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Chapter 1

What Who and How?

MAUS (MICE Analysis User Software) is the MICE project's tracking, detector
reconstruction and accelerator physics analysis framework. MAUS is designed
to ful�l a number of functions for physicists interested in studying MICE data:

� Model the behaviour of particles traversing MICE

� Model the MICE detector's electronics response to particles

� Perform pattern recognition to reconstruct particle trajectories from elec-
tronics output

� Provide a framework for high level accelerator physics analysis

� Provide online diagnostics during running of MICE

In addition to MAUS's role within MICE, the code is also used for generic
accelerator development, in particular for the Neutrino Factory.

1.1 Who Should Use MAUS

MAUS is intended to be used by physicists interested in studying the MICE
data. MAUS is designed to function as a general tool for modelling particle
accelerators and associated detector systems. The modular system, described
in the API section, makes MAUS suitable for use by any accelerator or detector
group wishing to perform simulation or reconstruction work.

1.2 Getting the Code and Installing MAUS

Installation is described in a separate document, available at http://micewww.
pp.rl.ac.uk/projects/maus/wiki/Install

1.3 Running MAUS

MAUS contains several applications to perform various tasks. Two main appli-
cations are provided. bin/simulate_mice.py makes a Monte Carlo simulation
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of the experiment and bin/analyze_data_offline.py reconstructs an existing
data �le. Start a clean shell and move into the top level MAUS directory. Then
type

> source env.sh

> ${MAUS_ROOT_DIR}/bin/simulate_mice.py

> ${MAUS_ROOT_DIR}/bin/analyze_data_offline.py

1.3.1 Run Control

The routines can be controlled by a number of settings that enable users to
specify run con�gurations, as speci�ed in this document. Most control variables
can be controlled directly from the comamnd line, for example doing

> ${MAUS_ROOT_DIR}/bin/simulate_mice.py \

--simulation_geometry_filename Test.dat

to run the Monte Carlo against a given geometry. As another example, it is
possible to run the data reconstruction against a given run

> cd ${MAUS_ROOT_DIR}

> ${MAUS_ROOT_DIR}/bin/analyze_data_offline.py \

--daq_data_file 02873 \

--daq_data_path src/input/InputCppDAQData

This will run against data in run 02873 looking for �les in directory src/input/InputCppDAQData.
To get a (long) list of all command line variables use the -h switch.

> ${MAUS_ROOT_DIR}/bin/simulate_mice.py -h

More complex control variables can be controlled using a con�guration �le,
which contains a list of con�guration options.

> ${MAUS_ROOT_DIR}/bin/simulate_mice.py --configuration_file config.py

where a sample con�guration �le for the example above might look like

simulation_geometry_filename = "Test.dat"

Note that where on the command line a tag like --variable value was used,
in the con�guration �le variable = "value" is used. In fact the con�guration
�le is a python script. When loaded, MAUS looks for variables in it's variable
list and loads them in as con�guration options. Other variables are ignored.
This gives users the full power of a scripting language while setting up run
con�gurations. For example, one might choose to use a di�erent �lename,

import os

simulation_geometry_filename = os.path.join(

os.environ["MICEFILES"]

"Models/Configurations/Test.dat"

)

This con�guration will then load the �le at $MICEFILES/Models/Configurations/Test.dat
The default con�guration �le can be found at src/common_py/ConfigurationDefaults.py

which contains a list of all possible con�guration variables and is loaded by de-
fault by MAUS. Any variables not speci�ed by the user are taken from the
con�guration defaults.
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1.3.2 Other Applications

There are several other applications in the bin directory and associated subdi-
rectories.

� bin/examples contains example scripts for accessing a number of useful
features of the API

� bin/utilities contains utility functions that perform a number of useful
utilities to do with data manipulation, etc

� bin/user contains analysis functions that our users have found useful, but
are not necessarily thoroughly tested or documented

� bin/publications contains analysis code used for writing a particular
(MICE) publication

1.4 Accessing Data

By default, MAUS writes data as a ROOT �le. ROOT is a widely available high
energy physics data analysis library, available from ''http://root.cern.ch''

and prepacked with the MAUS third party libraries. Two techniques are foreseen
for accessing the data, either using PyRoot python interface or using a compiled
C++ binary. Some mention of ROOT cint scripting tools is made below, but
this is not supported by MAUS developers beyond the most basic usage.

1.4.1 Loading ROOT Files in Python Using PyROOT

The standard scripting tool in MAUS is python. The ROOT data structure can
be loaded in python using the PyROOT package. An example of how to perform
a simple analysis with PyROOT is available in bin/examples/load_root_file.py.
This example runs the reconstruction code to produce an output data �le
${MAUS_ROOT_DIR}/tmp/example_load_root_file.root and then runs a toy
analysis that plots digits at TOF1 for plane 0 and plane 1. This example pro-
duces two histograms, tof1_digits_0_load_root_file.png and tof1_digits_1_load_root_file.png.

1.4.2 Loading ROOT Files in C++ Compiled Analysis

Code

The ROOT data structure can be loaded in C++ by compiling the Make �le
found in bin/examples/load_root_file_cpp/Makefile. This compiles the
sample analysis in bin/examples/load_root_file_cpp/load_root_file.cc.
For example,

$ source env.sh

$ cd ${MAUS_ROOT_DIR}/bin/examples

$ python load_root_file.py

$ cd ${MAUS_ROOT_DIR}/bin/examples/load_root_file_cpp/

$ make clean

$ make

$ ./load_root_file
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This example performs a simple analysis against the data �le generated by
load_root_file.py, which is identical to the analysis performed by load_root_file.py.
The executable produces two histograms, tof1_digits_0_load_root_file_cpp.png
and tof1_digits_1_load_root_file_cpp.png; they should be identical to the
histograms produced by load_root_file.py.

1.4.3 Loading ROOT Files on the ROOT Command Line

One can load ROOT �les from the command line using the ROOT interac-
tive display. It is �rst necessary to load the MAUS class dictionary. Then
The TBrowser ROOT GUI can be used to browse to the desired location and
interrogate the data structure interactively. For example,

$ source env.sh

$ root

*******************************************

* *

* W E L C O M E to R O O T *

* *

* Version 5.30/03 20 October 2011 *

* *

* You are welcome to visit our Web site *

* http://root.cern.ch *

* *

*******************************************

ROOT 5.30/03 (tags/v5-30-03@41540, Oct 24 2011, 11:51:36 on linuxx8664gcc)

CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010

Type ? for help. Commands must be C++ statements.

Enclose multiple statements between { }.

root [0] .L $MAUS_ROOT_DIR/build/libMausCpp.so

root [1] TBrowser b

Note: ROOT infrastructure can only be used to plot data nested within up
to two dynamic arrays. Data nested in three or more dynamic arrays is beyond
the capabilities of ROOT interactive plotting tools; explicit loops over the data
are required in a PyROOT script or C++ code. In general, working through
the ROOT command line or ROOT macros is notoriously unreliable and is not
supported by the MAUS development team; it is useful as a basic check of data
integrity and no more.

More information on the data is available in the data structure chapter 2.
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Chapter 2

Using and Modifying the

Data Structure

MAUS operates on data in discrete blocks, primarily spills, with one spill repre-
senting the particle burst generated by one dip of the MICE target. Additionally,
MAUS can write data into a JobHeader, RunHeader, RunFooter and JobFooter
data type. Histograms for plotting in online mode are encoded into an Image
data type. The top level branch in the data tree inherits from MAUSEvent<T>,
de�ned in src/common_cpp/DataStructure/MAUSEvent.hh (C++) with type
identi�ed by GetEventType() string; in JSON the top level branch always has
a maus_event_type member which is a string value corresponding to the out-
put of MAUSEvent<T>::GetEventType(). A summary of con�guration cards
a�ecting Input, Output and data structure is shown below.

2.1 Metadata

Job metadata is stored in JobHeader and JobFooter data structures. (Data)
Run metadata is stored in RunHeader and RunFooter data structures. The
JobHeader is created at the start and end of an execution of the code and
stores data on datacards, bzr state and so forth. The RunHeader is created at
the start of each run and stores per run metadata such as the calibrations and
cablings used. One RunHeader and RunFooter is written for each process in the
entire transform and merge execution structure; so in multithreading mode this
would yield one RunHeader and RunFooter for each Celery subprocess (which
runs the Input/Transform) and an additional RunHeader and RunFooter for
the merge/output process. In single threaded mode a single RunHeader and
RunFooter is generated. The RunFooter and JobFooter are created at the end of
the run and store run and job summary information. For more details on writing
to these metadata types and multithreading modes, please see the section on
API.

The Metadata is stored in ROOT in trees separate to the main Spill data
tree. In JSON, these data are stored as separate lines often at the start and end
of the run, and distinguished by the maus_event_type branch in the root. The
structure of a MAUS output �le is shown below.

8



Table 2.1: I/O control variables.
Name Meaning
input_root_file_name Set the �le name used for reading input �les by

InputCppRoot module
output_root_file_name Set the �le name used for writing output �les

by OutputCppRoot module
input_json_file_name Set the �le name used for reading input �les by

InputPyJSON module
input_json_file_type Set to gzip to read input from a gzipped �le;

set to text to read input from a plain text �le
output_json_file_name Set the �le name used for writing output �les

by OutputPyJSON module
output_json_file_type Set to gzip to write output as a gzipped �le;

set to text to write output as a plain text �le
header_and_footer_mode Set to append to write out job and run headers

and footers; set to dont_append to suppress this
output.

Figure 2.1: The MAUS �le structure including metadata. The top label in each
box describes the representation in C++/ROOT. The bottom label describes
the representation in JSON.

2.2 The Spill Datastructure

The major part of the MAUS data structure therefore is a tree of which each en-
try corresponds to the data associated with one spill. The spill is separated into
three main sections: the MCEventArray contains an array of data each member
of which represents the Monte Carlo of a single primary particle crossing the
system; the ReconEventArray contains an array of data each member of which
corresponds to a particle event (i.e. set of DAQ triggers); and the DAQData
corresponds to the raw data readout. Additionally there are branches for re-
constructed scalars, which are handled spill by spill and EMR data, which also
read out on the spill rather than event by event.

The MCEvent is subdivided into sensitive detector hits and some pure Monte
Carlo outputs. The primary that led to data being created is held in the Pri-
mary branch. Here the random seed, primary position momentum and so forth
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Figure 2.2: The MAUS output structure for a spill event. The top label in each
box is the name of the C++ class and the bottom label is the json branch name.
If a [] is shown, this indicates that child objects are array items.

is stored. Sensitive detector hits have Hit data (energy deposited, position, mo-
mentum, etc) and a detector speci�c ChannelId that represents the channel of
the detector that was hit - e.g. for TOF this indexes the slab, plane and station.
Virtual hits are also stored - these are not sensitive detector hits, rather output
position, momenta etc of particles that cross a particular plane in space, time
or proper time is recorded. Note virtual hits do not inherit from the Hit class
and have a slightly di�erent data structure.

The ReconEvent and DAQEvents are subdivided by detector. ReconEvents
contain reconstructed particle data for each detector and the trigger. There
is an additional branch that contains global reconstruction output, that is the
track �tting between detectors.

The data can be written in two formats. The main data format is a ROOT
binary format. This requires the ROOT package to read and write, which is a
standard analysis/plotting package in High Energy Physics and is installed by
the MAUS build script. The secondary data format is JSON. This is an ascii
data-tree format that in principle can be read by any text editor. Speci�c JSON
parsers are also available - for example, the python json module is available and
comes prepackaged with MAUS.

2.3 Image Datastructure

There is a �nal data type that MAUS handles, the Image type. The Image data
structure is written by ReducePyMatplotHistogram and ReducePyROOTHis-
togram data types. Image data is only available in JSON format. The data
structure is shown in Fig. 2.3.

Each document contains a maus_event_type that should always be Image,
and a list of images; the image data is encoded as a base 64 image and other
data associated with the image is stored alongside. The tag names the image,
while image_type describes the data format (png, jpeg, etc). OutputPyImage
stores data with image_type.tag as the �le name. description contains a
description of the �le and keywords describes a list of key phrases that can be
used when searching.

2.4 Accessing ROOT �les

For details on how to access the ROOT �les, please see the introduction section
of this document.
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Figure 2.3: The MAUS output structure for an Image event. The top label in
each box is the name of the JSON branch and the bottom label is the data type.
If a [] is shown, this indicates that child objects are array items. Note there is
no C++ implementation of Image events

2.5 Conversion to, and Working With, JSON

MAUS also provides output in the JSON data format. This is an ascii format
with IO libraries available for C++, Python and other languages. Two utilities
are provided to perform conversions, bin/utilities/json_to_root.py and
bin/utilities/root_to_json.py for conversion from and to JSON format
respectively. JSON Input and Output modules are provided, InputPyJson and
OutputPyJson.

An example json analysis is available in bin/examples/load_json_file.py/

2.6 Extending the Data Structure

The data structure can be extended in MAUS by adding extra classes to the ex-
isting data structure. The data classes are in src/common_cpp/DataStructure.
In order to make these classes accessible to ROOT, the following steps must be
taken:

� Add a new class in src/common_cpp/DataStructure.

� Ensure that default constructor, copy constructor, equality operator and
destructor is present. The destructor must be virtual.

� Add #include "src/common_cpp/Utils/VersionNumber.hh" and a call
to the MAUS_VERSIONED_CLASS_DEF() macro at the end of the class def-
inition before the closing braces. MAUS_VERSIONED_CLASS_DEF calls the
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ROOT ClassDef() macro which generates metaclasses based on informa-
tion in the class. This is put into the (dynamically generated) MausDataStructure.h,cc
�les.

� Add the class to the list of classes in src/common_cpp/DataStructure/LinkDef.hh.
This is required for the class to be linked properly to the main library, and
a linker error will result if this step is not taken.

� Add any template de�nitions which you used, including STL classes (e.g.
std::vector<MyClass> or whatever) to linkdef. Otherwise ROOT will
generate a segmentation fault whenever the user tries to call functions of
the templated class (but the code will link successfully in this case).

In order to make these classes accessible to JSON, it is necessary to add a new
processor in src/common_cpp/JsonCppProcessors. There are a few default
processors available.

� src/common_cpp/JsonCppProcessors/ProcessorBase.hh contains IPro-
cessor pure interface class for all processors and ProcessorBase base class
(which may contain some implementation)

� src/common_cpp/JsonCppProcessors/PrimitivesProcessors.hh contains
processors for primitive types; BoolProcessor, IntProcessor, UIntProces-
sor, StringProcessor, DoubleProcessor

� src/common_cpp/JsonCppProcessors/ArrayProcessors.hh contains pro-
cessors for array types. Two processors are available: PointerArrayPro-
cessor which converts an STL vector of pointers to data; and ValueAr-
rayProcessor which converts an STL vector of values to data.

� src/common_cpp/JsonCppProcessors/ObjectProcessor.hh contains a pro-
cessor for object types. Most of the classes in the MAUS data structure
are represented in JSON as objects (string value pairs) where each string
names a branch and each value contains data, which may be another class.

� src/common_cpp/JsonCppProcessors/ObjectMapProcessors.hh contains
a processor for converting from JSON objects to STL maps. This is useful
for JSON objects that contain lots of branches all of the same type.

A script, bin/user/json_branch_to_data_structure_and_cpp_processor.py
is available that analyses a JSON object or JSON tree of nested objects and
converts to C++ classes. The script is provided "as-is" and it is expected that
developers will check the output, adding comments and tests where appropriate.

2.6.1 Pointer Handling

MAUS can handle pointers for arrays and classes using ROOT native support
(via the TRef and TRefArray classes) or the standard JSON reference syntax.
JSON references are indexed by a path relative to the root value of a JSON doc-
ument. JSON references are formatted like URIs, for example the JSON object
{"$ref":"#spill/recon_events/1"} would index the second recon_event in
the spill object (indexing from 0). MAUS can only handle paths relative to the
top level of the JSON document for the same MAUS event. Absolute URIs,
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URIs relative to another position in the JSON document or URIs to another
MAUS event are not supported.

In MAUS, it is necessary to make a distinction between data that is stored
as a value in C++ and JSON (value-as-data), data that is stored as a pointer
in C++ and a value in JSON (pointer-as-data) and data that is stored as a
pointer in C++ and JSON to some other data in the same tree (pointer-as-
reference). In the latter case, the C++ parent object does not own the memory;
rather it is owned by some other object in the same tree and borrowed by the
C++ object holding the pointer-as-reference. The TRef and TRefArray classes
provide this functionality by default; never owning the memory but only storing
a relevant pointer. All objects referenced by a TRef or TRefArray must inherit
from TObject. ROOT handles all memory management while writing to and
reading from ROOT �les, and the order of reading is unimportant, as long as
both reference and value have been read before the reference is used.

Pointers-as-data are converted between JSON arrays and C++ objects using
the ObjectProcessor<ParentType>::RegisterPointerBranch<ChildType>method.
This takes a Processor for the ChildType as an argument. For C++ arrays / vec-
tors, the Processor argument is instead a PointerArrayProcessor<ArrayContents>.
Pointers-as-reference (TRef and TRefArray) are converted using the ObjectProcessor<ParentType>::RegisterTRef
and ObjectProcessor<ParentType>::RegisterTRefArraymethods respectively.

Other equivalent data formats, for example YAML, use a unique identi�er to
reference a pointer-as-reference and store the pointer-as-data in a reserved part
of the data tree. There are some consequences of storing pointers-as-reference
using the path to a pointer-as-data as implemented in MAUS.

� The user must specify which data is the primary data source (pointer-as-
data) and which data is a cross reference (pointer-as-reference).

� Pointers-as-reference are position dependent. If the associated pointer-
as-data is moved the pointer-as-reference can no longer be resolved. For
example, inserting an element into an array can cause misalignment of
pointers-as-reference.

� Pointer data will always be available at the location of the pointer-as-data
in the JSON tree, even when using a parser that is not pointer aware.

� A unique identi�er type algorithm can be implemented as a relatively
simple extension of the data format outlined here; but it is relatively hard
to extend a unique identi�er algorithm to reference existing parts of the
data tree.

Pointer Resolution

Conversion from C++ pointers to JSON pointers is handled in a type-safe way.
Values-as-data are stored in the data tree converted at run time from JSON to
C++ and vice versa. Pointers-as-data are handled in the same way as Values-
as-data. Pointers-as-references are stored in the C++ data tree as a TRef (or
TRefArray element) in the normal way, and in JSON as an address to the
position in the tree to a pointer-as-data. It is an error to store a pointer-
as-reference without storing an associated pointer-as-data as the pointer-as-
reference cannot be converted, unless the pointer-as-reference is set to NULL
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(in which case it may be an error depending on caller settings). It is an error
to store multiple C++ pointers-as-data to the same memory address as the
conversion from C++ to JSON and back again would yield logically di�erent
data and the resolution of associated pointers-as-reference is dependent on the
resolution order of the data tree, which is ill-de�ned.

In order to implement the data conversion, the pointers have to be resolved
in a two-stage process. In the �rst stage, it is necessary to collect all of the
pointers-as-data and pointers-as-reference by traversing the data tree. This is
performed during the standard data conversion, but pointers-as-reference are
left pointing to NULL. A mapping from the pointer-as-data in the original data
format to the pointer-as-data in the converted data format is stored, together
with a list of pointers-as-reference in the original data format and the necessary
mutators in the converted data format. In the second stage MAUS iterates over
the pointers-as-reference, �nds the appropriate pointer-as-data and writes the
location of the pointer-as-data to the pointer-as-reference in the converted data
format. The code is templated to maintain full type-safety during this process.
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Chapter 3

Introduction to the MAUS

API

This chapter introduces the MAUS API framework and looks in depth at the
structure of the classes and interfaces that it comprises of. Several example
minimal implementations are given before a note on scalibility and extending
the framework.

3.1 Motivation

The motivation behind the MAUS API framework was to provide MAUS de-
velopers with a �exible, well de�ned environment whilst minimising the job of
actually implementing new functionality. The framework must be robust but
also scabale enough to cope with both current and unforseen new functionality.

To achieve these goals the MAUS framework has been designed from the
ground up with scalibility and ease of developer implementation in mind. It
features seperate interface and abstraction layers. While the interfaces pro-
vide guarenteed minimal implementation to ensure code works, the abstraction
layer provides a convienient centrallised place for common as well as tedious im-
plementation that would otherwise become a distraction or bloat a developers
code.

3.2 Everything starts with a `Module'

A Module is the basic building block of the MAUS API framework it's design is
layed out within the interface `IModule' shown in 3.1. The interface in essence
requires two public void functions birth and death which are responsible for the
initialisation and �nalisation of the module.

class IModule {
public :

virtual void b i r th ( const std : : s t r i n g&) = 0 ;
virtual void death ( ) = 0 ;

} ;
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Listing 3.1: The module interface `IModule'

Accompanying the interface is an abstract base class ModuleBase3.2. This
again provides �exibility as the abstraction is seperated from the de�nition of
the interface such that a developer may (if they wish) choose not to have the
abstracted behaviour but still have their module plug in to the rest of the MAUS
framework. It should be noted however that the expected behaviour would be
to inherit the abstractions from this base class.

In 3.2 the implementation of the interface can be seen with the de�nition of
the public birth and death member functions. It is important to note the lack of
the virtual speci�er in this case. The intention here (as is good C++ practise)
is that any derived classes do not overide (hide) these methods but rather im-
plement the pure virtual and private _birth and _death functions instead. This
enables the public functions to wrap and provide abstracted behaviour around
the private ones.

It is worth noting at this point the addition of the class member _classname
which is set in the constructor and represents the name of the module.

class ModuleBase : public virtual IModule {
public :

// Constructors & Dest ruc to r s
expl ic it ModuleBase ( const std : : s t r i n g &);
ModuleBase ( const ModuleBase&);
virtual ~ModuleBase ( ) ;

public :
void b i r th ( const std : : s t r i n g &);
void death ( ) ;

protected :
s td : : s t r i n g _classname ;

private :
virtual void _birth ( const std : : s t r i n g&) = 0 ;
virtual void _death ( ) = 0 ;

} ;

Listing 3.2: The abstract module base class `ModuleBase'

A minimal working implementation of a module would be as in 3.3. Note
the implementation of the pure virtual private _birth and _death functions.

class MyModule : public ModuleBase {
public :

// Constructors & Dest ruc to r s
expl ic it MyModule( const std : : s t r i n g& s ) : ModuleBase ( s ) {}
MyModule( const MyModule& m) : ModuleBase (m) {}
virtual ~ModuleBase ( ) {}

private :
virtual void _birth ( const std : : s t r i n g& s ) {

// Your i n i t i a l i s a t i o n code here
}
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virtual void _death ( ) {
// Your f i n a l i s a t i o n code here

}
} ;

Listing 3.3: A minimal working module

As is, this module `MyModule' doesn't contain anything except the ability
to be initialised and �nalised. While generally a developer will extend one of
the classes described in the next sections which derive from the ModuleBase it
is worth noting that one can create a standalone module in this way.

3.3 Inputters

The �rst module type de�ned in the API is the inputter. This type of module
is responsible for the generation of a data object be it by monte carlo methods
or streaming a disk resident �le. It's layout is de�ned in the IInput interface
3.4. As with the other module types de�ned in this chapter the IInput interface
inherits from IModule picking up the pure virtual birth and death functions. In
addition IInput de�nes a third pure virtual function emitter. This function is
responsible for returning the data object.

The IInput interface is templated to allow for implementation speci�c data
object return types.

template<typename T>
class I Input : public virtual IModule {

public :
virtual T* emi t t e r ( ) = 0 ;

} ;

Listing 3.4: The inputter interface `IInput'

The associated abstract base class InputBase behaves in much the same way
as for ModuleBase. Here the inheritance completes the diamond inheritance
structure from both the IInput interface and the abstractions from ModuleBase.
Note accordingly the use of the virtual inheritance. As with ModuleBase, it is
expected that the developer creating an inputter module inherit from this class
and implement the pure virtual private _emitter function.

template <typename T>
class InputBase : public virtual IInput<T>,

public ModuleBase {
public :

expl ic it InputBase ( const std : : s t r i n g &);
InputBase ( const InputBase&);
virtual ~InputBase ( ) ;

public :
T* emi t t e r ( ) ;

private :
virtual T* _emitter ( ) = 0 ;

} ;
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Listing 3.5: The abstract inputter base class `InputBase'

A minimal implementation of an inputter then would be as in 3.6. Note
that here we are inheriting from the InputBase class template with a template
parameter (data object type) of Spill. This in turn means that our minimal class
implementation need not itself be a class template. As InputBase also inherits
from the ModuleBase both the pure virtual private functions _birth and _death
must be implemented.

class MyInput : public InputBase<Sp i l l > {
public :

expl ic it MyInput ( const std : : s t r i n g& s ) :
InputBase<Sp i l l >(s ) {}

MyInput ( const MyInput& m) : InputBase<Sp i l l >(m) {}
virtual ~MyInput ( ) {}

private :
virtual void _birth ( const std : : s t r i n g& s ) {

// Your i n i t i a l i s a t i o n code here
}
virtual void _death ( ) {

// Your f i n a l i s a t i o n code here
}
virtual S p i l l * _emitter ( ) {

// Your emi t t e r code here
}

} ;

Listing 3.6: A minimal working inputter

3.4 Outputters

Outputters are responsible for doing something with the data once processed.
Typically the �nal element in the chain an outputter can for example be respon-
sible for writing the data to a persistant media or uploading it to a web server
etc. The layout of an outputter is not dissimilar from that of the inputter as one
might expect and is de�ned in the IOutput interface 3.7. As with the inputter
the interface de�nes a class template with the template parameter being the
data object type.

template<typename T>
class IOutput : public virtual IModule {

public :
virtual bool save (T*) = 0 ;

} ;

Listing 3.7: The outputter interface `IOutput'

As ever there is the corresponding abstract base class OutputBase shown in
3.8. The _save member function is for the developer to implement and takes
as an argument a pointer to the data object. The return value of this function
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is a simple bool type which represents the success/failure of the outputter to
complete it's task.

template <typename T>
class OutputBase : public virtual IOutput<T>,

public ModuleBase {
public :

// Constructors & Dest ruc to r s
expl ic it OutputBase ( const std : : s t r i n g &);
OutputBase ( const OutputBase&);
virtual ~OutputBase ( ) ;

public :
bool save (T* ) ;

private :
virtual bool _save (T*) = 0 ;

} ;

Listing 3.8: The abstract outputter base class `OutputBase'

3.5 Reducers

Reducers are data processors and usually come at the end of a chain of mappers
(see section 3.6). They can accumulate data from several events in their internal
state and do something with the information i.e. create a histogram. They are
de�ned by the interface IReduce as in 3.9. Note as before this is also a class
template with the template parameter being the data object type. The process
method, having used the data then returns an object of the same type such that
it can be passed to an outputter for storing/streaming etc.

template<typename T>
class IReduce : public virtual IModule {

public :
virtual T* proce s s (T* t ) = 0 ;

} ;

Listing 3.9: The reducer interface `IReducer'

The corresponding adstract base class ReduceBase can be seen in 3.10.

template <typename T>
class ReduceBase : public virtual IReduce<T>,

public ModuleBase {
public :

// Constructors & Dest ruc to r s
expl ic it ReduceBase ( const std : : s t r i n g &);
ReduceBase ( const ReduceBase&);
virtual ~ReduceBase ( ) ;

public :
T* proce s s (T* ) ;

private :
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virtual T* _process (T*) = 0 ;
} ;

Listing 3.10: The abstract reducer base class `ReduceBase'

3.6 Mappers

Similar to reducers, mappers are used to process data. They are de�ned by
the IMap interface as in 3.11. Unlike reducers they have no internal state and
hence the process method is de�ned const. The IMap interface de�nes a class
template as with the other module types in this chapter. However unlike them
it takes two template parameters, INPUT and OUTPUT, which represent the
input and output data object types respectively. The reason for this was due to
an upgrade to the original speci�cation which required the mappers to be able
to accept input types other than the expected type. This will become more
clear when looking at the abstract base class. Sur�ce to say for now that when
implementing a mapper the developer must give as template parameters those
types which s/he expects to be input and output.

template <typename INPUT, typename OUTPUT>
class IMap : public virtual IModule {

public :
virtual OUTPUT* proce s s (INPUT*) const = 0 ;

} ;

Listing 3.11: The map interface `IMap'

The abstract base class MapBase, seen in 3.12 looks slightly di�erent then
from the other module types shown before precisly because of this upgraded
functionality. Note the addition in this case of templated public member func-
tion which overloads the standard public process method. This overloaded
method will be called in all cases where the input data object type is not the
same as the expected type here denoted INPUT. Since there remains only the
one pure virtual private _process method, this templated method attempts to
perform an automatic conversion of the input data object to the type expected
by the developer. This abstracted behaviour means that the developer can go
ahead and write their mapper knowing that no matter what inputter is used in
the chain their code will be able to run.

This automatic conversion is performed by a converter object which is re-
trieved from the ConverterFactory as described in ??.

template <typename INPUT, typename OUTPUT>
class MapBase : public virtual IMap<INPUT, OUTPUT>,

public ModuleBase {
public :

// Constructors & Dest ruc to r s
expl ic it MapBase ( const std : : s t r i n g &);
MapBase ( const MapBase&);
virtual ~MapBase ( ) ;

public :
OUTPUT* proce s s (INPUT*) const ;
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template <typename OTHER> OUTPUT* proce s s (OTHER*) const ;

private :
virtual OUTPUT* _process (INPUT*) const = 0 ;

} ;

Listing 3.12: The abstract map base class `MapBase'

While at �rst glance this looks like it has added an extra layer of complexity
for the developer, it's actuall no extra work at all. This is due to the abstraction
layer absorbing all the extra complexity and shielding the developer from it. By
way of example, compare the minimal mapper example in 3.13 with that of the
minimal inputter in 3.6. In this example it is expected that the mapper receive
a data object of type Json::Value and will return the data in a type Spill. If
now a particular inputter returns the data as type Spill we will still be able to
use our mapper as a Spill to Json::Value converter will run on the data �rst to
ensure the data is of the right type.

class MyMap : public MapBase<Json : : Value , Sp i l l > {
public :

// Constructors & Dest ruc to r s
expl ic it MyMap( const std : : s t r i n g& s ) :

MapBase<Json : : Value , Sp i l l >(s ) {}
MyMap( const MyMap& m) :

MapBase<Json : : Value , Sp i l l >(m) {}
virtual ~MyMap( ) {}

private :
virtual void _birth ( const std : : s t r i n g& s ) {

// Your i n i t i a l i s a t i o n code here
}
virtual void _death ( ) {

// Your f i n a l i s a t i o n code here
}
virtual S p i l l * _process ( Json : : Value *) const {

// Your p ro c e s s i ng code here
}

} ;

Listing 3.13: A minimal working mapper

3.7 Scalability

It was an important motivation that the MAUS code be scalable for future un-
seen uses. To this end, the MAUS API framework is build upon the idea of a
inheritance ladder as depicted in 3.7. The ladder is essentially an extension of
the `dreaded diamond' structure and allows for extension at any point. This
�gure shows the inheritance ladder for a reducer (see section3.5) but similar
ladders exist for each of the other module types in the framework. The upper-
most line of classes correspone to the interface layer while those on the second
row represent the abstraction layer. The uncoloured elements represent possible
extensions. The colourless box on the bottom, `MyReduce', represents a devel-
opers implementation of the abstract ReduceBase. This has been touched on
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in this chapter already an represents a common inheritance from the abstract
base. It is assumed that many such classes will be constructed. These classes
are not considered extensions to the framework but rather elements which may
be run within it.

The two leftmost colourless boxes do indeed represent an extension to the
ladder an hence an extension to the framework. One may consider at some
point in the future that there needs to be a more specialised sub class of the
reducer. One can then implement a seperate interface and abstract base class
for this and extend the ladder.

Figure 3.1: Inheritance ladder

3.8 Module Initialisation and Destruction

MAUS has two execution concepts. A Job refers to a single execution of the
code, while a Run refers to the processing of data for a MICE data run or Monte
Carlo run.

In MAUS, Inputters, Mappers, Reducers and Outputters are initialised at
the start of every Job and destructed at the end of every Job. birth(...)

for Inputters and Outputters is called at the start of every Job and death() is
called at the end of every Job. The birth(...) for Mappers and Reducers is
called at the start of every Run and death() is called at the end of every Run.

The logic is that for each code execution we typically want to access data
from a single data source and output data to a single data �le. But mappers and
reducers are reinitialised for each run to enable loading of new calibrations, etc.
It is required that all transient information about the reconstruction pertaining
to a run - particularly ID of the calibration and cabling used - is recorded in
the StartOfRun data structure. Any summary information on code execution
during the run may be stored in the EndOfRun data structure. All transient
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information pertaining to a job - for example code version or bzr branch - should
be recorded in the StartOfJob data structure. Any summary information on
code execution during the job may be stored in the EndOfJob data structure.

3.9 Global Objects - Objects for Many Modules

There are some objects that sit outside the scope of the modular framework
described above. Typically these are objects that do not belong to any one mod-
ule, but need to be accessed by many. Examples are the logging functionality
(Squeak), ErrorHandler, Con�guration datacards, �eld maps, geometry descrip-
tion and Geant4 interfaces. These are accessed through the static singleton class
Globals de�ned in src/common_cpp/Utils/Globals.hh. Initialisation is han-
dled in src/common_cpp/Globals/GlobalsManager.hh. One Globals instance
is initialised per subprocess when running in multiprocessing mode.

For python users, some Global objects can be accessed by reference to the
maus_cpp.globals module.

3.9.1 Global Object Initialisation

Global objects are initialised before any modules in Go.py and deleted after all
modules are deathed. Global object initialisation and destruction is handled
at the Job level by src/common_cpp/Globals/GlobalManager.hh and called in
python via maus_cpp.globals as above.

Run-by-run initialisation is handled by the RunActionManager, de�ned in
src/common_cpp/Utils/RunActionManager.hh. The RunActionManager holds
a list of objects inheriting from RunActionBase each of which de�nes functions
to call at the start and end of each run.
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Chapter 4

Running the Monte Carlo

The simulation module provides particle generation routines, GEANT4 bind-
ings to track particles through the geometry and routines to convert modelled
energy loss in detectors into digitised signals from the MICE DAQ. The Digiti-
sation models are documented under each detector. Here we describe the beam
generation and GEANT4 interface.

4.1 Beam Generation

Beam generation is handled by the MapPyBeamMaker module. Beam genera-
tion is separated into two classes. The MapPyBeamGenerator has routines to
assign particles to a number of individual beam classes, each of which samples
particle data from a prede�ned parent distribution. Beam generation is handled
by the beam datacard.

The MapPyBeamMaker can either take particles from an external �le, over-
write existing particles in the spill, add a speci�ed number of particles from each
beam de�nition, or sample particles from a binomial distribution. The random
seed is controlled at the top level and di�erent algorithms can be selected in�u-
encing how this is used to generate random seeds on each particle.

Each beam de�nition has routines for sampling from a multivariate gaussian
distribution or generating ensembles of identical particles (called "pencil" beams
here). Additionally it is possible to produce time distributions that are either
rectangular or triangular in time to give a simplistic representation of the MICE
time distribution.

The beam de�nition controls are split into four parts. The reference branch
de�nes the centroid of the distribution; the transverse branch de�nes the trans-
verse coordinates, x, y, px, py; the longitudinal branch de�nes the longitudi-
nal coordinates - time and energy/momentum and the coupling branch de�nes
correlations between longitudinal and transverse. Additionally a couple of pa-
rameters are available to control random seed generation and relative weighting
between di�erent beam de�nitions.

In transverse, beams are typically sampled from a multivariate gaussian.
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The Twiss beam ellipse is de�ned by

B⊥ = m


εxβx/p −εxαx 0 0
−εxαx εxγxp 0 0

0 0 εyβy/p −εyαy
0 0 −εyαy εyγyp

 (4.1)

The Penn beam ellipse is de�ned by,

B⊥ = mε⊥


β⊥/p −α⊥ 0 −L+ β⊥B0/2p
−α⊥ γ⊥p L − β⊥B0/2p 0

0 L − β⊥B0/2p β⊥/p −α⊥
−L+ β⊥B0/2p 0 −α⊥ γ⊥p


(4.2)

where parameters can be controlled in datacards as described below. Note
that using the datacards it is possible to de�ne a beam ellipse that is poorly
conditioned (determinant nearly zero). In this case MAUS will print an error
message like Warning: invalid value encountered in double_scalars for
each primary.

4.2 GEANT4 Bindings

The GEANT4 bindings are encoded in the Simulation module. GEANT4 groups
particles by run, event and track. A GEANT4 run maps to a MICE spill; a
GEANT4 event maps to a single inbound particle from the beamline; and a
GEANT4 track corresponds to a single particle in the experiment.

A number of classes are provided for basic initialisation of GEANT4.

� MAUSGeant4Manager: is responsible for handling interface to GEANT4.
MAUSGeant4Manager handles initialisation of the GEANT4 bindings as
well as accessors for individual GEANT4 objects (see below). Interfaces
are provided to run one or many particles through the geometry, returning
the relevant event data. The MAUSGeant4Manager sets and clears the
event action before each run.

� MAUSPhysicsList: contains routines to set up the GEANT4 physical pro-
cesses. Datacards settings are provided to disable stochastic processes or
all processes and set a few parameters. In the end, the physics list set up
gets called by the FieldPhaser.

� FieldPhaser: the �eld phaser is a MAUS-speci�c tool for automatically
phasing �elds, for example RF cavities, such that they ramp coinciden-
tally with incoming particles. The FieldPhaser contains routines to �re
test ("reference") particles through the accelerator lattice and phase �elds
appropriately. The FieldPhaser phasing routines are called after GEANT4
is �rst initialised.

� VirtualPlanes: the VirtualPlanes routines are designed to extract particle
data from the GEANT4 tracking independently of the GEANT4 geometry.
The VirtualPlanes routines watches for steps that step across some plane
in physical space, or some time, or some proper time, and then interpolates
from the step ends to the plane in question.
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Table 4.1: Control parameters pertaining to all beam de�nitions.
Name Meaning
beam dict containing beam de�nition parameters.
The following cards should all be de�ned within the beam dict.

particle_generator Set to binomial to choose the number of par-
ticles by sampling from a binomial distribu-
tion. Set to counter to choose the number
of particles in each beam de�nition explicitly.
Set to file to generate particles by reading
an input �le. Set to overwrite_existing

to generate particles by overwriting existing
primaries.

binomial_n When using a binomial
particle_generator, this controls the
number of trials to make. Otherwise ignored.

binomial_p When using a binomial
particle_generator, this controls the
probability a trial yields a particle. Other-
wise ignored.

beam_file_format When using a �le particle_generator, set
the input �le format - options are

� icool_for009

� icool_for003,

� g4beamline_bl_track_file

� g4mice_special_hit

� g4mice_virtual_hit

� mars_1

� maus_virtual_hit

� maus_primary

beam_file When using a �le particle_generator, set
the input �le name. Environment variables
are automatically expanded by MAUS.

file_particles_per_spill When using a �le particle_generator, this
controls the number of particles per spill that
will be read from the �le.

random_seed Set the random seed, which is used to gener-
ate individual random seeds for each primary
(see below).

definitions A list of dicts, each item of which is a dict
de�ning the distribution from which to sam-
ple individual particles.
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Table 4.2: Individual beam distribution parameters.
Name Meaning
The following cards should be inside a dict in the beam definitions list.

random_seed_algorithm Choose from the following options

� beam_seed: use the random_seed for all
particles

� random: use a di�erent randomly deter-
mined seed for each particle

� incrementing: use the random_seed but
increment by one each time a new particle
is generated

� incrementing_random: determine a seed
at random before any particles are gener-
ated; increment this by one each time a new
particle is generated

weight When particle_generator is binomial or
overwrite_existing, the probability that a
particle will be sampled from this distribution
is given by weight/(sumofweights).

n_particles_per_spill When particle_generator is counter, this sets
the number of particles that will be generated in
each spill.

reference Dict containing the reference particle de�nition.
transverse Dict de�ning the longitudinal phase space distri-

bution.
longitudinal Dict de�ning the longitudinal phase space distri-

bution.
coupling Dict de�ning any correlations between transverse

and longitudinal.

Table 4.3: Beam distribution reference de�nition.
Name Meaning
The following cards should be de�ned in each beam de�nition reference dict.

position dict with elements x, y and z that de�ne the reference posi-
tion (mm).

momentum dict with elements x, y and z that de�ne the reference mo-
mentum direction. Normalised to 1 at runtime.

particle_id PDG particle ID of the reference particle.
energy Reference energy.
time Reference time (ns).
random_seed Set to 0 - this parameter is ignored.

27



Table 4.4: Beam de�nition transverse parameters.
Name Meaning
The following cards should be de�ned in each beam de�nition transverse dict.

transverse_mode Options are

� pencil: x, py, y, py taken from reference

� penn: cylindrical beam symmetric in x and
y

� constant_solenoid: cylindrical beam
symmetric in x and y, with beam radius
calculated from on-axis B-�eld to give con-
stant beam radius along a solenoid.

� twiss: beam with decoupled x and y beam
ellipses.

normalised_angular_

momentum
if transverse_mode is penn or
constant_solenoid, set L.

emittance_4d if transverse_mode is penn or
constant_solenoid, set ε⊥.

beta_4d if transverse_mode is penn, set β⊥.
alpha_4d if transverse_mode is penn, set α⊥.
bz if transverse_mode is constant_solenoid, set

the B-�eld used to calculate β⊥ and α⊥.
beta_x if transverse_mode is twiss, set βx.
alpha_x if transverse_mode is twiss, set αx.
emittance_x if transverse_mode is twiss, set εx.
beta_y if transverse_mode is twiss, set βy.
alpha_y if transverse_mode is twiss, set αy.
emittance_y if transverse_mode is twiss, set εy.
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Table 4.5: Beam de�nition longitudinal parameters.
Name Meaning
The following cards should be de�ned in each beam de�nition longitudinal dict.

momentum_variable In all modes, set this variable to control which lon-
gitudinal variable will be used to control the input
beam. Options are energy, p, pz.

longitudinal_mode Options are

� pencil: time, energy/p/pz taken from
reference

� gaussian: uncorrelated gaussians in time and
energy/p/pz

� twiss: multivariate gaussian in time and ener-
gy/p/pz

� uniform_time: gaussian in energy/p/pz and
uniform in time.

� sawtooth_time: gaussian in energy/p/pz and
sawtooth in time.

beta_l In Twiss mode, set βl
alpha_l In Twiss mode, set αl
emittance_l In Twiss mode, set εl
sigma_t In gaussian mode, set the RMS time.
sigma_p

sigma_energy

sigma_pz

In gaussian, uniform_time, sawtooth_time mode,
set the RMS energy/p/pz.

t_start In uniform_time and sawtooth_time mode, set the
start time of the parent distribution

t_end In uniform_time and sawtooth_time mode, set the
end time of the parent distribution

Table 4.6: Beam de�nition coupling parameters.
Name Meaning
The following cards should be de�ned in each beam de�nition coupling dict.

coupling_mode Set to none - not implemented yet.
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� FillMaterials: (legacy) the FillMaterials routines are used to initialise a
number of speci�c

� MICEDetectorConstruction: (legacy) the MICEDetectorConstruction rou-
tines provide an interface between the MAUS internal geometry represen-
tation encoded in MiceModules and GEANT4. MICEDetectorConstruc-
tion is responsible for calling the relevant routines for setting up the gen-
eral engineering geometry, calling detector-speci�c geometry set-up rou-
tines and calling the �eld map set-up routines.

� MAUSVisManager the MAUSVisManager is responsible for handling in-
terfaces with the GEANT4 visualisation.

The GEANT4 Action objects provide interfaces for MAUS-speci�c function
calls at certain points in the tracking.

� MAUSRunAction: sets up the running for a particular spill. In MAUS, it
just reinitialises the visualisation.

� MAUSEventAction: sets up the running for a particular inbound particle.
At the beginning of each event, the virtual planes, tracking, detectors and
stepping are all cleared. After the event the event data is pulled into the
event data from each element.

� MAUSTrackingAction: is called when a new track is created or destroyed.
If keep_tracks datacard is set to True, on particle creation, MAUS-
TrackingAction writes the initial and �nal track position and momentum
to the output data tree. If keep_steps is set to True MAUSTrackingAc-
tion gets step data from MAUSSteppingAction and writes this also.

� MAUSSteppingAction: is called at each step of the particle. If keep_steps
datacard is set to True, output step data is recorded. MAUSSteppingAc-
tion kills particles if they exceed the maximum_number_of_steps datacard.
MAUSSteppingAction calls the VirtualPlanes routines on each step.

� MAUSStackingAction: is called when a new track is created, prioritising
particle tracking. Handles killing particles based on the kinetic_energy_threshold,
default_keep_or_kill and keep_or_kill_particles datacards.

� MAUSPrimaryGeneratorAction: is called at the start of every event and
sets the particle data for each event. In MAUS, this particle generation
is handled externally and so the MAUSPrimaryGeneratorAction role is to
look for the primary object on the Monte Carlo event and convert this
into a GEANT4 event object.
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Table 4.7: Monte Carlo control parameters.
Name Meaning
General Monte Carlo controls.

simulation_geometry_filename Filename for the simulation geometry
- searches �rst in �les tagged by envi-
ronment variable ${MICEFILES}, then
in the local directory.

simulation_reference_particle Reference particle used for phasing
�elds.

keep_tracks Set to boolean true to store the initial
and �nal position/momentum of each
track generated by MAUS.

keep_steps Set to boolean true to store every step
generated by MAUS - warning this can
lead to large output �les.

maximum_number_of_steps Set to an integer value. Tracks taking
more steps are assumed to be looping.
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Table 4.8: Physics list control parameters.
Physics list controls.

physics_model GEANT4 physics model used to set up
the physics list.

physics_processes Choose which physics processes normal
particles observe during tracking. Op-
tions are

� normal particles will obey normal
physics processes, scattering and
energy straggling will be active.

� mean_energy_loss particles will
lose a deterministic amount of en-
ergy during interaction with mate-
rials and will never decay.

� none Particles will never lose energy
or scatter during tracking and will
never decay.

reference_physics_processes Choose which physics processes the ref-
erence particle observes during track-
ing. Options are mean_energy_loss and
none. The reference particle can never
have stochastic processes enabled.

particle_decay Set to boolean true to enable particle de-
cay; set to boolean false to disable.

charged_pion_half_life Set the half life for charged pions.
muon_half_life Set the half life for muons.
production_threshold Set the geant4 production threshold.
kinetic_energy_threshold Threshold for kinetic energy of new par-

ticles at production. Particles with ki-
netic energy below this value will not be
tracked.

default_keep_or_kill If set to true, keep particles with type
not listed in keep_or_kill_particles.
If set to false, kill particles with type
not listed in keep_or_kill_particles

keep_or_kill_particles Maps string particle type name to
boolean �ag. If set to true, always keep
particles of this type. If set to false, al-
ways kill particles of this type. If not set,
apply default_keep_or_kill
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Table 4.9: Visualisation control parameters.
Visualisation controls.

geant4_visualisation Set to boolean true to activate GEANT4 visuali-
sation.

visualisation_viewer Control which viewer to use to visualise GEANT4
tracks. Currently only vrmlviewer is compiled
into GEANT4 by default. Users can recompile
GEANT4 with additional viewers enabled at their
own risk.

visualisation_theta Set the theta angle of the camera.
visualisation_phi Set the phi angle of the camera.
visualisation_zoom Set the camera zoom.
accumulate_tracks Set to 1 to accumulate all of the simulated tracks

into one vrml �le. 0 for multiple �les.
default_vis_colour Set the RGB values to alter the default colour of

particles.
pi_plus_vis_colour Set the RGB values to alter the colour of positive

pions.
pi_minus_vis_colour Set the RGB values to alter the colour of negative

pions.
mu_plus_vis_colour Set the RGB values to alter the colour of positive

muons.
mu_minus_vis_colour Set the RGB values to alter the colour of negative

pions.
e_plus_vis_colour Set the RGB values to alter the colour of

positrons.
e_minus_vis_colour Set the RGB values to alter the colour of electrons.
gamma_vis_colour Set the RGB values to alter the colour of gammas.
neutron_vis_colour Set the RGB values to alter the colour of neutrons.
photon_vis_colour Set the RGB values to alter the colour of photons.
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Chapter 5

Geometry

MAUS uses the online Con�guration Database to store all of its geometries.
These geometries have been transferred from CAD drawings which are mod-
elling using the latest surveys and technical drawings available. The following
section shall describe how to use the available executables to access and use
these models.

5.1 Geometry Download

There are two executable �les available to users both can be found in the direc-
tory /bin/utilities found within your copy of MAUS. The two �les of interest are
download_geometry.py and get_geometry_ids.py. These �les do the following.

Upload Geometry

1. Set up the Con�greader class and read the values provided by Con-
�gurationDefaults.py or by custom con�g �les.

2. Instantiate an Uploader class object using the upload directory and
geometry note taken from the con�guration �le.

3. The list of �les which is created by the Uploader class is used to
compress the geometry �les into one zip �le.

4. This zip �le is then used as the argument for the upload_to_CDB
method which takes the contents of the zip and then uploads this, as
a single string to the CDB.

Optional If cleanup is speci�ed in the con�guration �le then the �le list and
the original GDML �les are the deleted leaving only the zip �le.

Download Geometry

1. Set up the Con�greader() class and read the values provided by Con-
�gurationDefaults.py or by custom con�g �les.

2. Instantiate a Downloader class object and downloads either the cur-
rent, time speci�ed or run number zipped geometry to a temporary
cache location.

3. The zip �le is then unzipped in this location.
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4. The Formatter class is then called and this class formats the GDMLs.
The formatting alters the schema location of these �les and points
them to the correct local locations of the Materials GDML �le. This
formatting leaves the original GDMLs in the tmeporary cache and
places the new formatted �les in the download directory speci�ed in
the con�guration �le.

5. GDMLtoMAUS is then called with the location of the new formatted
�les as its argument. This class converts the GDMLs to the MICE
Module text �les using the XSLT stylesheets previously described.

Optional If speci�ed in the con�guration �le the temporary cache location is
removed along with the zip �le and unzipped �les.

Get Geometry IDs 1. Set up the Con�greader() class and read the values
provided by Con�gurationDefaults.py or by custom con�g �les. This
�le takes start and stop time arguments to specify a period to search
the CDB.

2. A CDB class object is then instantiated with the server speci�ed in
the con�guration �le.

3. The get ids method from the CDB class is called and the python dict
which is downloaded is formatted and either printed to screen or to
�le as speci�ed in the con�guration �le.

To use these �les the user must use the arguments in the Con�gurationDe-
faults.py �le. The arguments relating to these executables are as follows.
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Table 5.1: Geometry control parameters.
Geometry controls.

cdb_upload_url Sets the upload url relating the the Con-
�guration Database.

cdb_download_url Sets the download url relating the the
Con�guration Database.

geometry_download_wsdl Name of the web service used for down-
loads.

geometry_download_directory Set the directory where you wish the ge-
ometry to be downloaded to.

geometry_download_by This can be set to either current, id
or run_number. Current will download
the current valid geometry stored on the
CDB. ID will download the geometry for
the ID speci�ed N.B ID numbers can
be found using the get geometry ids ex-
ecutable. Run_number will download
the geometry along with control room
information for speci�ed run.

geometry_download_run_number Set the number of the run to be down-
loaded.

geometry_download_id Set the number of the geometry ID to
be downloaded.

geometry_download_cleanup Set to True in order to cleanup the tem-
porary �les creaated during the down-
load process. These are the zip �le
downloaded and the original GDML �les
from this zip �le.

g4_step_max Set the G4 step max number which will
be set in the ParentGeometryFile. This
relates to the size of steps carried out
during the simulation.

geometry_upload_wsdl Name of the web service used for up-
loads. For developers use only.

geometry_upload_directory Set the the directory which stores the
FastRad produced GDML �les which
will be stored on the CDB. For Devel-
opers use only.

geometry_upload_note Write the description of the geometry
which is going to be uploaded. This
should describe what is in the beam line
speci�cally what is new to the model.
It should also include any other infor-
mation the developer wishes the user to
know. For developers use only.

geometry_upload_valid_from Set the date-time format of the date
when this geometry about to be up-
loaded is valid from. For developers use
only.

geometry_upload_cleanup Set to True in order to cleanup the tem-
porary �les creaated during the upload
process. These are the �le containing
the list of GDMLs to be uploaded and
also the original GDML �les. For devel-
opers use only.

get_ids_start_time Set the start time of the period which
you would like to get the ids from the
con�guration database. Must be in
date-time format.

get_ids_stop_time Set the stop time of the period which you
would like to get the ids from the con�g-
uration database. Must be in date-time
format.

get_ids_create_file Set to True in order to create a �le which
lists the geometries available within the
time period speci�ed. If set to False the
geometry information will be printed to
screen.
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Chapter 6

How to De�ne a Geometry

Mice Modules are the objects that control the geometry and �elds that are
simulated in MAUS. They are used in conjunction with a datacard �le, which
provides global run control parameters. Mice Modules are created by reading
in a series of text �les when MAUS applications are run.

This geometry information is used primarily by the Simulation application
for tracking of particles through magnetic �elds. A few commands are speci�c
to detector Reconstruction and accelerator beam Optics applications.

The Mice Modules are created in a tree structure. Each module is a parent
of any number of child modules. Typically the parent module will describe a
physical volume, and child modules will describe physical volumes that sit inside
the parent module. Modules cannot be used to describe volumes that do not
sit at least partially inside the volume if the parent module.

Each Mice Module �le consists of a series of lines of text. Firstly the Module
name is de�ned. This is followed by an opening curly bracket, then the descrip-
tion of the module and the placement of any child modules, and �nally a closing
curly bracket. Commands, curly brackets etc must be separated by an end of
line character.

Comments are indicated using either two slashes or an exclamation mark.
Characters placed after a comment on a line are ignored.

MAUS operates in a right handed coordinate system (x, y, z). In the absence
of any rotation, lengths are considered to be extent along the z -axis, widths to
be extent along the x -axis and heights to be extent along the y-axis. Rotations
(θx, θy, θz) are de�ned as a rotation about the z-axis through θz, followed by a
rotation about the y-axis through θy, followed by a rotation about the x-axis
through θx.

Con�guration File

The Con�guration �le places the top level objects in MICE. The location of the
�le is controlled by the datacard simulation_geometry_file_name. MAUS
looks for the con�guration �le in the �rst instance in the directory

${MICEFILES}/Models/Configuration/<MiceModel>

where ${MICEFILES} is a user-de�ned environment variable. If MAUS fails to
�nd the �le it searches the local directory.

The world volume is de�ned in the Con�guration �le and any children of the
world volume are referenced by the Con�guration �le. The Con�guration �le
looks like

Configuration <Configuration Name>

37



{

Dimensions <x> <y> <z> <Units>

<Properties>

<Child Modules>

}

<Configuration Name> is the name of the con�guration. Typically the
Con�guration �le name is given by <Configuration Name>.dat. The world
volume is always a rectangular box centred on (0, 0, 0) with x, y, and z extent
set by the Dimensions. Properties and Child Modules are described below and
added as in any Module.

Substitutions

It is possible to make keyword substitutions that substitutes all instances of
<name> with <value> in all Modules. The syntax is

Substitution <name> <value>

<name> must start with a single $ sign. Substitutions must be de�ned in the
Con�guration �le. Note this is a direct text substitution in the MiceModules
before the modules are parsed properly. So for example,

Substitution $Sub SomeText

PropertyString FieldType \$Sub}

PropertyDouble \$SubValue 10}

would be parsed as MAUS like

PropertyString FieldType SomeText}

PropertyDouble SomeTextValue 10}

Expressions

The use of equations in properties of type double and Hep3Vector is also allowed
in place of a single value. So, for example,

PropertyDouble FieldStrength 0.5*2 T

would result in a FieldStrength property of 1 Tesla.

Expression Substitutions

Some additional variables can be de�ned in speci�c cases by MAUS itself for
substitution into experssions, in which case they will start with @ symbol. For
these variable substitutions, it is only possible to make the substitution into
expressions. So for example,

PropertyDouble ScaleFactor 2*@RepeatNumber

Would substitute @RepeatNumber into the expression. @RepeatNumber is de-
�ned by MAUS when repeating modules are used (see RepeatModule2, below).
Note the following code is not valid

PropertyString FileName File@RepeatNumber //NOT VALID

This is because Expression Substitutions can only be used in an expression (i.e.
an equation).
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Module Files

Children of the top level Mice Module are de�ned by Modules. MAUS will
attempt to �nd a module in an external �le. The location of the �le is controlled
by the parent Module. Initially MAUS looks in the directory

${MICEFILES}/Models/Modules/<Module>

If the Mice Module cannot be found, MAUS searches the local directory. If the
module �le still cannot be found, MAUS will issue a warning and proceed.

The Module description is similar in structure to the Con�guration �le:

Module <Module Name>

{

Volume <Volume Type>

Dimensions <Dimension1> <Dimension2> <Dimension3> <Units>

<Properties>

<Child Modules>

}

<Module Name> is the name of the module. Typically the Module �le name is
given by <Module Name>.dat.

The de�nition of Volume, Dimensions, Properties and Child Modules are
described below.

Volume and Dimensions

The volume described by the MiceModule can be one of several types. Replace
<Volume Type> with the appropriate volume below. Cylinder, Box and Tube
de�ne cylindrical and cuboidal volumes. Polycone de�nes an arbitrary volume
of rotation and is described in detail below. Wedge describes a wedge with a
triangular projection in the y-z plane and rectangular projections in x-z and x-y
planes. Quadrupole de�nes an aperture with four cylindrical pole tips.

In general, the physical volumes that scrape the beam are de�ned indepen-
dently of the �eld maps. This is the more versatile way to do things, but there
are some pitfalls which such an implementation introduces. For example, in
hard-edged �elds like pillboxes, tracking errors can be introduced when MAUS
steps into the �eld region. This can be avoided by adding windows (probably
made of vacuum material) to force GEANT4 to stop tracking, make a small step
over the �eld boundary, and then restart tracking inside the �eld. However, such
details are left for the user to implement.

Volume Dimension1 Dimension2 Dimension3
None No dimensions required. Note cannot de�ne daughter Modules for this volume type.
Cylinder Radius Length in z Not used (leave blank)
Box Width in x Height in y Length along z
Tube Inner Radius Outer Radius Length in z
Trapezoid Half Width in x Half Height in y Half Length in z
Wedge See documentation below.
Polycone No dimensions required. Volume de�ned from external �le.
Quadrupole No dimensions required. Dimensions de�ned from module properties.
Multipole No dimensions required. Dimensions de�ned from module properties.
Boolean No dimensions required. Dimensions de�ned from module properties.
Sphere See documentation below.
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Volume Dimension1 Dimension2 Dimension3

Properties

Many of the features of MAUS that can be enabled in a module are described
using properties. For example, properties enable the user to de�ne detectors
and �elds. Properties can be either of several types: PropertyDouble, Prop-
ertyString, PropertyBool, PropertyHep3Vector or PropertyInt. A property is
declared via

<Property Type> <Property Name> <Value> <Units if appropriate>

Di�erent properties that can be enabled for Mice Modules are described else-
where in this document. Properties of type PropertyDouble and Property-
Hep3Vector can have units. Units are de�ned in the CLHEP library. Units
are case sensitive; MAUS will return an error message if it fails to parse units.
Combinations of units such as T/m or N*m can be de�ned using '*' and '/'
as appropriate. Properties cannot be de�ned more than once within the same
module.

Child Modules

Child Modules are de�ned with a position, rotation and scale factor. This
places, and rotates, the child volume and any �elds present relative to the parent
volume. Scale factor scales �elds de�ned in the child module and any of its
children. Scale factors are recursively multiplicative; that is the �eld generated
by a child module will be scaled by the product of the scale factor de�ned in
the parent module and all of its parents.

The child module de�nition looks like:

Module <Module File Name>

{

Position <x position> <y position> <z position> <Units>

Rotation <x rotation> <y rotation> <z rotation> <Units>

ScaleFactor <Value>

<Define volume, dimensions and properties for this instance only>

}

MAUS searches for <Module File Name> �rst relative to ${MICEFILES}/Models/Modules/
and subsequently relative to the current working directory. The position and
rotation default to 0, 0, 0 and the scale factor defaults to 1.

• Volume, Dimension and Properties of the child module can be de�ned at
the level of the parent; in this case these values will be used only for this
instance of the module.

• If no �le can be found, MAUS will press on regardless, attempting to build
a geometry using the information de�ned in the parent volume.

Module Hierarchy and GEANT4 Physical Volumes

MAUS enables users to place arbitrary physical volumes in a GEANT4 geom-
etry. The formatting of MAUS is such that users are encouraged to use the
GEANT4 tree structure for placing physical volumes. This is a double-edged
sword, in that it provides users with a convenient interface for building geome-
tries, but it is not a terribly safe interface.
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Figure 6.1: The diagram shows a schematic for a square placed inside a cylinder
inside a rectangle. This nesting must be replicated in the MiceModules in order
for the volumes to be correctly represented by MAUS.

Consider the cartoon of physical volumes shown above. Here there is a blue
volume sitting inside a red volume sitting inside the black world volume. For
the volumes to be represented properly, the module that represents the blue
volume MUST be a child of the module that represents the red volume. The
module that represents the red volume MUST, in turn, be a child of the module
that represents the black volume, in this case the Con�guration �le.

What would happen if we placed the blue volume directly into the Black
volume, i.e. the Con�guration �le? GEANT4 would silently ignore the blue
volume, or the red volume, depending on the order in which they are added
into the GEANT4 geometry. What would happen if we placed the blue volume
overlapping the red and black volumes? The behaviour of GEANT4 is not clear
in this case.

• Never allow a volume to overlap any part of another volume that is not
it's direct parent.

It is possible to check for overlaps by setting the datacard CheckVolumeOverlaps
to 1.

A Sample Con�guration File

Below is listed a sample con�guration �le, which is likely to be included in
the �le ExampleCon�guration.dat; the actual name is speci�ed by the datacard
MiceModel.

Configuration ExampleConfiguration

{

Dimensions 1500.0 1000.0 5000.0 cm

PropertyString Material AIR

Substitution $MyRedColour 0.75

Module BeamLine/SolMag.dat

{

Position 140.0 0.0 -2175.0 cm
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Rotation 0.0 30.0 0.0 degree

ScaleFactor 1.

}

Module BeamLine/BendMag.dat

{

Position 0.0 0.0 -1935.0 cm

Rotation 0.0 15.0 0.0 degree

ScaleFactor 1.

}

Module NoFile_Box1

{

Volume Box

Dimension 1.0 1.0 1.0

Position 0.0 0.0 200.0 cm

Rotation 0.0 15.0 0.0 degree

PropertyString Material Galactic

PropertyDouble RedColour $MyRedColour

}

Module NoFile_Box2}

{

Volume Box

Dimension 0.5 0.5 0.5*3 m //z length = 0.5*3 = 1.5 m

Rotation 0.0 15.0 0.0 degree //Rotation relative to parent

PropertyString Material Galactic

PropertyDouble RedColour $MyRedColour

}

}

A Sample Child Module File

Below is listed a sample module �le, which is likely to be included in the �le
SolMag.dat ; the actual location is speci�ed by the module or con�guration that
calls FCoil. The module contains a number of properties that de�ne the �eld.

Module SolMag

{

Volume Tube

Dimensions 263.0 347.0 210.0 mm

PropertyString Material Al

PropertyDouble BlueColour 0.75

PropertyDouble GreenColour 0.75

//field}

PropertyString FieldType Solenoid

PropertyString FileName focus.dat

PropertyDouble CurrentDensity 1.

PropertyDouble Length 210. mm

PropertyDouble Thickness 84. mm

PropertyDouble InnerRadius 263. mm

}
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Chapter 7

Geometry and Tracking

MiceModule Properties

In general, MAUS treats physical geometry distinct from �elds. Fields can be
placed overlapping physical objects, or entirely independently of them, as the
user desires. Properties for various aspects of the physical and engineering model
of the simulation are described below. This includes properties for sensitive
detectors.

General Properties

There are a number of properties that are applicable to any MiceModule.

Property Type Description
Material string The material that the volume is made up from

Invisible bool
Set to 1 to make the object invisible in visualisation, or 0 to make the object
visible.

RedColour double

GreenColour double

BlueColour double

Alter the colour of objects as they are visualised

G4StepMax double
The maximum step length that Geant4 can make in the volume. Inherits values
from the parent volumes.

G4TrackMax double

G4TimeMax double

The maximum track length and particle time of a track. Tracks outside this
bound are killed. Inherits values from the parent volumes.

G4KinMin double
The minimum kinetic energy of a track. Tracks outside this bound are killed.
Inherits values from the parent volumes.

SensitiveDetector string
Set to the type of sensitive detector required. Possible sensitive detectors are
TOF, SciFi, CKOV, SpecialVirtual, Virtual, Envelope or EMCAL.

Sensitive Detectors

A sensitive detector (one in which hits are recorded) can be de�ned by including
the SensitiveDetector property. When a volume is set to be a sensitive detec-
tor MAUS will automatically record tracks entering, exiting and crossing the
volume. Details such as the energy deposited by the track are sometimes also
recorded in order to enable subsequent modelling of the detector response.

Some sensitive detectors use extra properties.
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Scintillating Fibre Detector (SciFi)

Cerenkov Detector (CKOV)

Time Of Flight Counter (TOF)

Special Virtual Detectors

Special virtual detectors are used to monitor tracking through a particular physi-
cal volume. Normally particle tracks are written in the global coordinate system,
although an alternate coordinate system can be de�ned. Additional properties
can be used to parameterise special virtual detectors.

Property Type Description

ZSegmentation int

PhiSegmentation int

RSegmentation int

Set the number of segments in the detector in Z, R or f. Defaults to 1.

SteppingThrough bool

SteppingInto bool

SteppingOutOf bool

SteppingAcross bool

Set to true to record tracks stepping through, into, out of or across the volume.
Defaults to true.

Station int
De�ne an integer that is written to the output �le to identify the station.
Defaults to a unique integer identi�er chosen by MAUS, which will be di�erent
each time the same Special Virtual is placed.

LocalRefRotation
Hep3
Vector

If set, record hits relative to a reference rotation in the coordinate system of
the SpecialVirtual detector.

GlobalRefRotation
Hep3
Vector

If set, record hits relative to a reference rotation in the coordinate system of
the Con�guration.

LocalRefPosition
Hep3
Vector

If set, record hits relative to a reference position in the coordinate system of
the SpecialVirtual detector.

GlobalRefPosition
Hep3
Vector

If set, record hits relative to a reference position in the coordinate system of
the Con�guration.

Virtual Detectors

Virtual detectors are used to extract all particle data at a particular plane, irre-
spective of geometry. Virtual detectors do not need to have a physical volume.
The plane can be a plane in z, time, proper time, or a physical plane with some
arbitrary rotation and translation.

Property Type Description

IndependentVariable String

• If set to t, particle data will be written for particles at the time de�ned
by the PlaneTime property.

• If set to tau, particle data will be written for particles at the proper time
de�ned by the PlaneTime property.

• If set to z, particle data will be written for particles crossing the module's
z-position.

• If set to u, particle data will be written for particles crossing a plane
extending in x and y.
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Property Type Description

PlaneTime Double
If IndependentVariable is t or tau, particle data will be written out at this time.
Mandatory if IndependentVariable is t or tau.

RadialExtent Double
If set, particles outside this radius in the plane of the detector will not be
recorded by the Virtual detector.

GlobalCoordinates Bool
If set to 0, particle data is written in the coordinate system of the module.
Otherwise particle data is written in global coordinates.

MultiplePasses String

Set how the VirtualPlane handles particles that pass through more than once.
If set to Ignore, particles will be ignored on second and subsequent passes. If
set to SameStation, particles will be registered with the same station number.
If set to NewStation, particles will be registered with a NewStation number
given by the (total number of stations) + (this plane's station number), i.e. a
new station number appropriate for a ring geometry.

AllowBackwards Bool
Set to false to prevent backwards-going particles from being recorded. Default
is true.

Envelope Detectors

Envelope detectors are a type of Virtual detector that take all of the properties
listed under virtual detectors, above. In addition, in the optics application they
can be used to interact with the beam envelope in a special way. The following
properties can be de�ned for Envelope Detectors in addition to the properties
speci�ed above for virtual detectors.

The The EnvelopeOut properties are used to make output from the envelope
for use in the Optics optimiser.
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Property Type Description

EnvelopeOut1_Name String
De�nes the variable name that can be used as an expression substitution at
the end of each iteration, typically substituted into the Score parameters in
the optimiser (see optimiser, below).

EnvelopeOut1_Type String

De�nes the type of variable that will be calculated for the substitution. Options
are

� Mean

� Covariance

� Standard_Deviation

� Correlation

� Bunch_Parameter

EnvelopeOut1_Variable String

De�nes the variable that will be calculated for the substitution. Options are
for Bunch_Parameter

� ◦ emit_6d : 6d emittance

◦ emit_4d: 4d emittance (in x-y space)

◦ emit_t: 2d emittance (in time space)

◦ emit_x: 2d emittance (in x space)

◦ emit_y: 2d emittance (in y space)

◦ beta_4d: 4d transverse beta function

◦ beta_t: 2d longitudinal beta function

◦ beta_x: 2d beta function (in(x space)

◦ beta_y: 2d beta function (in y space)

◦ alpha_4d: 4d transverse alpha function

◦ alpha_t: 2d longitudinal alpha function

◦ alpha_x: 2d alpha function (in(x space)

◦ alpha_y: 2d alpha function (in y space)

◦ gamma_4d: 4d transverse gamma function

◦ gamma_t: 2d longitudinal gamma function

◦ gamma_x: 2d gamma function (in(x space)

◦ gamma_y: 2d gamma function (in y space)

◦ disp_x: x-dispersion

◦ disp_y: y-dispersion

◦ ltwiddle: normalised angular momentum

◦ lkin: standard angular momentum

For Mean, Standard_Deviation, Covariance and Correlation, variables should
be selected from the options

� x: x-position

� y:y-position

� t: time

� px: x-momentum

� py: y-momentum

� E: energy

For Mean, a single variable should be selected and value corresponding to the
reference trajectory will be returned.
For Standard_Deviation, a single variable should be selected and the 1 sigma
beam size will be returned.
For Covariance and Correlation, two variables should be selected separated by
a comma.
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Unconventional Volumes

It is possible to de�ne a number of volumes that use properties rather than the
Dimensions keyword to de�ne the volume size.

Volume Trapezoid

Volume Trapezoid gives a trapezoid which is not necessarily isosceles. Its
dimensions are given by:

Property Type Description
TrapezoidWidthX1 Double Gives width1 in x
TrapezoidWidthX2 Double Gives width2 in x
TrapezoidWidthY1 Double Gives height1 in y
TrapezoidWidthY2 Double Gives height2 in y
TrapezoidLengthZ Double Gives length along z

Trapezoid Volume

A Trapezoid Volume is like a Wedge Volume (look visualization below) with the
possibility to have di�erent values for x width and 2 (non-zero) values for y.

Volume Wedge

A wedge is a triangular prism as shown in the diagram. Here the blue line
extends along the positive z-axis and the red line extends along the x-axis.

Property Type Description

Dimensions
Hep3
Vector

1. Width of the prism in x

2. Open end height of the prism in y

3. Length of the prism in z

Volume Polycone

A polycone is a volume of rotation, de�ned by a number of points in r and z.
The volume is found by a linear interpolation of the points.

Property Type Description

PolyconeType string
Set to Fill to de�ne a solid volume of rotation. Set to Cone to de�ne a shell
volume of rotation with an inner and outer surface.

FieldMapMode string The name of the �le that contains the polycone data.

Volume Quadrupole

Quadrupoles are de�ned by an empty cylinder with four further cylinders that
are approximations to pole tips.

Property Type Description
PhysicalLength double The length of the quadrupole container.
QuadRadius double The distance from the quad centre to the outside of the quad.
PoleTipRadius double The distance from the quad centre to the pole tip.
CoilRadius double
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Property Type Description
CoilHalfWidth double
BeamlineMaterial string The material from which the beamline volume is made.
QuadMaterial string The material from which the quadrupole volume is made.

Volume Multipole

Multipoles are de�ned by an empty box with an arbitrary number of cylinders
that are approximations to pole tips. Poles are placed around the centre of the
box with n-fold symmetry. Multipoles can be curved, in which case poles cannot
be de�ned � only a curved rectangular aperture will be present.

Property Type Description

ApertureCurvature double
Radius of curvature of the multipole aperture. For now curved apertures
cannot have poles. Set to 0 for a straight aperture.

ApertureLength double Length of the multipole aperture.
NumberOfPoles int Number of poles.

PoleCentreRadius double
The distance from the centre of the aperture to the centre of the cylindrical
pole.

PoleTipRadius double The distance from the centre of the aperture to the tip of the cylindrical pole.
ApertureInnerHeight double The inner full height of the aperture.
ApertureInnerWidth double The inner full width of the aperture.
AppertureOuterHeight double The outer full height of the aperture.
ApertureOuterWidth double The outer full width of the aperture.

Volume Boolean

Boolean volumes enable several volumes to be combined to make very sophisti-
cated shapes from a number of elements. Elements can be combined either by
union, intersection or subtraction operations. A union creates a volume that is
the sum of two elements; an intersection creates a volume that covers the region
where two volumes intersect each other; and a subtraction creates a volume that
contains all of one volume except the region that another volume sits in.

Boolean volumes combine volumes modelled by other MiceModules (sub-
modules), controlled using the properties listed below. Only the volume shape
is used; position, rotation and �eld models etc are ignored. Materials, colours
and other relevant properties are all taken only from the Boolean Volume's
properties.

Note that unlike in other parts of MAUS, submodules for use in Booleans
(BaseModule, BooleanModule1, BooleanModule2 ...) must be de�ned in a sep-
arate �le, either de�ned in $MICEFILES/Models/Modules or in the working
directory.

Also note that visualisation of boolean volumes is rather unreliable. Unfor-
tunately this is a feature of GEANT4. An alternative technique is to use special
virtual detectors to examine hits in boolean volumes.

Property Type Description

BaseModule string
Name of the physical volume that the BooleanVolume is based on. This
volume will be placed at (0,0,0) with no rotation, and all subsequent volumes
will be added, subtracted or intersected with this one.

BooleanModule1 string
The �rst module to add. MAUS will search for the MiceModule with path
$MICEFILES/Models/Modules/<BooleanModule1>.

BooleanModule1Type string
The type of boolean operation to apply, either �Union�, �Intersection� or �Sub-
traction�.
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Property Type Description

BooleanModule1Pos
Hep3
Vector

The position of the new volume with respect to the Base volume.

BooleanModule1Rot
Hep3
Vector

The rotation of the new volume with respect to the Base volume.

BooleanModuleN string

Add extra modules as required. Replace �N� with the module number. N must
be a continuous series incrementing by 1 for each new module. Note that the
order in which modules are added is important � (A-B) U C is di�erent to
A-(B U C).

BooleanModuleNType string

BooleanModuleNPos
Hep3
Vector

BooleanModuleNRot
Hep3
Vector

Volume Sphere

A sphere is a spherical shell, with options for opening angles to make segments.

Property Type Description

Dimensions
Hep3
Vector

The x value de�nes the inner radius. The y value de�nes the outer radius of
the shell. The z value is not used.

Phi
Hep3
Vector

The x value de�nes the start opening angle in phi. The y value de�nes the
end opening angle. The z value is not used. Phi values must be in the range
0 to 360 degrees. If unde�ned, defaults to the range 0-360 degrees.

Theta
Hep3
Vector

The x value de�nes the start opening angle in theta. The y value de�nes the
end opening angle. The z value is not used. Theta values must be in the
range 0 to 180 degrees. If unde�ned, defaults to the range 0-360 degrees.

Repeating Modules

It is possible to set up a repeating structure for e.g. a repeating magnet lattice.
The RepeatModule property enables the user to specify that a particular module
will be repeated a number of times, with all properties passed onto the child
module, but with a new position, orientation and scale factor. Each successive
repetition will be given a translation and a rotation relative to the coordinate
system of the previous repetition, enabling the construction of circular and
straight accelerator lattices. Additionally, successive repetitions can have �elds
scaled relative to previous repetitions, enabling for example alternating lattices.

Property Type Description
RepeatModule bool Set to 1 to enable repeats in this module.

NumberOfRepeats int
Number of times the module will be repeated in addition to the initial place-
ment.

RepeatTranslation
Hep3
Vector

Translation applied to successive repeats, applied in the coordinate system of
the previous repetition.

RepeatRotation
Hep3
Vector

Rotation applied to successive repeats, applied in the coordinate system of
the previous repetition.

RepeatScaleFactor double
ScaleFactor applied to successive repeats, applied relative to previous repeti-
tion's scale factor.

The RepeatModule2 property also enables the user to specify that a particu-
lar module will be repeated a number of times. In this case, MAUS will set
a substitution variable @RepeatNumber that holds an index between 0 and
NumberOfRepeats. This can be used in an expression in to provide a versatile
interface between user and accelerator lattice.

49



50



Property Type Description
RepeatModule2 bool Set to 1 to enable repeats in this module.

NumberOfRepeats int
Number of times the module will be repeated in addition to the initial place-
ment.

Beam De�nition and Beam Envelopes

The Optics application can be used to track a trajectory and associated beam
envelope through the accelerator structure. Optics works by �nding the Jaco-
bian around some arbitrary trajectory using a numerical di�erentiation. This is
used to de�ne a linear mapping about this trajectory, which can then be used
to transport the beam envelope.

A beam envelope is de�ned by a reference trajectory and a beam ellipse.
The reference trajectory takes its position and direction from the position and
rotation of the module. If no rotation is de�ned the reference trajectory is taken
along the z-axis. The magnitude of the momentum and the initial time of the
reference trajectory is de�ned by properties. RF cavities are phased using the
reference trajectory de�ned here.

The beam ellipse is represented by a matrix, which can either be set using

• Twiss-style parameters in (x, px), (y, py) and (t, E) spaces.

• Twiss-style parameters in (t, E) space and Penn-style parameters in a
cylindrically symmetric (x, px, y, py) space.

• A 6x6 beam ellipse matrix where the ellipse equation is given byX.T()MX =
1.

The Penn ellipse matrix is given by

M =



εLmc
βL

p −εLmcαL 0 0 0 0

εLmcγLp
Dx

E V (E) D′
x

E V (E) Dy

E V (E) D′
y

E V (E)
εTmc

βT

p −εTmcαT 0 −εTmc( q2βT
Bz

P − L)
εTmcγT p εTmc( q2βT

Bz

P − L) 0
εTmc

βT

p −εTmcαT
εLmcγT p


Here L is a normalised canonical angular momentum, q is the reference particle
charge, Bz is the nominal on-axis magnetic �eld, p is the reference momentum,
m is the reference mass, εT is the transverse emittance, βT and αT are the
transverse Twiss-like functions, εL is the longitudinal emittance and βL and αL
are the longitudinal Twiss-like functions. Additionally Dx, Dy, D

′
x and D′y are

the dispersions and their derivatives with respect to z and V (E) is the variance
of energy (given by the (2, 2) term in the matrix above).

The Twiss ellipse matrix is given by

M =



εLmc
βL

p −εLmcαL 0 0 0 0

εLmcγLp
Dx

E V (E) D′
x

E V (E) Dy

E V (E) D′
y

E V (E)
εxmc

βx

p −εxmcαx 0 0
εxmcγxp 0 0

εymc
βy

p −εymcαy
εymcγyp
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Here p is the reference momentum, m is the reference mass, ei, bi and ai are
the emittances and Twiss functions in the (t,E), (x,px) and (y,py) planes respec-
tively, Dx, Dy, D'x, D'y are the dispersions and their derivatives with respect
to z and V(E) is the variance of energy (given by the (2,2) term in the matrix
above).

Property Type Description
EnvelopeType string Set to TrackingDerivative to evolve a beam envelope in the Optics application.

BeamType string

Set to Random to generate a beam using the parameters below for the Simu-
lation application. Set to Pencil to generate a pencil beam (with no random
distribution). Set to ICOOL, Turtle, MAUS_PrimaryGenHit or G4BeamLine
to use a beam �le.

Pid int The particle ID of particles in the envelope or beam.
Time double Set the time of the envelope reference trajectory

Longitudinal Variable string
Set the longitudinal variable used to de�ne the reference trajectory momentum.
Options are Energy, KineticEnergy, Momentum and ZMomentum.

Energy

KineticEnergy

Momentum

ZMomentum

double

double

double

double

De�ne the value of the longitudinal variable used to calculate the mean mo-
mentum and energy. The usual relationship E2+p2c2=m2c4 applies. Kinetic
energy Ek is related to energy E by Ek+m=E.

EllipseDe�nition string
De�ne the beam ellipse that will be used in calculating the evolution of the
Envelope, or used to generate a beam for BeamType Random. Options are
Twiss, Penn and Matrix.

The following properties are only used if EllipseDe�nition is set to Twiss

Emittance_X double

Emittance_Y double

Emittance_L double

Emittance in each 2d subspace, (x,px), (y,py) and (t,E).

Beta_X double

Beta_Y double

Beta_L double

Twiss b function in each 2d subspace, (x,px), (y,py) and (t,E).

Alpha_X double

Alpha_Y double

Alpha_L double

Twiss a function in each 2d subspace, (x,px), (y,py) and (t,E).

The following properties are only used if EllipseDe�nition is set to Matrix

Covariance(t,t) double

Covariance(t,E) double

Covariance(t,x) double

... double

Covariance(Py,Py) double

Set the 6x6 matrix that will be used in the to de�ne the beam ellipse. Covari-
ances should be covariances of elements of the matrix (x,Px,y,Py,t,E).
This must be a positive de�nite matrix, i.e. determinant > 0. Note that this
means that at least the 6 terms on the diagonal must be de�ned. Other terms
default to 0.

The following properties are only used if EllipseDe�nition is set to Penn

Emittance_T double Transverse emittance for the 4d (x,px,y,py) subspace.
Emittance_L double Longitudinal emittance for the 2d (t,E) subspace.
Beta_T double Transverse beta for the 4d (x,px,y,py) subspace.
Beta_L double Longitudinal beta for the 2d (t,E) subspace.
Alpha_T double Transverse alpha for the 4d (x,px,y,py) subspace.
Alpha_L double Longitudinal alpha for the 2d (t,E) subspace.
Normalised
AngularMomentu

double Normalised angular momentum for the transverse phase space.
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Property Type Description
Bz double Nominal magnetic �eld on the reference particle.
The following properties are used if EllipseDe�nition is set to Penn or Twiss

Dispersion_X double Dispersion in x (x-energy correlation).
Dispersion_Y double Dispersion in y (y-energy correlation).
DispersionPrime_X double D' in x (Px-energy correlation).
DispersionPrime_Y double D' in y (Py-energy correlation).
The following properties are only relevant for generating a beam envelope

RootOutput string Output �le name for writing output beam envelope in ROOT binary format.
LongTextOutput string Output �le name for writing output beam envelope in string format.

ShortTextOutput string
Output �le name for writing output beam envelope in string format. This
abbreviated output omits some of the �elds that are present in LongTextOutput
�les.

BeamOutput string
If a BeamType is de�ned, this property controls the �le name to which beam
data is written.

Delta_t double O�set in time used for calculating numerical derivatives. Default is 0.1 ns.
Delta_E double O�set in energy used for calculating numerical derivatives. Default is 1 MeV.

Delta_x double
O�set in x position used for calculating numerical derivatives. Default is 1
mm.

Delta_Px double
O�set in x momentum used for calculating numerical derivatives. Default is 1
MeV/c.

Delta_y double
O�set in y position used for calculating numerical derivatives. Default is 1
mm.

Delta_Py double
O�set in y momentum used for calculating numerical derivatives. Default is 1
MeV/c.

Max_Delta_t double

Max_Delta_E double

Max_Delta_x double

Max_Delta_Px double

Max_Delta_y double

Max_Delta_Py double

Maximum o�sets when poly�t algorithm is used. In some cases the o�set can
keep increasing without limit unless these maximum o�sets are de�ned. Default
is no limit.

The following properties are only relevant for generating a particle beam

UseAsReference Bool

If set to true and the datacard FirstParticleIsReference is set to 0, the �rst
event in the Module will be used as the reference particle that sets cavity
phases. This particle will then have the mean trajectory (i.e. no gaussian
distribution).

BeamFile string
If the BeamType is ICOOL, Turtle, MAUS_PrimaryGenHit or G4BeamLine,
this property de�nes the name of the �le containing tracks for MAUS.

NumberOfEvents int

Set the maximum number of events to take from this module. If other modules
are de�ned, MAUS will iterate over the modules until it the datacard numEvts
is reached or all modules have been run to NumberOfEvents. Default is for
MAUS to keep tracking from the �rst module it �nds until numEvts is reached.

Optimiser

It is possible to de�ne an optimiser for use in the Optics application. The
optimiser enables the user to vary parameters in the MiceModule �le and try
to �nd some optimum setting. For each value of the parameters, MAUS Optics
will calculate a score; the optimiser attempts to �nd a minimum value for this
score.

Property Type Description

Optimiser string
Controls the function used for optimising. For now Minuit is the only available
option.
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Property Type Description

Algorithm string

For Minuit optimiser, controls the Minuit algorithm used. In general Simplex
is a good option to use here. An alternative is Migrad. See Minuit documenta-
tion (for example at http://root.cern.ch/root/html/TMinuit.html) for further
information. Minuit attempts to minimise the score function de�ned by the
Score properties.

NumberOfTries int
Maximum number of iterations MAUS will make in order to �nd the optimum
value.

StartError double Guess at the initial error in the score.
EndError double Required �nal error in the score for the optimisation to converge successfully.

RebuildSimulation bool
Set to False to tell MAUS not to rebuild the simulation on each iteration. This
should be used to speed up the optimiser when a parameter is used that does
not change the �eld maps. Default is true.

Parameter1_Start double Seed value for the parameter, that is used in the �rst iteration.

Parameter1_Name string
Name of the parameter. This name is used as an expression substitution vari-
able elsewhere in the code and should start with @. See Expression Substitu-
tions above for details on usage of expression substitutions.

Parameter1_Delta double Estimated initial error on the parameter. Default is 1.

Parameter1_Fixed bool
Set to true to �x the parameter (so that it is excluded from the optimisation).
Default is false.

Parameter1_Min double If required, set to the minimum value that the parameter can hold.
Parameter1_Max double If required, set to the maximum value that the parameter can hold.

Parameter2_Start ...

... ...

Parameter2_Max ...

Score1 double

Score2 ...

... ...

De�ne an arbitrary number of parameters. Parameters must be numbered con-
secutively, and each parameter must have at least the start value and name
de�ned. The optimiser will attempt to optimise against a score that is calcu-
lated by summing the Score1, Score2,... parameters on each iteration.
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Figure 7.1: Schematic of the geometry of a Wedge volume.

55



Chapter 8

Field Properties

Invoke a �eld using PropertyString FieldType <�eldtype>. The �eld will be
placed, normally centred on the MiceModule Position and with the appropriate
Rotation. Further options for each �eld type are speci�ed below, and relevant
datacards are also given. If a �eldtype is speci�ed some other properties must
also be speci�ed, while others may be optional, usually taking their value from
defaults speci�ed in the datacards. Only one �eldtype can be speci�ed per mod-
ule. However, �elds from multiple modules are superimposed, each transformed
according to the MiceModule speci�cation. This enables many di�erent �eld
con�gurations to be simulated using MAUS.

To use BeamTools �elds, datacard FieldMode Full must be set. This is the
default.

Property Type Description
FieldType string Set the �eld type of the MiceModule.

FieldType CylindricalField

Sets a constant magnetic �eld in a cylindrical region symmetric about the z-axis
of the module.

Property Type Description

ConstantField
Hep3
Vector

The magnetic �eld that will be placed in the region.

Length double

FieldRadius double
The physical extent of the region.

FieldType RectangularField

Sets a constant magnetic �eld in a rectangular region.

Property Type Description

ConstantField
Hep3
Vector

The magnetic �eld that will be placed in the region.

Length double

Width double

Height double

The physical extent of the region.
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Property Type Description

FieldType Solenoid

MAUS simulates solenoids using a series of current sheets. The �eld for each
solenoid is written to a �eld map on a rectangular grid and can then be reused.
The �eld from each current sheet is calculated using the formula for current
sheets detailed in MUCOOL Note 281, Modeling solenoids using coil, sheet and
block conductors.

Property Type Description

FileName string
Read or write solenoid data to the �lename. If di�erent modules have the same
�lename, MAUS assumes they are the same.

FieldMapMode string

If set to Read, MAUS will attempt to read existing data from the FileName. If
set to Write, MAUS will generate new data and write it to the FileName. If set
to Analytic, MAUS will calculate �elds directly without interpolating. If set to
WriteDynamic acts as in Write except the grid extent and grid spacing at each
point is chosen dynamically to some tolerance de�ned in the FieldTolerance
property. Takes default from datacard SolDataFiles (Write).

Length double

Thickness double

InnerRadius double

CurrentDensity double

Coil physical parameters. Only used in Write/Analytic mode where they are
mandatory.

ZExtentFactor double
Field map extends to length + ZExtentFactor*innerRadius in Write mode.
Takes default from datacard SolzMapExtendFactor (10.). Map size is chosen
dynamically in WriteDynamic mode.

RExtentFactor double
Field map extends to radius RExtentFactor*innerRadius in Write mode. Takes
default from datacard SolrMapExtendFactor (2.018...). Avoid allowing grid
nodes to fall on sheets.

NumberOfZCoords int
Number of coordinates in z in �eld map grid in Write mode. Takes default
from datacard NumberNodesZGrid (500).

NumberOfRCoords int
Number of coordintes in r in �eld map grid in Write mode. Takes default from
datacard NumberNodesRGrid (100).

NumberOfSheets int
Number of sheets used to calculate the �eld. Takes default from datacard
DefaultNumberOfSheets (10).

FieldTolerance double
Mandatory when FieldMapMode is WriteDynamic. If �eld map mode is write
dynamic, this datacard controls the tolerance on errors in the �eld with which
the �eld grid and the grid extent will be chosen.

Interpolation
Algorithm

string
Choose the interpolation algorithm. Options are BiLinear for a linear interpo-
lation in r and z, or LinearCubic for a linear interpolation in r and a cubic
spline in z. Default is LinearCubic.

IsAmalgamated bool Set to 1 to add the coil to CoilAmalgamtion parent �eld (see below).

FieldType FieldAmalgamation

During tracking, MAUS stores a list of �elds and for each one MAUS checks to
see if tracking is performed through a particular �eld map's bounding box. This
can be slow if a large number of �elds are present. One way to speed this up is
to store contributions from many coils in a single CoilAmalgamation. A Coil-
Amalgamation searches through child modules for solenoids with PropertyBool
IsAmalgamated set to true. If it �nds such a coil, it will add the �eld generated
by the solenoid to its own �eld map and disable the coil.
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Property Type Description
Length double The Length of the �eld map generated by the CoilAmalgamation.
RMax double The maximum radius of the �eld map generated by the CoilAmalgamation.

Interpolation
Algorithm

string
Choose the interpolation algorithm. Options are BiLinear for a linear interpo-
lation in r and z, or LinearCubic for a linear interpolation in r and a cubic
spline in z. Default is LinearCubic.

ZStep double

RStep double
Step size of the �eld map generated by the CoilAmalgamation.

FieldType DerivativesSolenoid

This is an alternative �eld model for solenoids that uses a power law expansion
of the on-axis magnetic �eld and its derivatives, and an exponential fall-o� for
the fringe �eld. The fringe �eld is de�ned in the same way as other end �elds,
but note that HardEdged end �eld type is not available for solenoids and will
result in an error.

Property Type Description
PeakField double Nominal peak �eld of the solenoid.

ZMax double
Maximum z-half length of the solenoid bounding box in the local coordinate
system of the magnet.

RMax double
Maximum radius of the solenoid bounding box in the local coordinate system
of the magnet.

MaxEndPole int Maximum derivative used in calculating the end �eld of the solenoid.

Phasing Models

MAUS has a number of models for phasing RF cavities.
When CavityMode is Unphased, MAUS attempts to phase the cavity itself.

When using CavityMode Unphased MAUS needs to know when particles enter,
cross the middle, and leave cavities. To phase a cavity, MAUS builds a virtual
detector in the centre of the cavity that is used for phasing and then �res a
reference particle through the system. Stochastic processes are always disabled
during this process, while mean energy loss can be disabled using the datacard
ReferenceEnergyLossModel. If a reference particle crosses a plane through the
centre of a cavity, it sets the phase of the cavity to the time at which the particle
crosses.

The �eld of the cavity during phasing is controlled by the property Field-
DuringPhasing. There are four modes:

• None: Cavity �elds are disabled during phasing

• Electrostatic: An electrostatic �eld with no positional dependence given
by PeakEField*sin(ReferenceParticlePhase) is enabled during phasing.

• TimeVarying : A standard time varying �eld is applied during phasing,
initially with arbitrary phase relative to the reference particle. MAUS
uses a Newton-Raphson method to �nd the appropriate reference phase
iteratively, with tolerance set by the datacard PhaseTolerance.

• EnergyGainOptimised : A standard time varying �eld is applied during
phasing, initially with arbitrary phase and peak �eld relative to the ref-
erence particle. MAUS uses a 2D Newton-Raphson method to �nd the
appropriate reference phase and peak �eld iteratively, so that the ref-
erence particle crosses the cavity centre with phase given by property
ReferenceParticlePhase and gains energy over the whole cavity given by
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property EnergyGain with tolerances set by the datacards PhaseTolerance
and RFDeltaEnergyTolerance.

Tracking Stability Around RF Cavities

Usually RF cavities have little or no fringe �eld, and this can lead to some
instability in the tracking algorithms. When MAUS makes a step into an RF
cavity volume, the tracking algorithms tend to smooth out a �eld in a non-
physical way. This can be prevented by either (i) making the step size rather
small in the RF cavity or (ii) forcing MAUS to stop tracking by adding a physical
volume at the entrance of the RF cavity (a window, typically made of vacuum).
Doing this should improve stability of tracking.

FieldType PillBox

Sets a PillBox �eld in a particular region. MAUS represents pillboxes using a
sinusoidally varying TM010 pill box �eld, with non-zero �eld vector elements
given by

Bφ = J1(krr) cos(ωt)
Ez = J0(krr) cos(ωt)

Here Jn are Bessel functions and kr is a constant. See, for example, SY Lee
VI.1. All other �elds are 0.

Property Type Description
Length double Length of the region in which the �eld is present.
CavityMode string Phasing mode of the cavity - options are Phased, Unphased and Electrostatic.

FieldDuringPhasing string
Controls the �eld during cavity phasing � options are None, Electrostatic,
TimeVarying and EnergyGainOptimised.

EnergyGain double
WhenFieldDuringPhasing is set to EnergyGainOptimised, controls the peak
electric �eld.

Frequency double The cavity frequency.

PeakEField double
The peak �eld of the cavity. Not used when the FieldDuringPhasing is Ener-
gyGainOptimised.

TimeDelay double In Phased mode the time delay (absolute time) of the cavity.
PhasingVolume string Set to SpecialVirtual to make the central volume a special virtual.

ReferenceParticle
Energy

double

ReferenceParticle
Charge

double

In Electrostatic mode, MAUS calculates the peak �eld and the �eld the refer-
ence particle sees using a combination of the reference particle energy, charge
and phase. Take defaults from datacards NominalKineticEnergy and Muon-
Charge

ReferenceParticle
Phase

double

MAUS tries to phase the �eld so that the reference particle crosses the cavity
at ReferenceParticlePhase (units are angular). 0o corresponds to no energy
gain, 90o corresponds to operation on-crest. Default from datacard rfAcclera-
tionPhase.

FieldType RFFieldMap

Sets a cavity with an RF �eld map in a particular region. RFFieldMap uses the
same phasing algorithm as described above.

Property Type Description
Length double Length of the region in which the �eld is present.

CavityMode string
Phasing mode of the cavity - options are Phased and Unphased. RFFieldMaps
cannot operated in Electrostatic mode.
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Property Type Description

FieldDuringPhasing string
Controls the �eld during cavity phasing � options are None, Electrostatic,
TimeVarying and EnergyGainOptimised.

EnergyGain double
WhenFieldDuringPhasing is set to EnergyGainOptimised, controls the peak
electric �eld.

Frequency double The cavity frequency.

PeakEField double
The peak �eld of the cavity. Not used when the FieldDuringPhasing is Ener-
gyGainOptimised.

TimeDelay double In Phased mode the time delay (absolute time) of the cavity.
PhasingVolume string Set to SpecialVirtual to make the central volume a special virtual.

ReferenceParticle
Energy

double

ReferenceParticle
Charge

double

In Electrostatic mode, MAUS calculates the peak. �eld and the �eld the refer-
ence particle sees using a combination of the reference particle energy, charge
and phase. Take defaults from datacards NominalKineticEnergy and Muon-
Charge

ReferenceParticle
Phase

double

MAUS tries to phase the �eld so that the reference particle crosses the cavity
at ReferenceParticlePhase (units are angular). 0o corresponds to no energy
gain, 90o corresponds to operation on-crest. Default from datacard rfAcclera-
tionPhase.

FileName string The �le name of the �eld map �le.
FileType string The �le type of the �eld map. Only supported option is SuperFishSF7.

FieldType Multipole

Creates a multipole of arbitrary order. Fields are generated using either a hard
edged model, with no fringe �elds at all; or an Enge model similar to ZGoubi
and COSY. In the former case �elds are calculated using a simple polynomial
expansion. In the latter case �elds are calculated using the polynomial expansion
with an additional exponential drop o�. Fields can be superimposed onto a bent
coordinate system to generate a sector multipole with arbitrary �xed radius of
curvature.

Unlike most other �eld models in MAUS, the zero position corresponds to
the center of the entrance of the multipole; and the multipole extends in the +z
direction.

The method to de�ne end �elds is described in the section EndFieldTypes
below

Property Type Description
Pole int The reference pole of the magnet. 1=dipole, 2=quadrupole, 3=sextupole etc.

FieldStrength double

Scale the �eld strength in the good �eld region. For dipoles, this sets the dipole
�eld; for quadrupoles this sets the �eld gradient. Note that for some end �eld
settings there can be no good �eld region (e.g. if the end length is >� centre
length).

Height double Height of the �eld region.
Width double Width or delta radius of the �eld region.
Length double Length of the �eld along the bent trajectory.

EndFieldType string
Set to HardEdged to disable fringe �elds. Set to Enge or Tanh to use those
models, as described elsewhere. Default is HardEdged.

CurvatureModel string

Choose the model for curvature. Straight forces no curvature. Constant gives a
constant radius of curvature; StraightEnds gives a constant radius of curvature
along the length of the multipole with straight end �elds beyond this length.
MomentumBased gives radius of curvature determined by a momentum and a
total bending angle.
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Property Type Description

ReferenceCurvature double
Radius of curvature of the magnet in Constant or StraightEnds mode. Set to
0 for a straight magnet. Default is 0.

ReferenceMomentum double
Reference momentum used to calculate the radius of curvature of a dipole in
MomentumBased mode. Default is 0.

BendingAngle double
The angle used to calculate the radius of curvature of a dipole in Momentum-
Based mode. Note that this is mandatory in MomentumBased mode.

FieldType CombinedFunction

This creates superimposed dipole, quadrupole and sextupole �elds with a com-
mon radius of curvature. The �eld is intended to mimic the �rst few terms in a
multipole expansion of a �eld like

B(y = 0) = B0

(
r

r0

)k
The �eld index is a user de�ned parameter, while the dipole �eld and radius
of curvature can either be de�ned directly by the user or de�ned in terms of a
reference momentum and total bending angle. Fields are calculated as in the
multipole �eld type de�ned above.

Property Type Description
Pole int The reference pole of the magnet. 1=dipole, 2=quadrupole, 3=sextupole etc.

BendingField double
The nominal dipole �eld B0. Note that this is mandatory in all cases except
where CurvatureModel is MomentumBased, when the BendingAngle and Ref-
erenceMomentum is used to calculate the dipole �eld instead.

FieldIndex double The �eld index k.
Height double Height of the �eld region.
Width double Width or delta radius of the �eld region.
Length double Length of the �eld along the bent trajectory.

EndFieldType string
Set to HardEdged to disable fringe �elds. Set to Enge or Tanh to use those
models, as described elsewhere. Default is HardEdged.

CurvatureModel string

Choose the model for curvature. Straight forces no curvature. Constant gives a
constant radius of curvature; StraightEnds gives a constant radius of curvature
along the length of the multipole with straight end �elds beyond this length.
MomentumBased gives radius of curvature determined by a momentum and a
total bending angle.

ReferenceCurvature double
Radius of curvature of the magnet in Constant or StraightEnds mode. Set to
0 for a straight magnet. Default is 0.

ReferenceMomentum double
Reference momentum used to calculate the radius of curvature of a dipole in
MomentumBased mode. Default is 0.

BendingAngle double
The angle used to calculate the radius of curvature of a dipole in Momentum-
Based mode. Note that this is mandatory in MomentumBased mode.

EndFieldTypes

In the absence of current sources, the magnetic �eld can be calculated from a
scalar potential using the standard relation

~B = ∇Vn
The scalar magnetic potential of the nth-order multipole �eld is given by

Vn =
qm∑
q=0

n∑
m=0

n!2
G(2q)(s)(r2 + y2)q sin(mπ2 )rn−mym

4qq!(n+ q)!m!(n−m)!
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where G(s) is either the double Enge function,

G(s) = E[(x− x0)/λ] + E[(−x− x0)/λ]− 1

E(s) =
B0

Rn0

1
1 + exp(C1 + C2s+ C3s2 + ...)

or G(s) is the double tanh function,

G(s) = tanh[(x+ x0)/λ]/2 + tanh[(x− x0)/λ]/2

and (r, y, s) is the position vector in the rotating coordinate system. Note that
here s is the distance from the nominal end of the �eld map.

Property Type Description

EndFieldType string
Set to HardEdged to disable fringe �elds. Set to Enge or Tanh to use those
models, as described elsewhere. Default is HardEdged.

The following properties are used for EndFieldType Tanh

EndLength double Set the l parameter that de�nes the rapidity of the �eld fall o�.
CentreLength double Set the x0 parameter that de�nes the length of the �at �eld region.

MaxEndPole int
Set the maximum pole that will be calculated � should be larger than the
multipole pole.

The following properties are used for EndFieldType Enge

EndLength double Set the l parameter that de�nes the rapidity of the �eld fall o�.
CentreLength double Set the x0 parameter that de�nes the length of the �at �eld region.

MaxEndPole int
Set the maximum pole that will be calculated � should be larger than the
multipole pole.

Enge1 double

Enge2 double

... double

EngeN double

Set the parameters Ci as de�ned in the Enge function above.

FieldType MagneticFieldMap

Reads or writes a magnetic �eld map in a particular region. Two sorts of �eld
maps are supported; either a 2d �eld map, in which cylindrical symmetry is
assumed, or a 3d �eld map.

For 2d �eld maps, MAUS reads or writes a �le that contains informa-
tion about the radial and longitudinal �eld components. This is intended for
solenoidal �eld maps where only radial and longitudinal �eld components are
present. Note that in write mode, MAUS assumes cylindrical symmetry of the
�elds. In this case, MAUS writes the x and z components of the magnetic �eld
at points on a grid in x and z. Fields with an electric component are excluded
from this summation.

For 3d �eld maps, MAUS reads a �le that contains the position and �eld in
cartesian coordinates and performs a linear interpolation. This requires quite
large �eld map �les; the �le size can be slightly reduced by using certain sym-
metries, as described below. It is currently not possible to write 3d �eld maps.

Property Type Description
FieldMapMode string Set to Read to read a �eld map; and Write to write a �eld map.
FileName string The �le name that is used for reading or writing.

FileType string
The �le format. Supported options in Read mode are MAUStext, MAUSbinary,
g4beamline, icool, g4bl3dGrid. Only MAUStext is supported in Write mode.
Default is MAUStext.
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Property Type Description

Symmetry string

Symmetry option for g4bl3dGrid �le type. Options are None, Dipole or
Quadrupole. None uses the �eld map as is, while Dipole and Quadrupole re�ect
the octant between the positive x, y and z axes to give an appropriate �eld for
a dipole or quadrupole.

ZStep double

RStep double

Step size in z and r. Mandatory in Write mode but not used in Read mode
(where step size comes from the map �le).

ZMin double

ZMax double

RMin double

RMax double

Upper and lower bounds in z and r. Mandatory in Write mode but not used in
Read mode (where boundaries come from the map �le).

Some �le formats are described below. I am working towards making the �le for-
mat more generic and hence possibly easier to use, but backwards compatibility
will hopefully be maintained.

MAUStext Field Map Format

The native �eld map format used by MAUS in text mode is described below.
# GridType = Uniform N = number_rows

# Z1 = z_start Z2 = z_end dZ = z_step

# R1 = r_start R2 = r_end dR = r_step

Bz_Values Br_Values

... ...

<Repeat as necessary>

In this mode, �eld maps are represented by �eld values on a regular 2d grid
that is assumed to have solenoidal symmetry, i.e. cylindrical symmetry with no
tangential component.

Name Type Description
number_rows double Number of rows in the �eld map �le.
z_start double Position of the grid start along the z axis.
z_end double Position of the grid end along the z axis.
z_step double Step size in z.
r_start double Position of the grid start along the r axis.
r_end double Position of the grid end along the r axis.
r_step double Step size in r.
Bz_Values double Bz �eld value.
Br_Values double Br �eld value.

g4bl3dGrid Field Map Format

The �le format for 3d �eld maps is a slightly massaged version of a �le format
used by another code, g4beamline. In this mode, �eld maps are represented by
�eld values on a regular cartesian 3d grid.

number_x_points number_y_points number_z_points global_scale

1 X [x_scale]

2 Y [y_scale]

3 Z [z_scale]

4 BX [bx_scale]

5 BY [by_scale]

6 BZ [bz_scale]

0

X_Values Y_Values Z_Values Bx_values By_values Bz_values
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... ... ... ... ... ...

<Repeat as necessary>

where text in bold indicates a value described in the following table

Name Type Description
number_x_points double Number of points along x axis.
number_y_points double Number of points along y axis.
number_z_points double Number of points along z axis.
global_scale double Global scale factor applied to all x, y, z and Bx, By, Bz values.
x_scale double Scale factor applied to all x values.
y_scale double Scale factor applied to all y values.
z_scale double Scale factor applied to all z values.
bx_scale double Scale factor applied to all Bx values.
by_scale double Scale factor applied to all By values.
bz_scale double Scale factor applied to all Bz values.
X_Values double List (column) of each x value.
Y_Values double List (column) of each y value.
Z_Values double List (column) of each z value.
Bx_Values double List (column) of each Bx value.
By_Values double List (column) of each By value.
Bz_Values double List (column) of each Bz value.
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Chapter 9

TOF Detector

This chapter describes the time-of-�ight (TOF) simulation and reconstruction
software. The simulation is designed to produce digits similar to �real data� and
the reconstruction is agnostic about whether the digits are from simulation or
data acquisition.

Simulation

• Geometry
For the most upstream TOF � TOF0 � to be simulated, it is essential that
the z where the beam starts be upstream of the detector.

In the standard Step VI geometry as described in Stage6.dat, this is at
-14200 mm and for the Step IV geometry described in Stage4.dat it is at
2773 mm

The internal geometry of the TOF detector and the positioning of the slabs
are de�ned in the MiceModules represenation . The numbering convention
is the same as that for the DAQ and is described in MICE-Notes 251 and
286. It is worth keeping in mind the plane numbering convention since
the current naming scheme is suboptimal:

◦ station refers to the TOF station � TOF0, TOF1, TOF2

◦ plane refers to the horizontal/vertical planes within a station

◦ plane 0 means horizontal slabs � slabs are oriented horizontally.
They measure y

◦ plane 1 means vertical slabs � slabs are oriented vertically. They
measure x

The z locations of TOF0 and TOF1 are speci�ed in the Beamline.dat �le
and the z of TOF2 is speci�ed in the main geometry description �le, for
e.g. Stage6.dat

• Hits
GEANT hits are generated for all tracks which pass through a TOF slab.
�True� TOF hits are described by the MAUS::Hit class and contain the
GEANT4 information prior to digitization. The members of the class are
listed below.
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Table 9.1: True TOF hit class members.
The GEANT TOF hits are encoded with the following information.

Name Meaning
channel_id Class TOFChannelId* contains station,plane,slab
energy_deposited double � energy deposited by track in the slab
position ThreeVector � x, y, z of hit at the slab
momentum ThreeVector � px, py, pz of particle at slab
time double � hit time
charge double � PDG charge of particle that produced this

hit
track_id G4Track � ID of the GEANT track that produced this

hit
particle_id ThreeVector � PDG code of the particle that produced

this hit

Digitization

Each GEANT hit in the TOF is associated with a slab based on the geometry
described in the TOF MiceModules. If a hit's position does not correspond to a
physical slab (for instance if the hit is outside the �ducial volume) the hit is not
digitized. The energy deposited in the slab and the hit time are then digitized
as described below.

• Charge digitization The energy deposited by a hit in a slab is �rst
converted to units of photoelectrons. The photoelectron yield from a hit
is attenuated by the distance from the hit to the PMT, then smeared by
the photoelectron resolution. The yields from all hits in a given slab are
then added and the summed photoelectron yield is converted to ADC (In
principle, this should be done not on an event-by-event basis but rather
on a trigger-basis. In the absence of a real trigger, all hits in a slab are
now merged)

• Time digitization The hit time is propogated to the PMTs at either
end of the slab. The speed of light in the scintillator, based on earlier
calibration, is controlled by the TOFscintLightSpeed data card. The
time is then smeared by the PMT time resolution and converted to TDC.

After converting the energy deposit to ADC and the time to TDC, the TDC val-
ues are �uncalibrated� so that at the reconstruction stage they can be corrected
just as is done with real data.

The data cards that control the digitization are listed in Table 9.2.
NOTE: Do not modify the default values.

Reconstruction

The reconstruction software treats both data and Monte Carlo the same way.
In the case of real data, the input to the reconstruction chain is TOF Digits
(MapCppTOFDigit) and in the case of Monte Carlo it is the digitized information
from MapCppTOFMCDigitizer.

• Digits (MapCppTOFDigit,MapCppTOFMCDigitizer) Digits are formed from
the V1724 ADCs and V1290 TDCs.
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Table 9.2: Data cards for TOF digitization.
Name Meaning Default
TOFconversionFactor conversion 0.005 MeV

TOFpmtTimeResolution resolution for smear-
ing the PMT time

0.1 ns

TOFattenuationLength light attenuation in
slabs

1400 mm

TOFadcConversionFactor conversion from
charge to ADC

0.125

TOFtdcConversionFactor conversion from time
to TDC

0.025

TOFpmtQuantumEfficiency PMT collection e�-
ciency

0.25

TOFscintLightSpeed propogation speed in
slab

170 mm/ns

• Slab Hits (MapCppTOFSlabHits) The SlabHits routine takes individual
PMT digits and associates them to reconstruct the hit in the slab. All
PMT digits are considered. If there are multiple hits associated with a
PMT, the hit which is earliest in time is taken to be the real hit. Then, if
both PMTs on a slab have hits, the SlabHit is formed. The TDC values
are converted to time (ToftdcConversionFactor) and the hit time and
charge associated with the slab hit are taken to be the average of the two
PMT times and charges respectively. In addition, the charge product of
the PMT charges is also formed.

• Space Points (MapCppTOFSpacePoints) A space point pixel in the TOF
is a combination of x and y slab hits. All combinations of x and y slab
hits in a given station are considered. If the station is a trigger station, an
attempt is made to �nd the �trigger pixel� � i.e. the x, y combination that
triggered this event. This is done by applying calibration corrections to
the slab hits, and then asking if the average time in this pixel is consistent
with the trigger within some tolerance. In other words, if tx and ty are the

times corresponding to the x and y slab hits, is
tx,calib+ty,calib

2 < ttriggercut?
If no x, y combination produces a trigger pixel, the space point reconstruc-
tion stops and no space points are formed. This is because to apply the
calibration corrections to the slab hit times, it is essential know the trigger
pixel.

Once a trigger pixel is found, all x, y slab hit combinations are again
treated as space point candidates. The calibration corrections are applied
to these hit times. If | tx − ty | is consistent with the resolution of the
detector, the combination is said to be a space point. The space point
thus formed contains the following information

This is used by the reconstuction of the TOF detectors| #TOF_cabling_file = "/files/cabling/TOFChannelMap.txt"

#TOF_TW_calibration_file = "/files/calibration/tofcalibTW_dec2011.txt"

#TOF_T0_calibration_file = "/files/calibration/tofcalibT0_trTOF1_dec2011.txt"

#TOF_T0_calibration_file = "/files/calibration/tofcalibT0_trTOF0.txt"

#TOF_Trigger_calibration_file = "/files/calibration/tofcalibTrigger_trTOF1_dec2011.txt"

#TOF_Trigger_calibration_file = "/files/calibration/tofcalibTrigger_trTOF0.txt"

# the date for which we want the cabling and calibration # date can be 'current' or a date in YYYY-MM-DD hh:mm:ss format

#TOF_calib_date_from = 'current' TOF_calib_date_from = '2010-08-10 00:00:00'
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Table 9.3: TOFSpacePoint class members.
Name Meaning
pixel_key string encoded with the TOF station,plane,slab
slabY int encoded with the TOF station,plane,slab
slabX int encoded with the TOF station,plane,slab
time double � calibrated space point time
charge int � average of the charges of the constitutent slabs
charge_product int � average of charge products of the constitutent slabs
dt double � time di�erence between the x and y slabs =

resolution

Table 9.4: Data cards for TOF reconstruction.
Name Meaning Default
TOF_trigger_station conversion 0.005 MeV

TOF_findTriggerPixelCut resolution for
smearing the
PMT time

0.1 ns

TOF_makeSpacePiontCut PMT collection
e�ciency

0.25

Enable_t0_correction light attenuation
in slabs

1400 mm

Enable_triggerDelay_correction conversion from
charge to ADC

0.125

Enable_timeWalk_correction conversion from
time to TDC

0.025
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Table 9.5: Data cards for accessing calibrations from CDB.
Name Meaning Default
TOF_calib_date_from conversion '2010-08-10 00:00:00'|
TOF_cabling_date_from conversion current

TOF_cabling_date_from = 'current' Enable_timeWalk_correction = True

Enable_triggerDelay_correction = True Enable_t0_correction = True

Database

• Constants in the CDB

• Datacards

• Routines to access
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