* beam_secondaries.in 2007/06/12 TJR # # This file generates a beam corresponding to the G4beamline # simulation of secondaries from the MICE target. It includes # protons, pi+, pi-, e+, e-, and gammas. # # The number of events generated is controlled by proton_number, 1.97E9 gives: # 79k protons, 6.5k pi+, 1.9k pi-, .49k e+, .49k e-, 7.2k gamma # # These values include the absolute normalization, and the value of # proton_number corresponds to protons intersecting the MICE target. # The target simulation tracked 1E7 protons and gave the above numbers # of secondaries into the annulus 20-30 degrees. This file generates # into a much smaller solid angle, 1/197 of the one used in the # target simulation. # param -unset proton_number=1.97E9 first=0 viewer=none # The following parameters control the generation of individual particles # set positives=1, negatives=1, or set ALL of the individual particles param -unset positives=0 negatives=0 if $positives ##### param piplus=1 piminus=0 eplus=1 eminus=0 proton=1 gamma=0 ##### I do not GENERATE protons param piplus=1 piminus=0 eplus=0 eminus=0 proton=0 gamma=0 endif if $negatives param piplus=0 piminus=1 eplus=0 eminus=1 proton=0 gamma=0 endif param -unset piplus=1 piminus=1 eplus=1 eminus=1 proton=1 gamma=1 # protonWeight will reduce the number of protons generated. param -unset protonWeight=1.0 # Target is 1mm wide and 10mm long: (1*cos(25*deg)+10*sin(25*deg))/2 = 2.57 # For now we assume the target dips 2mm into the ISIS beam. # sigmaXp, and sigmaYp are determined empirically to be larger than # the actual beamline acceptance. param n1=floor(4350*$proton_number/1.97E9/$protonWeight) param n2=floor(64650*$proton_number/1.97E9/$protonWeight) param n3=floor(10000*$proton_number/1.97E9/$protonWeight) if $proton if $protonWeight!=1.0 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=proton meanMomentum=1450 sigmaP=2.15 nEvents=$n1 \ firstEvent=$first weight=$protonWeight beamY=-427 rotation=X-2.98 param first=$first+$n1 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=proton meanMomentum=775 sigmaP=-575 nEvents=$n2 \ firstEvent=$first weight=$protonWeight beamY=-427 rotation=X-2.98 param first=$first+$n2 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=proton meanMomentum=1275 sigmaP=80 nEvents=$n3 \ firstEvent=$first weight=$protonWeight beamY=-427 rotation=X-2.98 param first=$first+$n3 else beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=proton meanMomentum=1450 sigmaP=2.15 nEvents=$n1 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n1 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=proton meanMomentum=775 sigmaP=-575 nEvents=$n2 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n2 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=proton meanMomentum=1275 sigmaP=80 nEvents=$n3 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n3 endif endif param n4=floor(4650*$proton_number/1.97E9) param n5=floor(650*$proton_number/1.97E9) param n6=floor(1000*$proton_number/1.97E9) param n6a=floor(200*$proton_number/1.97E9) if $piplus beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=pi+ meanMomentum=320 sigmaP=-220 nEvents=$n4 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n4 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=pi+ meanMomentum=190 sigmaP=30 nEvents=$n5 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n5 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=pi+ meanMomentum=440 sigmaP=50 nEvents=$n6 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n6 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=pi+ meanMomentum=600 sigmaP=-60 nEvents=$n6a \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n6a endif param n7=floor(1600*$proton_number/1.97E9) param n8=floor(300*$proton_number/1.97E9) if $piminus beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=pi- meanMomentum=320 sigmaP=-220 nEvents=$n7 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n7 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=pi- meanMomentum=150 sigmaP=30 nEvents=$n8 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n8 endif param n9=floor(250*$proton_number/1.97E9) param n10=floor(120*$proton_number/1.97E9) param n11=floor(80*$proton_number/1.97E9) param n12=floor(40*$proton_number/1.97E9) if $eminus beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=e- meanMomentum=35 sigmaP=-25 nEvents=$n9 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n9 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=e- meanMomentum=90 sigmaP=-30 nEvents=$n10 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n10 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=e- meanMomentum=200 sigmaP=-80 nEvents=$n11 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n11 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=e- meanMomentum=380 sigmaP=-100 nEvents=$n12 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n12 endif if $eplus beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=e+ meanMomentum=35 sigmaP=-25 nEvents=$n9 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n9 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=e+ meanMomentum=90 sigmaP=-30 nEvents=$n10 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n10 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=e+ meanMomentum=200 sigmaP=-80 nEvents=$n11 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n11 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=e+ meanMomentum=380 sigmaP=-100 nEvents=$n12 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n12 endif param n13=floor(400*$proton_number/1.97E9) param n14=floor(2900*$proton_number/1.97E9) param n15=floor(1800*$proton_number/1.97E9) param n16=floor(1200*$proton_number/1.97E9) param n17=floor(600*$proton_number/1.97E9) param n18=floor(300*$proton_number/1.97E9) if $gamma beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=gamma meanMomentum=25 sigmaP=-15 nEvents=$n13 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n13 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=gamma meanMomentum=90 sigmaP=-50 nEvents=$n14 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n14 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=gamma meanMomentum=190 sigmaP=-50 nEvents=$n15 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n15 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=gamma meanMomentum=290 sigmaP=-50 nEvents=$n16 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n16 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=gamma meanMomentum=390 sigmaP=-50 nEvents=$n17 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n17 beam gaussian sigmaX=-2.57 sigmaY=-1.0 sigmaXp=-0.040 sigmaYp=-0.020 \ particle=gamma meanMomentum=500 sigmaP=-60 nEvents=$n18 \ firstEvent=$first beamY=-427 rotation=X-2.98 param first=$first+$n18 endif