
Global PID Framework Documentation

Celeste Pidcott

1 Introduction

The global PID framework is designed to use sets of PID variables to 1) use
MC data to create PDFs of these variables for a range of particle hypotheses,
and 2) to use the PDFs as part of a log-likelihood method to determine the
PID of reconstructed global tracks from data. The framework is designed
such that new PID variables can be added as they are developed. Section 1
of this document will explain how to use the PID to produce PDFs, and how
to perform PID on spill data contained within a Json document. Section
2 will detail how these two actions are performed within the code, and in
Section 3 the PID variables, their structure, how new ones can be added to
the framework, and details of those already in place, will be discussed. This
document will be updated as the PID framework and variables continue to
be developed.

1.1 Using the PID scripts

1.2 Producing PDFs

Whilst the PID framework comes with PDFs provided in PIDhists.root, it is
possible for a user to produce PDFs for hypotheses not included within this
file. The following describes how this should be done.

• Simulation: Production of MC data for a given particle hypothesis. To
produce and output the MC to a Json file, a copy of simulate mice.py
should be made, with the my output flag set to MAUS.OutputPyJSON().

• Global Reconstruction: The MC data should then be passed through
the global reconstruction. Detector information is currently added
global tracks using the GlobalReconImport.py script in
${MAUS ROOT DIR}\bin\Global. This script calls the mapper MapCpp-
GlobalReconImport, which constructs the global tracks required for the

1

Simulation

Global
Reconstruction

PDF
Production

Figure 1: Steps invloved in producing a PDF from MC data

calculation of PID variables. The control variables to specify the input
Json data sample, and the name of the output Json file that contains
the reconstructed tracks can be set at the command line, or by using
another datacard, as shown in listing 1. To run the global reconstruc-
tion with the datacard, the following should be entered at the command
line:

${MAUS_ROOT_DIR }/bin/Global/GlobalReconImport.py

--configuration_file <name_of_datacard >

which for the example in 1 would be:

${MAUS_ROOT_DIR }/bin/Global/GlobalReconImport.py

--configuration_file ex_global_datacard.py

• PDF Production: To produce the PDFs from the reconstructed MC
data, pid pdf production.py in ${MAUS ROOT DIR}\bin\Global is
then used. This script calls the reducer ReduceCppGlobalPID. With
this script, a datacard, such as that shown given in listing 2, that
includes the input Json filename, the global pid hypothesis for which
the PDF(s) are to be produced, and a unique identifier (typically the

2

time and date at which the script is run) is used by entering at the
command line:

${MAUS_ROOT_DIR }/bin/Global/pid_pdf_generator.py

--configuration_file example_pdf_datacard.py

This will create a directory within ${MAUS ROOT DIR}\files\PID
corresponding to the hypothesis and identifier given by the datacard,
which will then contain files for each PID variable, each of which will
contain the PDF for that hypothesis and variable.

import os

A json document containing spills from MC data

input_json_file_name = "example_hypothesis.json"

input_json_file_type = "text"

The json document that the global tracks will be

written to

output_json_file_name =

"example_hypothesis_Global_Recon.json"

output_json_file_type = "text"

Listing 1: An example datacard (ex global datacard.py) for use with
GlobalReconImport.py

import os

import datetime

Use the current time and date as a unique

identifier when creating files to contain PDFs.

A unique_identifier is required by the reducer ,

and PDF production will fail without one.

now = datetime.datetime.now()

unique_identifier =

now.strftime("%Y_%m_%dT%H_%M_%S_%f")

A json document containing global tracks from MC

data

input_json_file_name =

3

"example_hypothesis_Global_Recon.json"

input_json_file_type = "text"

The particle hypothesis that the PDF is being

created for. A global_pid_hypothesis is required

by the reducer , and PDF production will fail

without one.

global_pid_hypothesis = "example"

Listing 2: An example datacard (example pdf datacard.py) for use with
pid pdf generator.py

1.2.1 Performing PID with pre-existing hypotheses

To perform PID on data, the steps shown figure 2 should be followed.

Data

Global
Reconstruction

Global PID

Figure 2: Steps invloved in performing the PID for a data sample

• Data: This can be experimental or MC data, however the spill data
must be passed to the PID in a Json document.

4

• Global Reconstruction: In the same way as described above, the data
should then be passed through the global reconstruction, currently us-
ing the GlobalReconImport.py script in ${MAUS ROOT DIR}\bin\Global,
with a corresponding datacard containing the name of the input Json
file and the name of the output file.

• Global PID: To perform the PID on the reconstructed data, Glob-
alPID.py in ${MAUS ROOT DIR}\bin\Global is then used. This script
calls the MapCppGlobalPID mapper. With this script, a datacard,
such as that shown given in listing 3, that includes the input and out-
put Json filenames, is used, by entering the following at the command
line:

${MAUS_ROOT_DIR }/bin/Global/GlobalPID.py

--configuration_file

example_pid_datacard.py

import os

A json document containing spills from data

input_json_file_name =

"example_hypothesis_Global_Recon.json"

input_json_file_type = "text"

The json document that the global tracks will be

written to

output_json_file_name =

"example_hypothesis_Global_PID.json"

output_json_file_type = "text"

Listing 3: An example datacard (example pid datacard.py) for use with
GlobalPID.py

As the framework currently stands, the output document would now con-
tain the global tracks with the PID set (where it has been possible to do so)
to whichever particle hypothesis had the highest log-likelihood. For tracks
where the PID could not be determined, the track PID will be left as 0.

5

2 MapCppGlobalPID and ReduceCppGlob-

alPID

2.1 MapCppGlobaPID

The steps taken in MapCppGlobalPID for a single track are shown in figure
3. To express this more fully, the data, having passed through the global
reconstruction, is then passed to the PID. For each track, the values of each
PID variable are calculated. Each of these values is then compared to the
corresponding PDFs for all particle hypotheses, the number of entries in the
corresponding bin providing the probability from which the log-likelihood
is calculated. For each particle hypothesis, the log-likelihoods of all of the
PID variables are summed to give a log-likelihood for that hypothesis. The
PID of the track is then obtained by comparing the log-likelihoods of the
hypotheses.

Get track from global
reconstruction

Calculate PID variables for
global track

Pass reconstructed track to
PID

Open PDFs and find
corresponding entry (for all

particle hypotheses)

Calculate log likelihood
from entry

Compare log likelihoods of
different hypotheses

For each hypothesis, sum
log likelihoods from PID

variables

for loop

Figure 3: Flow chart detailing steps taken in MapCppGlobaPID

6

3 ReduceCppGlobalPID

The steps taken in ReduceCppGlobalPID are shown in figure 4. MC data for
a given particle hypothesis, having passed through the global reconstruction,
is then passed to the PID. For each track, the values of each PID variable
are calculated. A histogram is filled with these values. If the behaviour has
been turned on in the PID variable class, then a single event is spread over
all bins in the histogram, to ensure that when the PDF is used by the PID,
there will no empty bins, thus avoiding cases where the log-likelihood takes
the log of zero. The histogram is then normalised to create the PDF, which is
then written and saved to file. If a MC track returns a variable value outside
of the allowed range of the histogram (as defined within the variable class)
then the value for that track is not included.

Pass reconstructed MC
tracks to PID

For each PID variable,
calculate its value for the

track

Fill histogram with variable
values

Write to and save file

for loop

Ensure non-zero bin entries
(if required) and normalise

Figure 4: Flow chart detailing steps taken in ReduceCppGlobaPID

4 PID Variables

Information from the MICE detectors will be incorporated into a set of PID
variables that can be used to distinguish between particle hypotheses. The
Global PID framework has been written such that any number of PID vari-
ables can be developed and added as necessary, all represented by their own
class, derived from a base class.

7

4.1 PID Base Class

The base PID class (PIDBase.hh and .cc) contains the functions to:

• Create the PDFs (and the files that contain them)

• Use the PDFs with globally reconstructed tracks

• Populate the PDFs with variable values (after checking that value is
valid)

• Perform the log-likelihood for an incoming globally reconstructed track
(after checking that value of variable for track falls within range of
PDF).

• Calculate the value of the PID variable (this is a virtual function to be
defined in the derived classes)

4.2 PID Variable Classes

Each PID variable will be implemented in a derived class of the base PID
class. Because of how the framework is designed, new variables can be added
as they are developed.

4.2.1 Adding PID Variables

In each derived variable class, the following should be included:

• The variable name should be set

• The function to calculate the PID variable should be defined.

• The minimum, maximum, and number of bins for PDFs created using
the variable should be set. The values of the minimum and maximum
define the allowed range of values that the PID variable can take.

• In some cases it may be necessary to ensure that all bins in a PDF re-
turn non zero entries, and so by setting the variable nonZeroHistEntries
to true, a single event spread accross all bins will be added

8

4.2.2 PIDVarA

There is currently a single PID variable defined within the framework, PID-
VarA (see PIDVarA.hh and .cc), which uses the difference between the times
measured at TOF1 and TOF0 as its variable. Only for tracks where there is
a single TOF0 and a single TOF1 time measurement, and for which the time
difference between the detectors falls within the minimum and maximum set
within the class, will a valid value of the variable be returned. Otherwise, the
value of the variable is set to -1, such that it falls outside of the allowed range
for the variable, and so variable for the track is not used in PDF production,
or in the PID.

9

