// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // $Id: G4ElectronIonPair.hh,v 1.5 2010-10-25 17:23:01 vnivanch Exp $ // GEANT4 tag $Name: not supported by cvs2svn $ // // #ifndef G4ElectronIonPair_h #define G4ElectronIonPair_h 1 // ------------------------------------------------------------- // // GEANT4 Class header file // // // File name: G4ElectronIonPair // // Author: Vladimir Ivanchenko // // Creation date: 08.07.2008 // // Modifications: // // // Class Description: // Compution on number of electon-ion or electorn-hole pairs // at the step of a particle and sampling ionisation points // in space // // Based on ICRU Report 31, 1979 // "Average Energy Required to Produce an Ion Pair" // // 06.04.2010 V. Grichine, substitute Gauss by Gamma for ionisation // distribution at fixed energy deposition // // ------------------------------------------------------------- //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... #include "globals.hh" #include "G4Step.hh" #include "G4ParticleDefinition.hh" #include "G4ThreeVector.hh" #include "G4VProcess.hh" #include //....oooOO0OOooo........oooOO0OOooo........oooOO0OOooo........oooOO0OOooo.... class G4Material; class G4ElectronIonPair { public: G4ElectronIonPair(); virtual ~G4ElectronIonPair(); // compute mean number of ionisation points at a step G4double MeanNumberOfIonsAlongStep(const G4ParticleDefinition*, const G4Material*, G4double edepTotal, G4double edepNIEL = 0.0); inline G4double MeanNumberOfIonsAlongStep(const G4Step*); inline G4int SampleNumberOfIonsAlongStep(const G4Step*); // returns pointer to the new vector of positions of // ionisation points in the World coordinate system std::vector* SampleIonsAlongStep(const G4Step*); // compute number of holes in the atom after PostStep interaction G4int ResidualeChargePostStep(const G4ParticleDefinition*, const G4TrackVector* secondary = 0, G4int processSubType = -1); inline G4int ResidualeChargePostStep(const G4Step*); // find mean energies per ionisation G4double FindG4MeanEnergyPerIonPair(const G4Material*); // dump mean energies per ionisation used in run time void DumpMeanEnergyPerIonPair(); // dump G4 list void DumpG4MeanEnergyPerIonPair(); inline void SetVerbose(G4int); private: void Initialise(); G4double FindMeanEnergyPerIonPair(const G4Material*); // hide assignment operator G4ElectronIonPair & operator=(const G4ElectronIonPair &right); G4ElectronIonPair(const G4ElectronIonPair&); // cash const G4Material* curMaterial; G4double curMeanEnergy; G4double FanoFactor; G4int verbose; G4int nMaterials; // list of G4 NIST materials with mean energy per ion defined std::vector g4MatData; std::vector g4MatNames; }; inline G4double G4ElectronIonPair::MeanNumberOfIonsAlongStep(const G4Step* step) { return MeanNumberOfIonsAlongStep(step->GetTrack()->GetParticleDefinition(), step->GetPreStepPoint()->GetMaterial(), step->GetTotalEnergyDeposit(), step->GetNonIonizingEnergyDeposit()); } inline G4int G4ElectronIonPair::SampleNumberOfIonsAlongStep(const G4Step* step) { G4double meanion = MeanNumberOfIonsAlongStep(step); G4double lambda = 1./FanoFactor; G4double a = meanion*lambda; // old Gauss implementation // G4double sig = FanoFactor*std::sqrt(meanion); // G4int nion = G4int(G4RandGauss::shoot(meanion,sig) + 0.5); G4int nion = G4int(CLHEP::RandGamma::shoot(a,lambda) + 0.5); return nion; } inline G4int G4ElectronIonPair::ResidualeChargePostStep(const G4Step* step) { G4int subtype = -1; const G4VProcess* proc = step->GetPostStepPoint()->GetProcessDefinedStep(); if(proc) { subtype = proc->GetProcessSubType(); } return ResidualeChargePostStep(step->GetTrack()->GetParticleDefinition(), step->GetSecondary(), subtype); } inline void G4ElectronIonPair::SetVerbose(G4int val) { verbose = val; } #endif