// MAUS WARNING: THIS IS LEGACY CODE. #ifndef Differentiator_hh #define Differentiator_hh 1 #include "Interface/Interpolator.hh" #include "Maths/Matrix.hh" #include <map> //Differentiator.hh //Contains: //Differentiator, an arbitrary order numerical differentiation class // i.e. differentiates a VectorMap with arbitrary PointDimension and ValueDimension to a certain order // return value is a vector of differentials up to that order // so Differentiator is itself a VectorMap //PolynomialInterpolator, an arbitrary order polynomial interpolation // Interpolates from a mesh of arbitrary dimension with values and arbitrary order differentials stored at each point // Creates at each point a polynomial // Returns values taken from this polynomial // BUG - I can't mix interpolation from neighbouring points and differentials at each point // So if I know y(x1) dy/dx(x1), y(x2), dy/dx(x2), I can EITHER use y, dy/dx to do the interpolation OR use y(x1), y(x2) // but not both. I will fix this if asked, or if I need it. Probably non-trivial to fix. //Differentiator //Finds arbitrary order differentials for an arbitrary VectorMap or function pointer namespace MAUS { class PolynomialMap; } class Differentiator : public VectorMap { public: //Differentiate at each point in mesh //Differentiate using d^(n)y_j/dx_i^(n) = magnitude_n*delta_i^(n) Differentiator (VectorMap* in, std::vector<double> delta, std::vector<double> magnitude); ~Differentiator() {;} //return differential coefficients at point; vectors NOT checked for size //return value is array of dy_i/dx_j ordered like i=0,j=0;i=0,j=1;...;i=1,j=0;i=1,j=1;...;i=ni;j=nj void F (const double* point, double* value) const; //return value is matrix of dy_i/dx_j void F (const MAUS::Vector<double>& point, MAUS::Matrix<double>& differentials) const; void Y (const double* point, double* value) const {return _y->F(point, value);} //Return coefficients for polynomial fit to taylor expansion around point //PolynomialMap returns coefficients for polynomial about 0 that has correct values at point MAUS::Matrix<double> PolynomialMap(const MAUS::Vector<double>& point) const; //CentredPolynomialMap returns coeffs for polynomial about inPoint that has correct values at point MAUS::Matrix<double> CentredPolynomialMap(const MAUS::Vector<double>& point) const; //Tell me the required dimension of the input point and output value unsigned int PointDimension() const { return _inSize; } unsigned int ValueDimension() const { return _outSize; } unsigned int NumberOfDiffRows() const { return _diffKey.size(); } //"Copy constructor" Differentiator* Clone() const { return new Differentiator(*this); } //Return the original function ("0th differential") VectorMap* FunctionMap() const { return _y; } //Make a polynomial using the differential coefficients MAUS::PolynomialMap* PolynomialFromDifferentials(const MAUS::Vector<double>& point) const; MAUS::PolynomialMap* PolynomialFromDifferentials(double* point) const; friend std::ostream& operator<<(std::ostream&, const Differentiator&); private: std::vector< std::vector<double> > SetupInPoints(const MAUS::Vector<double>& inPoint) const; MAUS::Matrix<double> SetupMatrixIn (std::vector< std::vector<double> > inVector, const MAUS::Vector<double>& inPoint) const; MAUS::Matrix<double> SetupMatrixOut(std::vector< std::vector<double> > inVector) const; int _inSize; int _outSize; std::vector< std::vector<int> > _diffKey; std::vector< int > _factKey; std::vector<double> _delta; std::vector<double> _magnitude; int _diffOrder; VectorMap* _y; MAUS::Matrix<double> _polyDiffCoefficient; //d(n)y/dx = a x^n }; std::ostream& operator<<(std::ostream&, const Differentiator&); //PolynomialInterpolator //uses differentials at different points to interpolate //works over arbitrary order differentials/polynomials combinations //actually generalisation of "differentiator" to work when e.g. some //differentials as well as values are known //in this implementation, I assume I have all differentials up to order n at all points //same maths/similar code can give implementation for an arbitrary set of polynomials/differentials at arbitrary points //BUG - Works for EITHER length of differential = 0 OR length of polynomial = 0 but fails //for mixed differentials - I think because some vectors are parallel so matrix //inversion yields nan class PolynomialInterpolator : public VectorMap { public: PolynomialInterpolator(Mesh* mesh, VectorMap* F, int differentialOrder, int pointOrder, std::vector<double> delta, std::vector<double> magnitude); //return map value; vectors NOT checked for size void F (const double* point, double* value) const; void F (const Mesh::Iterator& point, double* value) const //overload if mesh::pointdimension != vectormap::pointdimension {double* PointA = new double[this->PointDimension()]; point.Position(PointA); F(PointA, value); delete PointA;} //Tell me the required dimension of the input point and output value unsigned int PointDimension() const {return _inSize;} unsigned int ValueDimension() const {return _outSize;} unsigned int PolynomialOrder() const {return _totalOrder;} //highest polynomial that will be in the interpolation unsigned int DifferentialOrder() const {return _differentialOrder;} //polynomial "order" to be contributed by differentials unsigned int NumberOfPoints() const {return int(ceil(NumberOfIndices()/NumberOfDiffIndices())); } //number of points needed for each interpolation unsigned int PointOrder() const {return _totalOrder - _differentialOrder;} //polynomial "order" to be contributed by points unsigned int NumberOfDiffIndices() const; // number of differentials at each point unsigned int NumberOfIndices() const; // number of rows in the interpolation //Read and write operations PolynomialInterpolator* Clone() const; //copy function ~PolynomialInterpolator(); //The polynomial vector at a point on the mesh MAUS::PolynomialMap* PolyVec(Mesh::Iterator it) const {return _points[it.ToInteger()];} VectorMap* Function() {return _func;} Mesh* GetMesh() const {return _mesh;} static bool M1_LT_M2(const Mesh::Iterator& m1,const Mesh::Iterator& m2); //comparator to sort by number of steps from _itCompCentre private: Mesh* _mesh; MAUS::PolynomialMap** _points; VectorMap* _func; int _differentialOrder; int _totalOrder; int _inSize; int _outSize; std::vector<double> _delta; std::vector<double> _magnitude; static Mesh::Iterator _itCompCentre; std::vector< std::vector< int > > _muIndex; std::vector< std::vector< int > > _alphaIndex; std::vector< std::vector< double > > _taylorCoefficient; typedef std::map<PolynomialInterpolator*,Mesh*> PIMMap; static PIMMap _meshCounter; void BuildFixedMeshPolynomials(VectorMap* F); MAUS::PolynomialMap* PolynomialFromDiffs(Mesh::Iterator point, Differentiator* diffs); std::vector< Mesh::Iterator > GetFixedMeshPoints(Mesh::Iterator dualIterator, int polySize); MAUS::Matrix<double> GetX(std::vector< Mesh::Iterator> points ); MAUS::Matrix<double> GetD(std::vector< Mesh::Iterator> points, Differentiator* diff ); //Functions to build up a set of points on the mesh nearby void Search(int pos, std::vector<int> search, std::vector<Mesh::Iterator>& points, const Mesh* mesh); bool CheckDirection(Mesh::Iterator start, Mesh::Iterator it); }; std::ostream& operator<<(std::ostream&, const PolynomialInterpolator&); #endif