""" Utility function to facilitate testing. """ import os import sys import re import operator import types import warnings from nosetester import import_nose __all__ = ['assert_equal', 'assert_almost_equal','assert_approx_equal', 'assert_array_equal', 'assert_array_less', 'assert_string_equal', 'assert_array_almost_equal', 'assert_raises', 'build_err_msg', 'decorate_methods', 'jiffies', 'memusage', 'print_assert_equal', 'raises', 'rand', 'rundocs', 'runstring', 'verbose', 'measure', 'assert_', 'assert_array_almost_equal_nulp', 'assert_array_max_ulp', 'assert_warns', 'assert_allclose'] verbose = 0 def assert_(val, msg='') : """ Assert that works in release mode. The Python built-in ``assert`` does not work when executing code in optimized mode (the ``-O`` flag) - no byte-code is generated for it. For documentation on usage, refer to the Python documentation. """ if not val : raise AssertionError(msg) def gisnan(x): """like isnan, but always raise an error if type not supported instead of returning a TypeError object. Notes ----- isnan and other ufunc sometimes return a NotImplementedType object instead of raising any exception. This function is a wrapper to make sure an exception is always raised. This should be removed once this problem is solved at the Ufunc level.""" from numpy.core import isnan st = isnan(x) if isinstance(st, types.NotImplementedType): raise TypeError("isnan not supported for this type") return st def gisfinite(x): """like isfinite, but always raise an error if type not supported instead of returning a TypeError object. Notes ----- isfinite and other ufunc sometimes return a NotImplementedType object instead of raising any exception. This function is a wrapper to make sure an exception is always raised. This should be removed once this problem is solved at the Ufunc level.""" from numpy.core import isfinite, seterr err = seterr(invalid='ignore') try: st = isfinite(x) if isinstance(st, types.NotImplementedType): raise TypeError("isfinite not supported for this type") finally: seterr(**err) return st def gisinf(x): """like isinf, but always raise an error if type not supported instead of returning a TypeError object. Notes ----- isinf and other ufunc sometimes return a NotImplementedType object instead of raising any exception. This function is a wrapper to make sure an exception is always raised. This should be removed once this problem is solved at the Ufunc level.""" from numpy.core import isinf, seterr err = seterr(invalid='ignore') try: st = isinf(x) if isinstance(st, types.NotImplementedType): raise TypeError("isinf not supported for this type") finally: seterr(**err) return st def rand(*args): """Returns an array of random numbers with the given shape. This only uses the standard library, so it is useful for testing purposes. """ import random from numpy.core import zeros, float64 results = zeros(args, float64) f = results.flat for i in range(len(f)): f[i] = random.random() return results if sys.platform[:5]=='linux': def jiffies(_proc_pid_stat = '/proc/%s/stat'%(os.getpid()), _load_time=[]): """ Return number of jiffies (1/100ths of a second) that this process has been scheduled in user mode. See man 5 proc. """ import time if not _load_time: _load_time.append(time.time()) try: f=open(_proc_pid_stat,'r') l = f.readline().split(' ') f.close() return int(l[13]) except: return int(100*(time.time()-_load_time[0])) def memusage(_proc_pid_stat = '/proc/%s/stat'%(os.getpid())): """ Return virtual memory size in bytes of the running python. """ try: f=open(_proc_pid_stat,'r') l = f.readline().split(' ') f.close() return int(l[22]) except: return else: # os.getpid is not in all platforms available. # Using time is safe but inaccurate, especially when process # was suspended or sleeping. def jiffies(_load_time=[]): """ Return number of jiffies (1/100ths of a second) that this process has been scheduled in user mode. [Emulation with time.time]. """ import time if not _load_time: _load_time.append(time.time()) return int(100*(time.time()-_load_time[0])) def memusage(): """ Return memory usage of running python. [Not implemented]""" raise NotImplementedError if os.name=='nt' and sys.version[:3] > '2.3': # Code "stolen" from enthought/debug/memusage.py def GetPerformanceAttributes(object, counter, instance = None, inum=-1, format = None, machine=None): # NOTE: Many counters require 2 samples to give accurate results, # including "% Processor Time" (as by definition, at any instant, a # thread's CPU usage is either 0 or 100). To read counters like this, # you should copy this function, but keep the counter open, and call # CollectQueryData() each time you need to know. # See http://msdn.microsoft.com/library/en-us/dnperfmo/html/perfmonpt2.asp # My older explanation for this was that the "AddCounter" process forced # the CPU to 100%, but the above makes more sense :) import win32pdh if format is None: format = win32pdh.PDH_FMT_LONG path = win32pdh.MakeCounterPath( (machine,object,instance, None, inum,counter) ) hq = win32pdh.OpenQuery() try: hc = win32pdh.AddCounter(hq, path) try: win32pdh.CollectQueryData(hq) type, val = win32pdh.GetFormattedCounterValue(hc, format) return val finally: win32pdh.RemoveCounter(hc) finally: win32pdh.CloseQuery(hq) def memusage(processName="python", instance=0): # from win32pdhutil, part of the win32all package import win32pdh return GetPerformanceAttributes("Process", "Virtual Bytes", processName, instance, win32pdh.PDH_FMT_LONG, None) def build_err_msg(arrays, err_msg, header='Items are not equal:', verbose=True, names=('ACTUAL', 'DESIRED')): msg = ['\n' + header] if err_msg: if err_msg.find('\n') == -1 and len(err_msg) < 79-len(header): msg = [msg[0] + ' ' + err_msg] else: msg.append(err_msg) if verbose: for i, a in enumerate(arrays): try: r = repr(a) except: r = '[repr failed]' if r.count('\n') > 3: r = '\n'.join(r.splitlines()[:3]) r += '...' msg.append(' %s: %s' % (names[i], r)) return '\n'.join(msg) def assert_equal(actual,desired,err_msg='',verbose=True): """ Raise an assertion if two objects are not equal. Given two objects (lists, tuples, dictionaries or numpy arrays), check that all elements of these objects are equal. An exception is raised at the first conflicting values. Parameters ---------- actual : list, tuple, dict or ndarray The object to check. desired : list, tuple, dict or ndarray The expected object. err_msg : string The error message to be printed in case of failure. verbose : bool If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired are not equal. Examples -------- >>> np.testing.assert_equal([4,5], [4,6]) ... : Items are not equal: item=1 ACTUAL: 5 DESIRED: 6 """ if isinstance(desired, dict): if not isinstance(actual, dict) : raise AssertionError(repr(type(actual))) assert_equal(len(actual),len(desired),err_msg,verbose) for k,i in desired.items(): if k not in actual : raise AssertionError(repr(k)) assert_equal(actual[k], desired[k], 'key=%r\n%s' % (k,err_msg), verbose) return if isinstance(desired, (list,tuple)) and isinstance(actual, (list,tuple)): assert_equal(len(actual),len(desired),err_msg,verbose) for k in range(len(desired)): assert_equal(actual[k], desired[k], 'item=%r\n%s' % (k,err_msg), verbose) return from numpy.core import ndarray, isscalar, signbit from numpy.lib import iscomplexobj, real, imag if isinstance(actual, ndarray) or isinstance(desired, ndarray): return assert_array_equal(actual, desired, err_msg, verbose) msg = build_err_msg([actual, desired], err_msg, verbose=verbose) # Handle complex numbers: separate into real/imag to handle # nan/inf/negative zero correctly # XXX: catch ValueError for subclasses of ndarray where iscomplex fail try: usecomplex = iscomplexobj(actual) or iscomplexobj(desired) except ValueError: usecomplex = False if usecomplex: if iscomplexobj(actual): actualr = real(actual) actuali = imag(actual) else: actualr = actual actuali = 0 if iscomplexobj(desired): desiredr = real(desired) desiredi = imag(desired) else: desiredr = desired desiredi = 0 try: assert_equal(actualr, desiredr) assert_equal(actuali, desiredi) except AssertionError: raise AssertionError(msg) # Inf/nan/negative zero handling try: # isscalar test to check cases such as [np.nan] != np.nan if isscalar(desired) != isscalar(actual): raise AssertionError(msg) # If one of desired/actual is not finite, handle it specially here: # check that both are nan if any is a nan, and test for equality # otherwise if not (gisfinite(desired) and gisfinite(actual)): isdesnan = gisnan(desired) isactnan = gisnan(actual) if isdesnan or isactnan: if not (isdesnan and isactnan): raise AssertionError(msg) else: if not desired == actual: raise AssertionError(msg) return elif desired == 0 and actual == 0: if not signbit(desired) == signbit(actual): raise AssertionError(msg) # If TypeError or ValueError raised while using isnan and co, just handle # as before except (TypeError, ValueError, NotImplementedError): pass if desired != actual : raise AssertionError(msg) def print_assert_equal(test_string,actual,desired): """ Test if two objects are equal, and print an error message if test fails. The test is performed with ``actual == desired``. Parameters ---------- test_string : str The message supplied to AssertionError. actual : object The object to test for equality against `desired`. desired : object The expected result. Examples -------- >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 1]) >>> np.testing.print_assert_equal('Test XYZ of func xyz', [0, 1], [0, 2]) Traceback (most recent call last): ... AssertionError: Test XYZ of func xyz failed ACTUAL: [0, 1] DESIRED: [0, 2] """ import pprint try: assert(actual == desired) except AssertionError: import cStringIO msg = cStringIO.StringIO() msg.write(test_string) msg.write(' failed\nACTUAL: \n') pprint.pprint(actual,msg) msg.write('DESIRED: \n') pprint.pprint(desired,msg) raise AssertionError(msg.getvalue()) def assert_almost_equal(actual,desired,decimal=7,err_msg='',verbose=True): """ Raise an assertion if two items are not equal up to desired precision. The test is equivalent to abs(desired-actual) < 0.5 * 10**(-decimal) Given two objects (numbers or ndarrays), check that all elements of these objects are almost equal. An exception is raised at conflicting values. For ndarrays this delegates to assert_array_almost_equal Parameters ---------- actual : number or ndarray The object to check. desired : number or ndarray The expected object. decimal : integer (decimal=7) desired precision err_msg : string The error message to be printed in case of failure. verbose : bool If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired are not equal up to specified precision. See Also -------- assert_array_almost_equal: compares array_like objects assert_equal: tests objects for equality Examples -------- >>> import numpy.testing as npt >>> npt.assert_almost_equal(2.3333333333333, 2.33333334) >>> npt.assert_almost_equal(2.3333333333333, 2.33333334, decimal=10) ... : Items are not equal: ACTUAL: 2.3333333333333002 DESIRED: 2.3333333399999998 >>> npt.assert_almost_equal(np.array([1.0,2.3333333333333]), \t\t\tnp.array([1.0,2.33333334]), decimal=9) ... : Arrays are not almost equal (mismatch 50.0%) x: array([ 1. , 2.33333333]) y: array([ 1. , 2.33333334]) """ from numpy.core import ndarray from numpy.lib import iscomplexobj, real, imag # Handle complex numbers: separate into real/imag to handle # nan/inf/negative zero correctly # XXX: catch ValueError for subclasses of ndarray where iscomplex fail try: usecomplex = iscomplexobj(actual) or iscomplexobj(desired) except ValueError: usecomplex = False msg = build_err_msg([actual, desired], err_msg, verbose=verbose, header='Arrays are not almost equal') if usecomplex: if iscomplexobj(actual): actualr = real(actual) actuali = imag(actual) else: actualr = actual actuali = 0 if iscomplexobj(desired): desiredr = real(desired) desiredi = imag(desired) else: desiredr = desired desiredi = 0 try: assert_almost_equal(actualr, desiredr, decimal=decimal) assert_almost_equal(actuali, desiredi, decimal=decimal) except AssertionError: raise AssertionError(msg) if isinstance(actual, (ndarray, tuple, list)) \ or isinstance(desired, (ndarray, tuple, list)): return assert_array_almost_equal(actual, desired, decimal, err_msg) try: # If one of desired/actual is not finite, handle it specially here: # check that both are nan if any is a nan, and test for equality # otherwise if not (gisfinite(desired) and gisfinite(actual)): if gisnan(desired) or gisnan(actual): if not (gisnan(desired) and gisnan(actual)): raise AssertionError(msg) else: if not desired == actual: raise AssertionError(msg) return except (NotImplementedError, TypeError): pass if round(abs(desired - actual),decimal) != 0 : raise AssertionError(msg) def assert_approx_equal(actual,desired,significant=7,err_msg='',verbose=True): """ Raise an assertion if two items are not equal up to significant digits. Given two numbers, check that they are approximately equal. Approximately equal is defined as the number of significant digits that agree. Parameters ---------- actual : number The object to check. desired : number The expected object. significant : integer (significant=7) desired precision err_msg : string The error message to be printed in case of failure. verbose : bool If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired are not equal up to specified precision. See Also -------- assert_almost_equal: compares objects by decimals assert_array_almost_equal: compares array_like objects by decimals assert_equal: tests objects for equality Examples -------- >>> np.testing.assert_approx_equal(0.12345677777777e-20, 0.1234567e-20) >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345671e-20, significant=8) >>> np.testing.assert_approx_equal(0.12345670e-20, 0.12345672e-20, significant=8) ... : Items are not equal to 8 significant digits: ACTUAL: 1.234567e-021 DESIRED: 1.2345672000000001e-021 the evaluated condition that raises the exception is >>> abs(0.12345670e-20/1e-21 - 0.12345672e-20/1e-21) >= 10**-(8-1) True """ import numpy as np actual, desired = map(float, (actual, desired)) if desired==actual: return # Normalized the numbers to be in range (-10.0,10.0) # scale = float(pow(10,math.floor(math.log10(0.5*(abs(desired)+abs(actual)))))) err = np.seterr(invalid='ignore') try: scale = 0.5*(np.abs(desired) + np.abs(actual)) scale = np.power(10,np.floor(np.log10(scale))) finally: np.seterr(**err) try: sc_desired = desired/scale except ZeroDivisionError: sc_desired = 0.0 try: sc_actual = actual/scale except ZeroDivisionError: sc_actual = 0.0 msg = build_err_msg([actual, desired], err_msg, header='Items are not equal to %d significant digits:' % significant, verbose=verbose) try: # If one of desired/actual is not finite, handle it specially here: # check that both are nan if any is a nan, and test for equality # otherwise if not (gisfinite(desired) and gisfinite(actual)): if gisnan(desired) or gisnan(actual): if not (gisnan(desired) and gisnan(actual)): raise AssertionError(msg) else: if not desired == actual: raise AssertionError(msg) return except (TypeError, NotImplementedError): pass if np.abs(sc_desired - sc_actual) >= np.power(10.,-(significant-1)) : raise AssertionError(msg) def assert_array_compare(comparison, x, y, err_msg='', verbose=True, header=''): from numpy.core import array, isnan, any x = array(x, copy=False, subok=True) y = array(y, copy=False, subok=True) def isnumber(x): return x.dtype.char in '?bhilqpBHILQPfdgFDG' try: cond = (x.shape==() or y.shape==()) or x.shape == y.shape if not cond: msg = build_err_msg([x, y], err_msg + '\n(shapes %s, %s mismatch)' % (x.shape, y.shape), verbose=verbose, header=header, names=('x', 'y')) if not cond : raise AssertionError(msg) if (isnumber(x) and isnumber(y)) and (any(isnan(x)) or any(isnan(y))): # Handling nan: we first check that x and y have the nan at the # same locations, and then we mask the nan and do the comparison as # usual. xnanid = isnan(x) ynanid = isnan(y) try: assert_array_equal(xnanid, ynanid) except AssertionError: msg = build_err_msg([x, y], err_msg + '\n(x and y nan location mismatch %s, ' \ '%s mismatch)' % (xnanid, ynanid), verbose=verbose, header=header, names=('x', 'y')) raise AssertionError(msg) # If only one item, it was a nan, so just return if x.size == y.size == 1: return val = comparison(x[~xnanid], y[~ynanid]) else: val = comparison(x,y) if isinstance(val, bool): cond = val reduced = [0] else: reduced = val.ravel() cond = reduced.all() reduced = reduced.tolist() if not cond: match = 100-100.0*reduced.count(1)/len(reduced) msg = build_err_msg([x, y], err_msg + '\n(mismatch %s%%)' % (match,), verbose=verbose, header=header, names=('x', 'y')) if not cond : raise AssertionError(msg) except ValueError: msg = build_err_msg([x, y], err_msg, verbose=verbose, header=header, names=('x', 'y')) raise ValueError(msg) def assert_array_equal(x, y, err_msg='', verbose=True): """ Raise an assertion if two array_like objects are not equal. Given two array_like objects, check that the shape is equal and all elements of these objects are equal. An exception is raised at shape mismatch or conflicting values. In contrast to the standard usage in numpy, NaNs are compared like numbers, no assertion is raised if both objects have NaNs in the same positions. The usual caution for verifying equality with floating point numbers is advised. Parameters ---------- x : array_like The actual object to check. y : array_like The desired, expected object. err_msg : string The error message to be printed in case of failure. verbose : bool If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired objects are not equal. See Also -------- assert_array_almost_equal: test objects for equality up to precision assert_equal: tests objects for equality Examples -------- the first assert does not raise an exception >>> np.testing.assert_array_equal([1.0,2.33333,np.nan], \t\t\t[np.exp(0),2.33333, np.nan]) assert fails with numerical inprecision with floats >>> np.testing.assert_array_equal([1.0,np.pi,np.nan], \t\t\t[1, np.sqrt(np.pi)**2, np.nan]) ... : AssertionError: Arrays are not equal (mismatch 50.0%) x: array([ 1. , 3.14159265, NaN]) y: array([ 1. , 3.14159265, NaN]) use assert_array_almost_equal for these cases instead >>> np.testing.assert_array_almost_equal([1.0,np.pi,np.nan], \t\t\t[1, np.sqrt(np.pi)**2, np.nan], decimal=15) """ assert_array_compare(operator.__eq__, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not equal') def assert_array_almost_equal(x, y, decimal=6, err_msg='', verbose=True): """ Raise an assertion if two objects are not equal up to desired precision. The test verifies identical shapes and verifies values with abs(desired-actual) < 0.5 * 10**(-decimal) Given two array_like objects, check that the shape is equal and all elements of these objects are almost equal. An exception is raised at shape mismatch or conflicting values. In contrast to the standard usage in numpy, NaNs are compared like numbers, no assertion is raised if both objects have NaNs in the same positions. Parameters ---------- x : array_like The actual object to check. y : array_like The desired, expected object. decimal : integer (decimal=6) desired precision err_msg : string The error message to be printed in case of failure. verbose : bool If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired are not equal up to specified precision. See Also -------- assert_almost_equal: simple version for comparing numbers assert_array_equal: tests objects for equality Examples -------- the first assert does not raise an exception >>> np.testing.assert_array_almost_equal([1.0,2.333,np.nan], [1.0,2.333,np.nan]) >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], \t\t\t[1.0,2.33339,np.nan], decimal=5) ... : AssertionError: Arrays are not almost equal (mismatch 50.0%) x: array([ 1. , 2.33333, NaN]) y: array([ 1. , 2.33339, NaN]) >>> np.testing.assert_array_almost_equal([1.0,2.33333,np.nan], \t\t\t[1.0,2.33333, 5], decimal=5) : ValueError: Arrays are not almost equal x: array([ 1. , 2.33333, NaN]) y: array([ 1. , 2.33333, 5. ]) """ from numpy.core import around, number, float_ from numpy.core.numerictypes import issubdtype from numpy.core.fromnumeric import any as npany def compare(x, y): try: if npany(gisinf(x)) or npany( gisinf(y)): xinfid = gisinf(x) yinfid = gisinf(y) if not xinfid == yinfid: return False # if one item, x and y is +- inf if x.size == y.size == 1: return x == y x = x[~xinfid] y = y[~yinfid] except (TypeError, NotImplementedError): pass z = abs(x-y) if not issubdtype(z.dtype, number): z = z.astype(float_) # handle object arrays return around(z, decimal) <= 10.0**(-decimal) assert_array_compare(compare, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not almost equal') def assert_array_less(x, y, err_msg='', verbose=True): """ Raise an assertion if two array_like objects are not ordered by less than. Given two array_like objects, check that the shape is equal and all elements of the first object are strictly smaller than those of the second object. An exception is raised at shape mismatch or incorrectly ordered values. Shape mismatch does not raise if an object has zero dimension. In contrast to the standard usage in numpy, NaNs are compared, no assertion is raised if both objects have NaNs in the same positions. Parameters ---------- x : array_like The smaller object to check. y : array_like The larger object to compare. err_msg : string The error message to be printed in case of failure. verbose : bool If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired objects are not equal. See Also -------- assert_array_equal: tests objects for equality assert_array_almost_equal: test objects for equality up to precision Examples -------- >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1.1, 2.0, np.nan]) >>> np.testing.assert_array_less([1.0, 1.0, np.nan], [1, 2.0, np.nan]) ... : Arrays are not less-ordered (mismatch 50.0%) x: array([ 1., 1., NaN]) y: array([ 1., 2., NaN]) >>> np.testing.assert_array_less([1.0, 4.0], 3) ... : Arrays are not less-ordered (mismatch 50.0%) x: array([ 1., 4.]) y: array(3) >>> np.testing.assert_array_less([1.0, 2.0, 3.0], [4]) ... : Arrays are not less-ordered (shapes (3,), (1,) mismatch) x: array([ 1., 2., 3.]) y: array([4]) """ assert_array_compare(operator.__lt__, x, y, err_msg=err_msg, verbose=verbose, header='Arrays are not less-ordered') def runstring(astr, dict): exec astr in dict def assert_string_equal(actual, desired): """ Test if two strings are equal. If the given strings are equal, `assert_string_equal` does nothing. If they are not equal, an AssertionError is raised, and the diff between the strings is shown. Parameters ---------- actual : str The string to test for equality against the expected string. desired : str The expected string. Examples -------- >>> np.testing.assert_string_equal('abc', 'abc') >>> np.testing.assert_string_equal('abc', 'abcd') Traceback (most recent call last): File "", line 1, in ... AssertionError: Differences in strings: - abc+ abcd? + """ # delay import of difflib to reduce startup time import difflib if not isinstance(actual, str) : raise AssertionError(`type(actual)`) if not isinstance(desired, str): raise AssertionError(`type(desired)`) if re.match(r'\A'+desired+r'\Z', actual, re.M): return diff = list(difflib.Differ().compare(actual.splitlines(1), desired.splitlines(1))) diff_list = [] while diff: d1 = diff.pop(0) if d1.startswith(' '): continue if d1.startswith('- '): l = [d1] d2 = diff.pop(0) if d2.startswith('? '): l.append(d2) d2 = diff.pop(0) if not d2.startswith('+ ') : raise AssertionError(`d2`) l.append(d2) d3 = diff.pop(0) if d3.startswith('? '): l.append(d3) else: diff.insert(0, d3) if re.match(r'\A'+d2[2:]+r'\Z', d1[2:]): continue diff_list.extend(l) continue raise AssertionError(`d1`) if not diff_list: return msg = 'Differences in strings:\n%s' % (''.join(diff_list)).rstrip() if actual != desired : raise AssertionError(msg) def rundocs(filename=None, raise_on_error=True): """ Run doctests found in the given file. By default `rundocs` raises an AssertionError on failure. Parameters ---------- filename : str The path to the file for which the doctests are run. raise_on_error : bool Whether to raise an AssertionError when a doctest fails. Default is True. Notes ----- The doctests can be run by the user/developer by adding the ``doctests`` argument to the ``test()`` call. For example, to run all tests (including doctests) for `numpy.lib`:: >>> np.lib.test(doctests=True) """ import doctest, imp if filename is None: f = sys._getframe(1) filename = f.f_globals['__file__'] name = os.path.splitext(os.path.basename(filename))[0] path = [os.path.dirname(filename)] file, pathname, description = imp.find_module(name, path) try: m = imp.load_module(name, file, pathname, description) finally: file.close() tests = doctest.DocTestFinder().find(m) runner = doctest.DocTestRunner(verbose=False) msg = [] if raise_on_error: out = lambda s: msg.append(s) else: out = None for test in tests: runner.run(test, out=out) if runner.failures > 0 and raise_on_error: raise AssertionError("Some doctests failed:\n%s" % "\n".join(msg)) def raises(*args,**kwargs): nose = import_nose() return nose.tools.raises(*args,**kwargs) def assert_raises(*args,**kwargs): """ assert_raises(exception_class, callable, *args, **kwargs) Fail unless an exception of class exception_class is thrown by callable when invoked with arguments args and keyword arguments kwargs. If a different type of exception is thrown, it will not be caught, and the test case will be deemed to have suffered an error, exactly as for an unexpected exception. """ nose = import_nose() return nose.tools.assert_raises(*args,**kwargs) def decorate_methods(cls, decorator, testmatch=None): """ Apply a decorator to all methods in a class matching a regular expression. The given decorator is applied to all public methods of `cls` that are matched by the regular expression `testmatch` (``testmatch.search(methodname)``). Methods that are private, i.e. start with an underscore, are ignored. Parameters ---------- cls : class Class whose methods to decorate. decorator : function Decorator to apply to methods testmatch : compiled regexp or str, optional The regular expression. Default value is None, in which case the nose default (``re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep)``) is used. If `testmatch` is a string, it is compiled to a regular expression first. """ if testmatch is None: testmatch = re.compile(r'(?:^|[\\b_\\.%s-])[Tt]est' % os.sep) else: testmatch = re.compile(testmatch) cls_attr = cls.__dict__ # delayed import to reduce startup time from inspect import isfunction methods = filter(isfunction, cls_attr.values()) for function in methods: try: if hasattr(function, 'compat_func_name'): funcname = function.compat_func_name else: funcname = function.__name__ except AttributeError: # not a function continue if testmatch.search(funcname) and not funcname.startswith('_'): setattr(cls, funcname, decorator(function)) return def measure(code_str,times=1,label=None): """ Return elapsed time for executing code in the namespace of the caller. The supplied code string is compiled with the Python builtin ``compile``. The precision of the timing is 10 milli-seconds. If the code will execute fast on this timescale, it can be executed many times to get reasonable timing accuracy. Parameters ---------- code_str : str The code to be timed. times : int, optional The number of times the code is executed. Default is 1. The code is only compiled once. label : str, optional A label to identify `code_str` with. This is passed into ``compile`` as the second argument (for run-time error messages). Returns ------- elapsed : float Total elapsed time in seconds for executing `code_str` `times` times. Examples -------- >>> etime = np.testing.measure('for i in range(1000): np.sqrt(i**2)', ... times=times) >>> print "Time for a single execution : ", etime / times, "s" Time for a single execution : 0.005 s """ frame = sys._getframe(1) locs,globs = frame.f_locals,frame.f_globals code = compile(code_str, 'Test name: %s ' % label, 'exec') i = 0 elapsed = jiffies() while i < times: i += 1 exec code in globs,locs elapsed = jiffies() - elapsed return 0.01*elapsed def _assert_valid_refcount(op): """ Check that ufuncs don't mishandle refcount of object `1`. Used in a few regression tests. """ import numpy as np a = np.arange(100 * 100) b = np.arange(100*100).reshape(100, 100) c = b i = 1 rc = sys.getrefcount(i) for j in range(15): d = op(b,c) assert(sys.getrefcount(i) >= rc) def assert_allclose(actual, desired, rtol=1e-7, atol=0, err_msg='', verbose=True): """ Raise an assertion if two objects are not equal up to desired tolerance. The test is equivalent to ``allclose(actual, desired, rtol, atol)`` Parameters ---------- actual : array_like Array obtained. desired : array_like Array desired rtol : float, optional Relative tolerance atol : float, optional Absolute tolerance err_msg : string The error message to be printed in case of failure. verbose : bool If True, the conflicting values are appended to the error message. Raises ------ AssertionError If actual and desired are not equal up to specified precision. """ import numpy as np def compare(x, y): return np.allclose(x, y, rtol=rtol, atol=atol) actual, desired = np.asanyarray(actual), np.asanyarray(desired) header = 'Not equal to tolerance rtol=%g, atol=%g' % (rtol, atol) assert_array_compare(compare, actual, desired, err_msg=str(err_msg), verbose=verbose, header=header) def assert_array_almost_equal_nulp(x, y, nulp=1): """ Compare two arrays relatively to their spacing. This is a relatively robust method to compare two arrays whose amplitude is variable. Parameters ---------- x, y : array_like Input arrays. nulp : int, optional The maximum number of unit in the last place for tolerance (see Notes). Default is 1. Returns ------- None Raises ------ AssertionError If the spacing between `x` and `y` for one or more elements is larger than `nulp`. See Also -------- assert_array_max_ulp : Check that all items of arrays differ in at most N Units in the Last Place. spacing : Return the distance between x and the nearest adjacent number. Notes ----- An assertion is raised if the following condition is not met:: abs(x - y) <= nulps * spacing(max(abs(x), abs(y))) Examples -------- >>> x = np.array([1., 1e-10, 1e-20]) >>> eps = np.finfo(x.dtype).eps >>> np.testing.assert_array_almost_equal_nulp(x, x*eps/2 + x) >>> np.testing.assert_array_almost_equal_nulp(x, x*eps + x) ------------------------------------------------------------ Traceback (most recent call last): ... AssertionError: X and Y are not equal to 1 ULP (max is 2) """ import numpy as np ax = np.abs(x) ay = np.abs(y) ref = nulp * np.spacing(np.where(ax > ay, ax, ay)) if not np.all(np.abs(x-y) <= ref): if np.iscomplexobj(x) or np.iscomplexobj(y): msg = "X and Y are not equal to %d ULP" % nulp else: max_nulp = np.max(nulp_diff(x, y)) msg = "X and Y are not equal to %d ULP (max is %g)" % (nulp, max_nulp) raise AssertionError(msg) def assert_array_max_ulp(a, b, maxulp=1, dtype=None): """ Check that all items of arrays differ in at most N Units in the Last Place. Parameters ---------- a, b : array_like Input arrays to be compared. maxulp : int, optional The maximum number of units in the last place that elements of `a` and `b` can differ. Default is 1. dtype : dtype, optional Data-type to convert `a` and `b` to if given. Default is None. Returns ------- ret : ndarray Array containing number of representable floating point numbers between items in `a` and `b`. Raises ------ AssertionError If one or more elements differ by more than `maxulp`. See Also -------- assert_array_almost_equal_nulp : Compare two arrays relatively to their spacing. Examples -------- >>> a = np.linspace(0., 1., 100) >>> res = np.testing.assert_array_max_ulp(a, np.arcsin(np.sin(a))) """ import numpy as np ret = nulp_diff(a, b, dtype) if not np.all(ret <= maxulp): raise AssertionError("Arrays are not almost equal up to %g ULP" % \ maxulp) return ret def nulp_diff(x, y, dtype=None): """For each item in x and y, eeturn the number of representable floating points between them. Parameters ---------- x : array_like first input array y : array_like second input array Returns ------- nulp: array_like number of representable floating point numbers between each item in x and y. Examples -------- # By definition, epsilon is the smallest number such as 1 + eps != 1, so # there should be exactly one ULP between 1 and 1 + eps >>> nulp_diff(1, 1 + np.finfo(x.dtype).eps) 1.0 """ import numpy as np if dtype: x = np.array(x, dtype=dtype) y = np.array(y, dtype=dtype) else: x = np.array(x) y = np.array(y) t = np.common_type(x, y) if np.iscomplexobj(x) or np.iscomplexobj(y): raise NotImplementedError("_nulp not implemented for complex array") x = np.array(x, dtype=t) y = np.array(y, dtype=t) if not x.shape == y.shape: raise ValueError("x and y do not have the same shape: %s - %s" % \ (x.shape, y.shape)) def _diff(rx, ry, vdt): diff = np.array(rx-ry, dtype=vdt) return np.abs(diff) rx = integer_repr(x) ry = integer_repr(y) return _diff(rx, ry, t) def _integer_repr(x, vdt, comp): # Reinterpret binary representation of the float as sign-magnitude: # take into account two-complement representation # See also # http://www.cygnus-software.com/papers/comparingfloats/comparingfloats.htm rx = x.view(vdt) if not (rx.size == 1): rx[rx < 0] = comp - rx[rx<0] else: if rx < 0: rx = comp - rx return rx def integer_repr(x): """Return the signed-magnitude interpretation of the binary representation of x.""" import numpy as np if x.dtype == np.float32: return _integer_repr(x, np.int32, np.int32(-2**31)) elif x.dtype == np.float64: return _integer_repr(x, np.int64, np.int64(-2**63)) else: raise ValueError("Unsupported dtype %s" % x.dtype) # The following two classes are copied from python 2.6 warnings module (context # manager) class WarningMessage(object): """ Holds the result of a single showwarning() call. Notes ----- `WarningMessage` is copied from the Python 2.6 warnings module, so it can be used in NumPy with older Python versions. """ _WARNING_DETAILS = ("message", "category", "filename", "lineno", "file", "line") def __init__(self, message, category, filename, lineno, file=None, line=None): local_values = locals() for attr in self._WARNING_DETAILS: setattr(self, attr, local_values[attr]) if category: self._category_name = category.__name__ else: self._category_name = None def __str__(self): return ("{message : %r, category : %r, filename : %r, lineno : %s, " "line : %r}" % (self.message, self._category_name, self.filename, self.lineno, self.line)) class WarningManager: """ A context manager that copies and restores the warnings filter upon exiting the context. The 'record' argument specifies whether warnings should be captured by a custom implementation of ``warnings.showwarning()`` and be appended to a list returned by the context manager. Otherwise None is returned by the context manager. The objects appended to the list are arguments whose attributes mirror the arguments to ``showwarning()``. The 'module' argument is to specify an alternative module to the module named 'warnings' and imported under that name. This argument is only useful when testing the warnings module itself. Notes ----- `WarningManager` is a copy of the ``catch_warnings`` context manager from the Python 2.6 warnings module, with slight modifications. It is copied so it can be used in NumPy with older Python versions. """ def __init__(self, record=False, module=None): self._record = record if module is None: self._module = sys.modules['warnings'] else: self._module = module self._entered = False def __enter__(self): if self._entered: raise RuntimeError("Cannot enter %r twice" % self) self._entered = True self._filters = self._module.filters self._module.filters = self._filters[:] self._showwarning = self._module.showwarning if self._record: log = [] def showwarning(*args, **kwargs): log.append(WarningMessage(*args, **kwargs)) self._module.showwarning = showwarning return log else: return None def __exit__(self): if not self._entered: raise RuntimeError("Cannot exit %r without entering first" % self) self._module.filters = self._filters self._module.showwarning = self._showwarning def assert_warns(warning_class, func, *args, **kw): """ Fail unless the given callable throws the specified warning. A warning of class warning_class should be thrown by the callable when invoked with arguments args and keyword arguments kwargs. If a different type of warning is thrown, it will not be caught, and the test case will be deemed to have suffered an error. Parameters ---------- warning_class : class The class defining the warning that `func` is expected to throw. func : callable The callable to test. \\*args : Arguments Arguments passed to `func`. \\*\\*kwargs : Kwargs Keyword arguments passed to `func`. Returns ------- None """ # XXX: once we may depend on python >= 2.6, this can be replaced by the # warnings module context manager. ctx = WarningManager(record=True) l = ctx.__enter__() warnings.simplefilter('always') try: func(*args, **kw) if not len(l) > 0: raise AssertionError("No warning raised when calling %s" % func.__name__) if not l[0].category is warning_class: raise AssertionError("First warning for %s is not a " \ "%s( is %s)" % (func.__name__, warning_class, l[0])) finally: ctx.__exit__()