-K Heidelberg, Germany * * U. of Bonn, Germany * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted according to the terms listed in LICENSE * * (http://tmva.sourceforge.net/LICENSE) * **********************************************************************************/ #ifndef ROOT_TMVA_DecisionTreeNode #define ROOT_TMVA_DecisionTreeNode ////////////////////////////////////////////////////////////////////////// // // // DecisionTreeNode // // // // Node for the Decision Tree // // // ////////////////////////////////////////////////////////////////////////// #ifndef ROOT_TMVA_Node #include "TMVA/Node.h" #endif #ifndef ROOT_TMVA_Version #include "TMVA/Version.h" #endif #include #include #include namespace TMVA { class DTNodeTrainingInfo { public: DTNodeTrainingInfo():fSampleMin(), fSampleMax(), fNodeR(0),fSubTreeR(0),fAlpha(0),fG(0),fNTerminal(0), fNB(0),fNS(0),fSumTarget(0),fSumTarget2(0),fCC(0), fNSigEvents ( 0 ), fNBkgEvents ( 0 ), fNEvents ( -1 ), fNSigEvents_unweighted ( 0 ), fNBkgEvents_unweighted ( 0 ), fNEvents_unweighted ( 0 ), fSeparationIndex (-1 ), fSeparationGain ( -1 ) { } std::vector< Float_t > fSampleMin; // the minima for each ivar of the sample on the node during training std::vector< Float_t > fSampleMax; // the maxima for each ivar of the sample on the node during training Double_t fNodeR; // node resubstitution estimate, R(t) Double_t fSubTreeR; // R(T) = Sum(R(t) : t in ~T) Double_t fAlpha; // critical alpha for this node Double_t fG; // minimum alpha in subtree rooted at this node Int_t fNTerminal; // number of terminal nodes in subtree rooted at this node Double_t fNB; // sum of weights of background events from the pruning sample in this node Double_t fNS; // ditto for the signal events Float_t fSumTarget; // sum of weight*target used for the calculatio of the variance (regression) Float_t fSumTarget2; // sum of weight*target^2 used for the calculatio of the variance (regression) Double_t fCC; // debug variable for cost complexity pruning .. Float_t fNSigEvents; // sum of weights of signal event in the node Float_t fNBkgEvents; // sum of weights of backgr event in the node Float_t fNEvents; // number of events in that entered the node (during training) Float_t fNSigEvents_unweighted; // sum of signal event in the node Float_t fNBkgEvents_unweighted; // sum of backgr event in the node Float_t fNEvents_unweighted; // number of events in that entered the node (during training) Float_t fSeparationIndex; // measure of "purity" (separation between S and B) AT this node Float_t fSeparationGain; // measure of "purity", separation, or information gained BY this nodes selection // copy constructor DTNodeTrainingInfo(const DTNodeTrainingInfo& n) : fSampleMin(),fSampleMax(), // Samplemin and max are reset in copy constructor fNodeR(n.fNodeR), fSubTreeR(n.fSubTreeR), fAlpha(n.fAlpha), fG(n.fG), fNTerminal(n.fNTerminal), fNB(n.fNB), fNS(n.fNS), fSumTarget(0),fSumTarget2(0), // SumTarget reset in copy constructor fCC(0), fNSigEvents ( n.fNSigEvents ), fNBkgEvents ( n.fNBkgEvents ), fNEvents ( n.fNEvents ), fNSigEvents_unweighted ( n.fNSigEvents_unweighted ), fNBkgEvents_unweighted ( n.fNBkgEvents_unweighted ), fNEvents_unweighted ( n.fNEvents_unweighted ), fSeparationIndex( n.fSeparationIndex ), fSeparationGain ( n.fSeparationGain ) { } }; class Event; class MsgLogger; class DecisionTreeNode: public Node { public: // constructor of an essentially "empty" node floating in space DecisionTreeNode (); // constructor of a daughter node as a daughter of 'p' DecisionTreeNode (Node* p, char pos); // copy constructor DecisionTreeNode (const DecisionTreeNode &n, DecisionTreeNode* parent = NULL); // destructor virtual ~DecisionTreeNode(); virtual Node* CreateNode() const { return new DecisionTreeNode(); } inline void SetNFisherCoeff(Int_t nvars){fFisherCoeff.resize(nvars);} inline UInt_t GetNFisherCoeff() const { return fFisherCoeff.size();} // set fisher coefficients void SetFisherCoeff(Int_t ivar, Double_t coeff); // get fisher coefficients Double_t GetFisherCoeff(Int_t ivar) const {return fFisherCoeff.at(ivar);} // test event if it decends the tree at this node to the right virtual Bool_t GoesRight( const Event & ) const; // test event if it decends the tree at this node to the left virtual Bool_t GoesLeft ( const Event & ) const; // set index of variable used for discrimination at this node void SetSelector( Short_t i) { fSelector = i; } // return index of variable used for discrimination at this node Short_t GetSelector() const { return fSelector; } // set the cut value applied at this node void SetCutValue ( Float_t c ) { fCutValue = c; } // return the cut value applied at this node Float_t GetCutValue ( void ) const { return fCutValue; } // set true: if event variable > cutValue ==> signal , false otherwise void SetCutType( Bool_t t ) { fCutType = t; } // return kTRUE: Cuts select signal, kFALSE: Cuts select bkg Bool_t GetCutType( void ) const { return fCutType; } // set node type: 1 signal node, -1 bkg leave, 0 intermediate Node void SetNodeType( Int_t t ) { fNodeType = t;} // return node type: 1 signal node, -1 bkg leave, 0 intermediate Node Int_t GetNodeType( void ) const { return fNodeType; } //return S/(S+B) (purity) at this node (from training) Float_t GetPurity( void ) const { return fPurity;} //calculate S/(S+B) (purity) at this node (from training) void SetPurity( void ); //set the response of the node (for regression) void SetResponse( Float_t r ) { fResponse = r;} //return the response of the node (for regression) Float_t GetResponse( void ) const { return fResponse;} //set the RMS of the response of the node (for regression) void SetRMS( Float_t r ) { fRMS = r;} //return the RMS of the response of the node (for regression) Float_t GetRMS( void ) const { return fRMS;} // set the sum of the signal weights in the node void SetNSigEvents( Float_t s ) { fTrainInfo->fNSigEvents = s; } // set the sum of the backgr weights in the node void SetNBkgEvents( Float_t b ) { fTrainInfo->fNBkgEvents = b; } // set the number of events that entered the node (during training) void SetNEvents( Float_t nev ){ fTrainInfo->fNEvents =nev ; } // set the sum of the unweighted signal events in the node void SetNSigEvents_unweighted( Float_t s ) { fTrainInfo->fNSigEvents_unweighted = s; } // set the sum of the unweighted backgr events in the node void SetNBkgEvents_unweighted( Float_t b ) { fTrainInfo->fNBkgEvents_unweighted = b; } // set the number of unweighted events that entered the node (during training) void SetNEvents_unweighted( Float_t nev ){ fTrainInfo->fNEvents_unweighted =nev ; } // increment the sum of the signal weights in the node void IncrementNSigEvents( Float_t s ) { fTrainInfo->fNSigEvents += s; } // increment the sum of the backgr weights in the node void IncrementNBkgEvents( Float_t b ) { fTrainInfo->fNBkgEvents += b; } // increment the number of events that entered the node (during training) void IncrementNEvents( Float_t nev ){ fTrainInfo->fNEvents +=nev ; } // increment the sum of the signal weights in the node void IncrementNSigEvents_unweighted( ) { fTrainInfo->fNSigEvents_unweighted += 1; } // increment the sum of the backgr weights in the node void IncrementNBkgEvents_unweighted( ) { fTrainInfo->fNBkgEvents_unweighted += 1; } // increment the number of events that entered the node (during training) void IncrementNEvents_unweighted( ){ fTrainInfo->fNEvents_unweighted +=1 ; } // return the sum of the signal weights in the node Float_t GetNSigEvents( void ) const { return fTrainInfo->fNSigEvents; } // return the sum of the backgr weights in the node Float_t GetNBkgEvents( void ) const { return fTrainInfo->fNBkgEvents; } // return the number of events that entered the node (during training) Float_t GetNEvents( void ) const { return fTrainInfo->fNEvents; } // return the sum of unweighted signal weights in the node Float_t GetNSigEvents_unweighted( void ) const { return fTrainInfo->fNSigEvents_unweighted; } // return the sum of unweighted backgr weights in the node Float_t GetNBkgEvents_unweighted( void ) const { return fTrainInfo->fNBkgEvents_unweighted; } // return the number of unweighted events that entered the node (during training) Float_t GetNEvents_unweighted( void ) const { return fTrainInfo->fNEvents_unweighted; } // set the chosen index, measure of "purity" (separation between S and B) AT this node void SetSeparationIndex( Float_t sep ){ fTrainInfo->fSeparationIndex =sep ; } // return the separation index AT this node Float_t GetSeparationIndex( void ) const { return fTrainInfo->fSeparationIndex; } // set the separation, or information gained BY this nodes selection void SetSeparationGain( Float_t sep ){ fTrainInfo->fSeparationGain =sep ; } // return the gain in separation obtained by this nodes selection Float_t GetSeparationGain( void ) const { return fTrainInfo->fSeparationGain; } // printout of the node virtual void Print( ostream& os ) const; // recursively print the node and its daughters (--> print the 'tree') virtual void PrintRec( ostream& os ) const; virtual void AddAttributesToNode(void* node) const; virtual void AddContentToNode(std::stringstream& s) const; // recursively clear the nodes content (S/N etc, but not the cut criteria) void ClearNodeAndAllDaughters(); // get pointers to children, mother in the tree // return pointer to the left/right daughter or parent node inline virtual DecisionTreeNode* GetLeft( ) const { return dynamic_cast(fLeft); } inline virtual DecisionTreeNode* GetRight( ) const { return dynamic_cast(fRight); } inline virtual DecisionTreeNode* GetParent( ) const { return dynamic_cast(fParent); } // set pointer to the left/right daughter and parent node inline virtual void SetLeft (Node* l) { fLeft = dynamic_cast(l);} inline virtual void SetRight (Node* r) { fRight = dynamic_cast(r);} inline virtual void SetParent(Node* p) { fParent = dynamic_cast(p);} // the node resubstitution estimate, R(t), for Cost Complexity pruning inline void SetNodeR( Double_t r ) { fTrainInfo->fNodeR = r; } inline Double_t GetNodeR( ) const { return fTrainInfo->fNodeR; } // the resubstitution estimate, R(T_t), of the tree rooted at this node inline void SetSubTreeR( Double_t r ) { fTrainInfo->fSubTreeR = r; } inline Double_t GetSubTreeR( ) const { return fTrainInfo->fSubTreeR; } // R(t) - R(T_t) // the critical point alpha = ------------- // |~T_t| - 1 inline void SetAlpha( Double_t alpha ) { fTrainInfo->fAlpha = alpha; } inline Double_t GetAlpha( ) const { return fTrainInfo->fAlpha; } // the minimum alpha in the tree rooted at this node inline void SetAlphaMinSubtree( Double_t g ) { fTrainInfo->fG = g; } inline Double_t GetAlphaMinSubtree( ) const { return fTrainInfo->fG; } // number of terminal nodes in the subtree rooted here inline void SetNTerminal( Int_t n ) { fTrainInfo->fNTerminal = n; } inline Int_t GetNTerminal( ) const { return fTrainInfo->fNTerminal; } // number of background/signal events from the pruning validation sample inline void SetNBValidation( Double_t b ) { fTrainInfo->fNB = b; } inline void SetNSValidation( Double_t s ) { fTrainInfo->fNS = s; } inline Double_t GetNBValidation( ) const { return fTrainInfo->fNB; } inline Double_t GetNSValidation( ) const { return fTrainInfo->fNS; } inline void SetSumTarget(Float_t t) {fTrainInfo->fSumTarget = t; } inline void SetSumTarget2(Float_t t2){fTrainInfo->fSumTarget2 = t2; } inline void AddToSumTarget(Float_t t) {fTrainInfo->fSumTarget += t; } inline void AddToSumTarget2(Float_t t2){fTrainInfo->fSumTarget2 += t2; } inline Float_t GetSumTarget() const {return fTrainInfo? fTrainInfo->fSumTarget : -9999;} inline Float_t GetSumTarget2() const {return fTrainInfo? fTrainInfo->fSumTarget2: -9999;} // reset the pruning validation data void ResetValidationData( ); // flag indicates whether this node is terminal inline Bool_t IsTerminal() const { return fIsTerminalNode; } inline void SetTerminal( Bool_t s = kTRUE ) { fIsTerminalNode = s; } void PrintPrune( ostream& os ) const ; void PrintRecPrune( ostream& os ) const; void SetCC(Double_t cc); Double_t GetCC() const {return (fTrainInfo? fTrainInfo->fCC : -1.);} Float_t GetSampleMin(UInt_t ivar) const; Float_t GetSampleMax(UInt_t ivar) const; void SetSampleMin(UInt_t ivar, Float_t xmin); void SetSampleMax(UInt_t ivar, Float_t xmax); static bool fgIsTraining; // static variable to flag training phase in which we need fTrainInfo protected: static MsgLogger* fgLogger; // static because there is a huge number of nodes... std::vector fFisherCoeff; // the fisher coeff (offset at the last element) Float_t fCutValue; // cut value appplied on this node to discriminate bkg against sig Bool_t fCutType; // true: if event variable > cutValue ==> signal , false otherwise Short_t fSelector; // index of variable used in node selection (decision tree) Float_t fResponse; // response value in case of regression Float_t fRMS; // response RMS of the regression node Int_t fNodeType; // Type of node: -1 == Bkg-leaf, 1 == Signal-leaf, 0 = internal Float_t fPurity; // the node purity Bool_t fIsTerminalNode; //! flag to set node as terminal (i.e., without deleting its descendants) mutable DTNodeTrainingInfo* fTrainInfo; private: virtual void ReadAttributes(void* node, UInt_t tmva_Version_Code = TMVA_VERSION_CODE ); virtual Bool_t ReadDataRecord( istream& is, UInt_t tmva_Version_Code = TMVA_VERSION_CODE ); virtual void ReadContent(std::stringstream& s); ClassDef(DecisionTreeNode,0) // Node for the Decision Tree }; } // namespace TMVA #endif