#!/home/hep/martynia/maus/MAUS-v0.6.0/third_party/install/bin/python
#This file is a part of xboa
#
#xboa is free software: you can redistribute it and/or modify
#it under the terms of the GNU General Public License as published by
#the Free Software Foundation, either version 3 of the License, or
#(at your option) any later version.
#
#xboa is distributed in the hope that it will be useful,
#but WITHOUT ANY WARRANTY; without even the implied warranty of
#MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#GNU General Public License for more details.
#
#You should have received a copy of the GNU General Public License
#along with xboa in the doc folder. If not, see
# .
#
"""
Set of algorithms designed to duplicate functionality of the postprocessor ecalc9. By default reads in input file ecalc9f.inp and outputs
a whole load of particle data (though see command line options below).
ecalc9f.inp contains (data on separate lines):
control_file_name_string is the file that will be read from
title (ascii)
ICOOL particle type (int) {muon = +/- 2}
pzmin,pzmax (real) [GeV/c]
transcutA,transcutB (real) [m]
longcut (real) [m]
rffreq (real) [MHz]
sigmacut (real) disabled (=0.)
pzcorr (log) disabled (always false)
wrnew9 (log) disabled (always false)
Additional command line options are:
-i= is an input text file containing input particle data (default is 'for009.dat')
-t= is the input particle data file type (default is 'icool_for009')
-c= is the input control file (default is 'ecalc9f.inp')
-o= is the output data file (default is 'ecalc9f.dat')
-p= is text that controls plots (default is no). If set to no, no plots will be created. Else produces
files in the format specified - options are png, pdf, ps, tiff, gif, jpg, xml, among others. Can pass
a comma separated list of formats, in which case files are made in each format.
-w= is a file containing hit data; script will take weights for each event from this file; default is for weights from the input particle data file
-wt= is the input particle data file type used for calculating weights (default is 'icool_for003')
--weight-event Script will use event number from weight file
--weight-no-event Script will use position in weight file to make event number for weighting
--end-cut Script will remove events that dont appear in the last station (sorted by station number) before performing any calculations
--no-end-cut Don't make an end cut (default)
--p-cut-ref Use pz relative to reference particle momentum in momentum cut
--p-cut-abs Use absolute pz in momentum cut (default)
--p-cut-none Don't make any momentum cut at all: equivalent to --p-cut-abs with pzmin and pzmax set to <= 0
e.g. as a command line script
./ecalc9f.py -i=for003_mydeck.dat -t=icool_for003 -c=ecalc9f_mydeck.inp -o=ecalc9f_mydeck.dat -p=ps,png
will load particle data from file for003_mydeck.dat formatted like an icool_for003 file; read ecalc9f control from the
file ecalc9f_mydeck.inp; write output data to ecalc9f_mydeck.dat; and produce a whole load of plots in png and postscript format
Can also be run from python - see function documentation below.
Outputs the following data:
station number
mean z [m]
reference Bz [T]
eperp [m]
elong [m]
e6D [m^3]
Ldim
Pzavg [MeV/c]
trans beta [m]
trans alpha
long beta [m]
long alpha
n0 [particles]
n1 [particles]
n2 [particles]
Lcan(eVs)
sigmaE [MeV]
sigmaT [s]
corrE
corrT
sigmaE_c
mean x [m]
mean y [m]
x dispersion [m]
y dispersion [m]
r dispersion [m]
r^2 dispersion [m]
The first particle must follow a reference trajectory and have eventNumber 0
"""
try:
import xboa.Common as Common
import xboa.Hit
from xboa.Hit import Hit
import xboa.Bunch
from xboa.Bunch import Bunch
except ImportError, error:
print 'Error during x-boa import. Check your x-boa installation.'
raise error
try:
import sys
import copy
import operator
import math
import string
import exceptions
except ImportError:
print 'Error during python import. Check your python installation.'
raise ImportError
def ecalc9f(data_filename_string, data_filetype_string, control_filename_string, output_filename_string, plot_format, end_cut, weight_filename_string, weight_filetype_string, weight_use_ev_number, use_ref_p_in_cut):
"""
Reads file for009; reads file ecalc9.inp; parses data to produce output file ecalc9f.dat containing beta functions, emittances etc
"""
Common.has_numpy()
control_data = read_ecalc9_inp(control_filename_string)
if len(control_data) < 1: raise IOError('Failed to read control data file '+str(control_filename_string))
print control_data
if abs(control_data['sigmacut']) > 0.0000000001 or control_data['wrnew9'] or control_data['pzcorr']:
raise NotImplementedError('sigmacut, wrnew9 and pzcorr are disabled for now - ask the devs and they will implement it')
print 'Reading file ',data_filename_string,' of type ',data_filetype_string
bunch_list = Bunch.new_list_from_read_builtin(data_filetype_string, data_filename_string)
if len(bunch_list) < 1: raise IOError('Failed to read input data')
bunch_out = [[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]]
out = open(output_filename_string, 'w')
write_ecalc9f_dat_header(out, control_data)
weight_handler(end_cut, weight_filename_string, weight_filetype_string, weight_use_ev_number, bunch_list)
for bunch in bunch_list:
try:
print bunch
get_bunch_data(control_data, bunch_out, bunch, use_ref_p_in_cut)
except:
if sys.exc_info()[0] == exceptions.KeyboardInterrupt: raise exceptions.KeyboardInterrupt
sys.excepthook(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])
print 'Error handling station'
Common.multisort(bunch_out)
type_to_format = {type(0):'%4d', type(0.0):'%.3e'}
for i in range(len(bunch_out[0])):
for j in range(len(bunch_out)):
if bunch_out[j][i] >= 0.: out.write(' ') #account for - sign - must be a better way!!!
out.write(type_to_format[type(bunch_out[j][i])] %bunch_out[j][i]+' ')
out.write('\n')
if not string.lower(plot_format) == 'no' or string.lower(plot_format) == 'n':
try:
make_root_plots(bunch_out, bunch_list, plot_format)
except ImportError:
print 'Failed to make plots using matplot - trying ROOT instead...'
try:
make_matplot_plots(bunch_out, bunch_list, plot_format)
except ImportError:
print 'Failed to make plots using ROOT too - no plots will be made...'
del(bunch_list) #force python to clean up most of the allocated memory
return control_data
def weight_handler(end_cut, weight_filename_string, weight_filetype_string, weight_use_ev_number, bunch_list):
"""
If required, set weights from external file; apply cut if event is in the last plane
"""
if weight_filename_string != None:
print 'Reading weight file ',weight_filename_string,' of type ',weight_filetype_string
weight_bunch = Bunch.new_from_read_builtin(weight_filetype_string, weight_filename_string)
if weight_use_ev_number:
for i in range( len(weight_bunch) ):
weight_bunch[i]['eventNumber'] = i
for hit in weight_bunch:
hit.set('global_weight', hit['local_weight'])
if end_cut:
n_cuts = 0
print 'Cutting particles not appearing in station '+str(bunch_list[-1][0]['station'])
hit_dict = {}
for i in range( len(bunch_list[-1]) ):
hit_dict[bunch_list[-1][i]['eventNumber']] = True
for hit in bunch_list[0]:
if not hit['eventNumber'] in hit_dict:
hit.set('global_weight', 0.)
n_cuts+=1
print 'Cut '+str(n_cuts)+' events'
def read_ecalc9f_dat(file_name):
"""
Read ecalc9f.dat file; return bunch_out data
"""
bunch_out = [[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[],[]]
ecalc_dat = open(file_name)
for i in range(14):
print ecalc_dat.readline().rstrip()
line = 'aline'
while(line != ''):
line = ecalc_dat.readline().rstrip()
words = line.split()
for i in range(len(words)):
bunch_out[i].append(float(words[i]))
return bunch_out
def remove_rf_period(rf_frequency, bunch):
bunch.period_transformation(bunch[0]['t'], rf_frequency)
def dimensionless_lcan(bunch):
lcan = bunch.moment(['x','py']) - bunch.moment(['y','px']) +\
0.5*Common.constants['c_light']*bunch[0]['bz']*(bunch.moment(['x','x']) + bunch.moment(['y','y']))
return lcan/2./bunch[0]['mass']/bunch.get('emittance',['x','y'])
def get_bunch_data(control_data, bunch_out, bunch, use_ref_p_in_cut):
if control_data['rffreq'] > 0.: remove_rf_period(control_data['rffreq'], bunch)
print 'station:',bunch[0]['station'],
print 'total weight before cuts',bunch.bunch_weight(),
if not bunch[0].check():
raise RuntimeError('Error - bad reference particle:\n'+repr(bunch[0]))
cut_p = 0.
if use_ref_p_in_cut: cut_p = bunch[0]['pz']
# bunch.cut({'status':0}, operator.ne) #BUG! need to map status in various formats to "good"
bunch.cut({'pid':control_data['pid']}, operator.ne)
bunch.cut({'eventNumber':0}, operator.eq)
if( use_ref_p_in_cut==True or (use_ref_p_in_cut==False and abs(control_data['pzmax']) > Common.float_tolerance) ):
bunch.cut({'pz':control_data['pzmax']+cut_p}, operator.ge)
if( use_ref_p_in_cut==True or (use_ref_p_in_cut==False and abs(control_data['pzmin']) > Common.float_tolerance) ):
bunch.cut({'pz':control_data['pzmin']+cut_p}, operator.le)
bunch.set_geometric_momentum(False)
bunch_weight = bunch.bunch_weight()
print 'total weight after cuts',bunch_weight
if abs(bunch_weight) < Common.float_tolerance or len(bunch) < 7:
raise( ZeroDivisionError( 'Error - bunch weight 0 or too few particles in bunch') )
bunch.set_covariance_matrix()
for a_list in bunch_out: a_list.append(0.)
bunch_out[0][-1] = ( bunch[0]['station'] )
bunch_out[1][-1] = ( bunch[0]['z']/Common.units['m'] )
bunch_out[2][-1] = ( bunch[0]['bz']/Common.units['T'] )
bunch_out[3][-1] = ( bunch.get('emittance', ['x','y'])/Common.units['m'] )
bunch_out[6][-1] = ( dimensionless_lcan( bunch ) )
bunch_out[7][-1] = ( bunch.get('mean', ['pz'])/Common.units['GeV/c'] )
bunch_out[8][-1] = ( bunch.get('beta', ['x', 'y'])*bunch.mean(['pz'])['pz']/bunch.mean(['p'])['p']/Common.units['m'] )
bunch_out[9][-1] = ( bunch.get('alpha', ['x', 'y']) )
bunch_out[12][-1] = ( bunch_weight )
bunch_out[15][-1] = ( 10.*bunch.get_canonical_angular_momentum()/Common.constants['c_light']/Common.units['GeV'] ) #bug - where does factor 10. arise?
bunch_out[16][-1] = ( bunch.moment(['energy','energy'])**0.5/Common.units['GeV'] )
bunch_out[17][-1] = ( bunch.moment(['t','t'])**0.5/Common.units['s'] )
bunch_out[21][-1] = ( bunch.get('mean', ['x'])/Common.units['m'] )
bunch_out[22][-1] = ( bunch.get('mean', ['y'])/Common.units['m'] )
bunch_out[23][-1] = ( bunch.get('dispersion', ['x'])/Common.units['m'] )
bunch_out[24][-1] = ( bunch.get('dispersion', ['y'])/Common.units['m'] )
bunch_out[25][-1] = ( bunch.get('dispersion', ['r'])/Common.units['m'] )
bunch_out[26][-1] = ( bunch.get_dispersion_rsquared()/Common.units['m']/Common.units['m'] )
#pzcorr parameter disabled for now
bunch_out[4][-1] = ( (bunch.get('emittance', ['t'])*Common.constants['c_light']/Common.units['m'] ) )
bunch_out[5][-1] = ( (bunch.get('emittance', ['t', 'x', 'y'])/Common.units['m'])**3*Common.constants['c_light'] )
bunch_out[11][-1] = ( -bunch.get('alpha', ['t']) )
bunch_out[18][-1] = ( 0. )
bunch_out[19][-1] = ( 0. )
bunch_out[20][-1] = ( bunch_out[16][-1] )
delta = float( bunch.moment(['t','t']) )*Common.constants['c_light']/(bunch[0]['mass']*bunch_out[4][-1])/Common.units['s']
bunch_out[10][-1] = ( bunch.mean(['pz'])['pz']**3/(bunch[0]['mass']**2+bunch.mean(['pz'])['pz']**2)*delta*\
Common.constants['c_light']*Common.units['s']/Common.units['m']/Common.units['GeV/c'])
mean_t = bunch.mean(['t'])['t']
mean_e = bunch.mean(['energy'])['energy']
n1 = 0.
n2 = 0.
gamma_t = bunch.get_gamma(['x','y'])*bunch.mean(['p'])['p']/bunch.mean(['pz'])['pz']
mx = bunch.mean(['x'])['x']
my = bunch.mean(['y'])['y']
mpx = bunch.mean(['px'])['px']
mpy = bunch.mean(['py'])['py']
for hit in bunch:
if(abs(hit['weight']) > 1e-9):
try:
at = ecalc_amplitude(bunch, hit, bunch_out[8][-1]*Common.units['m'], bunch_out[9][-1], gamma_t, \
bunch_out[6][-1], bunch_out[7][-1]*Common.units['GeV/c'], bunch_out[2][-1]*Common.units['T'],mx,my,mpx,mpy)
tc = (hit['t'] - mean_t)/Common.units['s']
ec = (hit['energy'] - mean_e)/Common.units['GeV/c']
al = (tc*tc/delta+delta*(ec - bunch_out[11][-1]*tc/delta)**2)*Common.constants['c_light']/bunch[0]['mass']*Common.units['s']*Common.units['m']
if al < control_data['longcut'] and at < control_data['transcutA'] and at >= 0.: n1 += hit['weight']
if al < control_data['longcut'] and at < control_data['transcutB'] and at >= 0.: n2 += hit['weight']
except: #exceptions if pz = 0 etc
pass
bunch_out[13][-1] = (n1)
bunch_out[14][-1] = (n2)
def ecalc_amplitude(bunch, hit, beta_t, alpha_t, gamma_t, ldim, mean_pz, bz, mean_x, mean_y, mean_px, mean_py):
"""
Ecalc has a slightly different way of defining (awkward?) amplitude
"""
hit['x'] -= mean_x
hit['y'] -= mean_y
hit['px'] -= mean_px
hit['py'] -= mean_py
kappa = Common.constants['c_light']*bz/2./mean_pz
amp2 = beta_t/mean_pz *(hit['px']**2.+hit['py']**2.) + gamma_t*mean_pz*(hit['x']**2. +hit['y']**2. )\
+ 2.*alpha_t*(hit['x']*hit['px']+hit['y']*hit['py']) + 2.*(beta_t*kappa - ldim)*(hit['x']*hit['py'] - hit['px']*hit['y'])
amp2 /= hit['mass']
return amp2
def write_ecalc9_data_inp(file_name, data_dict):
"""
Writes named file; format is either dat or inp (for 'ecalc9f.dat' or 'ecalc9f.inp') format
file_name = string containing file name to write to
format = string, either 'dat' or 'inp', that determines the format
data_dict = dict of data to write
"""
data = copy.deepcopy(data_dict)
filehandle = open(file_name, 'w')
data['pid'] = Common.pdg_pid_to_icool[data['pid']]
for i in range(len(__data_format)):
for j in range( len(__data_format[i]) ):
if __data_type[i][j] == 'line':
filehandle.write(data[ __data_format[i][j] ] )
if __data_type[i][j] == type(1.):
filehandle.write(repr( data[ __data_format[i][j] ]/Common.units[__data_units[i][j]])+' ' )
if __data_type[i][j] == type(1):
filehandle.write(repr( data[ __data_format[i][j] ])+' ' )
if __data_type[i][j] == type(True):
if data[ __data_format[i][j]]: filehandle.write('.true. ')
else: filehandle.write('.false. ')
filehandle.write('\n')
def write_ecalc9f_dat_header(filehandle, data_dict):
"""
Writes input data in ecalc9f.dat format
filehandle = filehandle to write to
data_dict = dict of data to write
"""
data = copy.deepcopy(data_dict)
data['pid'] = Common.pdg_pid_to_icool[data['pid']]
if data['pzcorr']: data['pzcorr'] = 'subtract out amplitude correlation'
else: data['pzcorr'] = 'dont subtract out amplitude correlation'
if data['wrnew9']: data['wrnew9'] = 'wrnew9 = T'
else: data['wrnew9'] = 'wrnew9 = F'
filehandle.write(' #'+data['title']+'\n'+'\n')
filehandle.write(' output from x-boa version '+Common.xboa_version+'\n')
filehandle.write(' settings:\n')
filehandle.write(' particle type: '+repr(data['pid'])+'\n' )
filehandle.write(' pzmin/pzmax: '+repr(data['pzmin']/Common.units['GeV/c'])+' / '+repr(data['pzmax']/Common.units['GeV/c'])+'\n')
filehandle.write(' transverse cuts: '+repr(data['transcutA']/Common.units['m'])+' '+repr(data['transcutB']/Common.units['m'])+'\n')
filehandle.write(' longitudinal cut: '+repr(data['longcut']/Common.units['m'])+'\n')
filehandle.write(' RF frequency (MHz): '+repr(data['rffreq']/Common.units['MHz'])+'\n')
filehandle.write(' sigma cut: '+repr(data['sigmacut'])+'\n')
filehandle.write(' '+str(data['pzcorr'])+'\n')
filehandle.write(' '+str(data['wrnew9'])+'\n\n')
filehandle.write('regn # Z Bz eperp elong e6D Ldim Pzavg beta alpha betaL alphaL n0 n1 n2 Lcan(eVs) sigmaE sigmaT corrE corrT sigmaE_c xavg yavg Dx Dy Dr Dr2\n')
def write_ecalc9_inp(file_name, data_dict):
"""
Writes named file; format is either dat or inp (for 'ecalc9f.dat' or 'ecalc9f.inp') format
file_name = string containing file name to write to
format = string, either 'dat' or 'inp', that determines the format
data_dict = dict of data to write
"""
data = copy.deepcopy(data_dict)
filehandle = open(file_name, 'w')
data['pid'] = Common.pdg_pid_to_icool[data['pid']]
def read_ecalc9_inp(control_file_name_string):
"""
Reads named file; returns dict of variables to control ecalc 9 algorithms;
control_file_name_string = name of the file containing control data (format described elsewhere)
"""
filehandle = open(control_file_name_string, 'r')
if not filehandle: raise IOError('Failed to open file '+str(control_file_name_string))
data = {}
for i in range(len(__data_format)):
line = filehandle.readline().rstrip()
words = line.split()
for j in range( len(__data_format[i]) ):
try:
data[ __data_format[i][j] ] = words[j]
if __data_type[i][j] == type(1.):
data[ __data_format[i][j] ] = float(data[ __data_format[i][j] ])*Common.units[__data_units[i][j]]
elif __data_format[i][j] == 'pid':
data[ __data_format[i][j] ] = Common.icool_pid_to_pdg[int(data[ __data_format[i][j] ])]
elif __data_type[i][j] == type(True):
data[ __data_format[i][j] ] = data[ __data_format[i][j] ].lower().find('true') > -1
elif __data_type[i][j] == 'line':
data[ __data_format[i][j] ] = line
else:
data[ __data_format[i][j] ] = __data_type[i][j]( data[ __data_format[i][j] ] )
except:
raise IOError('Error reading '+__data_format[i][j]+' from file '+control_file_name_string+' - read \''+str(words[j])+'\'')
return data
def substitution(string_in, map_string_in_to_string_out):
"""
Straight string substitution - no regular expression crap
"""
string_out = repr('\''+string_in+'\'')
for sin,sout in map_string_in_to_string_out.iteritems():
string_out.replace(sin,sout)
return string_out
def make_matplot_plots(bunch_data, bunch_list, format_string):
"""
Not called by default, but may be useful - makes plots like
all ecalc9 variables vs z;
trans amplitude in;
trans amplitude out;
p in;
p out
"""
import re
Common.has_matplot()
import matplotlib
from matplotlib import pyplot
axis = [ r'$no$', r'$z$ [$m$]', r'$B_{z}$ [$T$]', r'$\epsilon_{\perp}$ [$m$]', r'$\epsilon_{//}$ [$m$]', r'$\epsilon_{6d}$ [$m^{3}$]', r'$L_{dim}$', r'$$ [$GeV/c$]',
r'$\beta_{\perp}$ [$m$]', r'$\alpha_{\perp}$', r'$\beta_{//}$ [$m$]', r'$\alpha_{//}$', r'$n_{tot}$', r'$n_{1}$',
r'$n_{2}$', r'$L_{can}$ [$s 10.*GeV/c$]', r'$\sigma_{E}$ [$GeV$]', r'$sigma_{t}$ [$s$]', r'$corr(E)$', '$corr(t)$', r'$\sigma_{Ec}$',
r'mean $x$ [$m$]', r'mean $y$ [$m$]', r'$D_{x}$ [$m$]', r'$D_{y}$ [$m$]', r'$D_{r}$ [$m$]', r'$D_{r^{2}}$ [$m$]']
x_ind = axis.index(r'$z$ [$m$]')
for y_ind in range( len(axis) ):
if not (axis[y_ind] == 'no' or y_ind == x_ind):
name = axis[x_ind]+' vs '+axis[y_ind]
string_swaps = {'//':'l', ' ':'_'}
for sin,sout in string_swaps.iteritems(): name = name.replace(sin,sout)
string_deletes = ['{','[',']','}','#','$','^','\\','*', '>', '<', '/']
for sin in string_deletes: name = name.replace(sin,'')
Common.make_matplot_graph(bunch_data[x_ind], axis[x_ind], bunch_data[y_ind], axis[y_ind])
for my_format in format_string.split(','):
pyplot.savefig(name+'.'+my_format, format=my_format)
bunch_in = bunch_list[0]
bunch_out = bunch_list[-1]
bunch_in .matplot_histogram('amplitude [\'x\',\'y\']', x_axis_units='m')
for my_format in format_string.split(','):
pyplot.savefig('amp_in.'+my_format, format=my_format)
bunch_out.matplot_histogram('amplitude [\'x\',\'y\']', x_axis_units='m')
for my_format in format_string.split(','):
pyplot.savefig('amp_out.'+my_format, format=my_format)
bunch_in .matplot_histogram('p', x_axis_units='GeV/c')
for my_format in format_string.split(','):
pyplot.savefig('p_in.'+my_format, format=my_format)
bunch_out.matplot_histogram('p', x_axis_units='GeV/c')
for my_format in format_string.split(','):
pyplot.savefig('p_out.'+my_format, format=my_format)
def make_root_plots(bunch_data, bunch_list, format_string):
"""
Not called by default, but may be useful - makes plots like
all ecalc9 variables vs z;
trans amplitude in;
trans amplitude out;
p in;
p out
"""
import re
Common.has_root()
axis = [ 'no', 'z [m]', 'B_{z} [T]', '#epsilon_{#perp} [m]', '#epsilon_{//} [m]', '#epsilon_{6d} [m^{3}]', 'L_{dim}', ' [GeV/c]',
'#beta_{#perp} [m]', '#alpha_{#perp}', '#beta_{//} [m]', '#alpha_{//}', 'n_{tot} [particles]', 'n_{1} [particles]',
'n_{2} [particles]', 'L_{can} [s 10.*GeV/c]', '#sigma_{E} [GeV]', 'sigma_{t} [s]', 'corr(E)', 'corr(t)', '#sigma_{Ec}',
'mean x [m]', 'mean y [m]', 'D_{x} [m]', 'D_{y} [m]', 'D_{r} [m]', 'D_{r^{2}} [m]']
x_ind = axis.index('z [m]')
for y_ind in range( len(axis) ):
if not (axis[y_ind] == 'no' or y_ind == x_ind):
name = axis[x_ind]+' vs '+axis[y_ind]
string_swaps = {'//':'l', ' ':'_'}
for sin,sout in string_swaps.iteritems(): name = name.replace(sin,sout)
string_deletes = ['{','[',']','}','#','$','^','\\','*', '>', '<', '/']
for sin in string_deletes: name = name.replace(sin,'')
canvas = Common.make_root_canvas(name)
(hist, graph) = Common.make_root_graph(name, bunch_data[x_ind], axis[x_ind], bunch_data[y_ind], axis[y_ind])
canvas.Draw()
hist.Draw()
graph.Draw()
for my_format in format_string.split(','):
canvas.Print(name+'.'+my_format)
bunch_in = bunch_list[0]
bunch_out = bunch_list[0]
for my_format in format_string.split(','):
bunch_in .root_histogram('amplitude [\'x\',\'y\']', x_axis_units='m')[0].Print('amp_in.'+my_format)
bunch_out.root_histogram('amplitude [\'x\',\'y\']', x_axis_units='m')[0].Print('amp_out.'+my_format)
bunch_in .root_histogram('p', x_axis_units='GeV/c')[0].Print('p_in.'+my_format)
bunch_out.root_histogram('p', x_axis_units='GeV/c')[0].Print('p_out.'+my_format)
__data_format = [['title'], ['pid'], ['pzmin','pzmax'], ['transcutA', 'transcutB'], ['longcut'], ['rffreq'], ['sigmacut'], ['pzcorr'], ['wrnew9']]
__data_type = [['line'], [type(1)], [type(1.),type(1.)], [type(1.), type(1.)], [type(1.)], [type(1.)], [type(1.)], [type(True)], [type(False)]]
__data_units = [[''], [''], ['GeV/c','GeV/c'], ['m', 'm'], ['m'], ['MHz'], [''], [''], ['']]
Common.has_numpy()
def main(argv=None):
args = {}
filename = 'for009.dat'
filetype = 'icool_for009'
contname = 'ecalc9f.inp'
outname = 'ecalc9f.dat'
plots = 'no'
weightfile = None
weighttype = 'icool_for003'
weightevt = True
endcut = False
refmom = False
if argv == None: argv = sys.argv
for arg in argv:
(arg_name,dummy,argument) = arg.partition('=')
args[arg_name] = argument
if '-i' in args: filename = args['-i']
if '-c' in args: contname = args['-c']
if '-t' in args: filetype = args['-t']
if '-o' in args: outname = args['-o']
if '-p' in args: plots = args['-p']
if '-w' in args: weightfile = args['-w']
if '-wt' in args: weighttype = args['-wt']
#for these options - ordering means if both are defined it will use default
if '--weight-no-event' in args: weightevt = False
if '--weight-event' in args: weightevt = True
if '--end-cut' in args: endcut = True
if '--no-end-cut' in args: endcut = False
if '--p-cut-ref' in args: refmom = True
if '--p-cut-abs' in args: refmom = False
if '--p-cut-none' in args: refmom = None
#if i am called as a script, execute ecalc loop
try:
ecalc9f(filename, filetype, contname, outname, plots, endcut, weightfile, weighttype, weightevt, refmom)
except:
print 'Error during running. Error was reported as\n '
sys.excepthook(sys.exc_info()[0], sys.exc_info()[1], sys.exc_info()[2])
return 1
return 0
if __name__ == "__main__":
sys.exit(main())