// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4TwistBoxSide.hh,v 1.5 2006-06-29 18:47:43 gunter Exp $ // // -------------------------------------------------------------------- // GEANT 4 class header file // // // G4TwistBoxSide // // Class description: // // Class describing a twisted boundary surface for a trapezoid. // Author: // // 27-Oct-2004 - O.Link (Oliver.Link@cern.ch) // // -------------------------------------------------------------------- #ifndef __G4TWISTBOXSIDE__ #define __G4TWISTBOXSIDE__ #include "G4VTwistSurface.hh" #include class G4TwistBoxSide : public G4VTwistSurface { public: // with description G4TwistBoxSide(const G4String &name, G4double PhiTwist, // twist angle G4double pDz, // half z lenght G4double pTheta, // direction between end planes G4double pPhi, // by polar and azimutal angles G4double pDy1, // half y length at -pDz G4double pDx1, // half x length at -pDz,-pDy G4double pDx2, // half x length at -pDz,+pDy G4double pDy2, // half y length at +pDz G4double pDx3, // half x length at +pDz,-pDy G4double pDx4, // half x length at +pDz,+pDy G4double pAlph, // tilt angle at +pDz G4double AngleSide // parity ); virtual ~G4TwistBoxSide(); virtual G4ThreeVector GetNormal(const G4ThreeVector &xx, G4bool isGlobal = false) ; virtual G4int DistanceToSurface(const G4ThreeVector &gp, const G4ThreeVector &gv, G4ThreeVector gxx[], G4double distance[], G4int areacode[], G4bool isvalid[], EValidate validate = kValidateWithTol); virtual G4int DistanceToSurface(const G4ThreeVector &gp, G4ThreeVector gxx[], G4double distance[], G4int areacode[]); public: // without description G4TwistBoxSide(__void__&); // Fake default constructor for usage restricted to direct object // persistency for clients requiring preallocation of memory for // persistifiable objects. private: virtual G4int GetAreaCode(const G4ThreeVector &xx, G4bool withTol = true); virtual void SetCorners(); virtual void SetBoundaries(); void GetPhiUAtX(G4ThreeVector p, G4double &phi, G4double &u); G4ThreeVector ProjectPoint(const G4ThreeVector &p, G4bool isglobal = false); virtual G4ThreeVector SurfacePoint(G4double phi, G4double u, G4bool isGlobal = false); virtual G4double GetBoundaryMin(G4double phi); virtual G4double GetBoundaryMax(G4double phi); virtual G4double GetSurfaceArea(); virtual void GetFacets( G4int m, G4int n, G4double xyz[][3], G4int faces[][4], G4int iside ); inline G4double GetValueA(G4double phi); inline G4double GetValueB(G4double phi); inline G4ThreeVector NormAng(G4double phi, G4double u); inline G4double Xcoef(G4double u,G4double phi); // To calculate the w(u) function private: G4double fTheta; G4double fPhi ; G4double fDy1; G4double fDx1; G4double fDx2; G4double fDy2; G4double fDx3; G4double fDx4; G4double fDz; // Half-length along the z axis G4double fAlph; G4double fTAlph; // std::tan(fAlph) G4double fPhiTwist; // twist angle ( dphi in surface equation) G4double fAngleSide; G4double fdeltaX; G4double fdeltaY; G4double fDx4plus2; // fDx4 + fDx2 == a2/2 + a1/2 G4double fDx4minus2; // fDx4 - fDx2 - G4double fDx3plus1; // fDx3 + fDx1 == d2/2 + d1/2 G4double fDx3minus1; // fDx3 - fDx1 - G4double fDy2plus1; // fDy2 + fDy1 == b2/2 + b1/2 G4double fDy2minus1; // fDy2 - fDy1 - G4double fa1md1; // 2 fDx2 - 2 fDx1 == a1 - d1 G4double fa2md2; // 2 fDx4 - 2 fDx3 }; //======================================================== // inline functions //======================================================== inline G4double G4TwistBoxSide::GetValueA(G4double phi) { return ( fDx4plus2 + fDx4minus2 * ( 2 * phi ) / fPhiTwist ) ; } inline G4double G4TwistBoxSide::GetValueB(G4double phi) { return ( fDy2plus1 + fDy2minus1 * ( 2 * phi ) / fPhiTwist ) ; } inline G4double G4TwistBoxSide::Xcoef(G4double u, G4double phi) { return GetValueA(phi)/2. + u*fTAlph ; } inline G4ThreeVector G4TwistBoxSide::SurfacePoint( G4double phi, G4double u, G4bool isGlobal ) { // function to calculate a point on the surface, given by parameters phi,u G4ThreeVector SurfPoint ( Xcoef(u,phi) * std::cos(phi) - u * std::sin(phi) + fdeltaX*phi/fPhiTwist, Xcoef(u,phi) * std::sin(phi) + u * std::cos(phi) + fdeltaY*phi/fPhiTwist, 2*fDz*phi/fPhiTwist ); if (isGlobal) { return (fRot * SurfPoint + fTrans); } return SurfPoint; } inline G4double G4TwistBoxSide::GetBoundaryMin(G4double phi) { return -0.5*GetValueB(phi) ; } inline G4double G4TwistBoxSide::GetBoundaryMax(G4double phi) { return 0.5*GetValueB(phi) ; } inline G4double G4TwistBoxSide::GetSurfaceArea() { return (fDz*(std::sqrt(16*fDy1*fDy1 + (fa1md1 + 4*fDy1*fTAlph)*(fa1md1 + 4*fDy1*fTAlph)) + std::sqrt(16*fDy1*fDy1 + (fa2md2 + 4*fDy1*fTAlph) * (fa2md2 + 4*fDy1*fTAlph))))/2. ; } inline G4ThreeVector G4TwistBoxSide::NormAng( G4double phi, G4double u ) { // function to calculate the norm at a given point on the surface // replace a1-d1 G4ThreeVector nvec( 4*fDz*(std::cos(phi) + fTAlph*std::sin(phi)) , 4*fDz*(-(fTAlph*std::cos(phi)) + std::sin(phi)), (fDx2 + fDx4)*fPhiTwist*fTAlph + 2*fDx4minus2*(-1 + fTAlph*phi) + 2*fPhiTwist*(1 + fTAlph*fTAlph)*u - 2*(fdeltaX - fdeltaY*fTAlph)*std::cos(phi) - 2*(fdeltaY + fdeltaX*fTAlph)*std::sin(phi) ); return nvec.unit(); } #endif