/* specfunc/mathieu_radfunc.c * * Copyright (C) 2002 Lowell Johnson * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */ /* Author: L. Johnson */ #include <config.h> #include <stdlib.h> #include <math.h> #include <gsl/gsl_math.h> #include <gsl/gsl_sf.h> #include <gsl/gsl_sf_mathieu.h> int gsl_sf_mathieu_Mc(int kind, int order, double qq, double zz, gsl_sf_result *result) { int even_odd, kk, mm, status; double maxerr = 1e-14, amax, pi = M_PI, fn, factor; double coeff[GSL_SF_MATHIEU_COEFF], fc; double j1c, z2c, j1pc, z2pc; double u1, u2; gsl_sf_result aa; /* Check for out of bounds parameters. */ if (qq <= 0.0) { GSL_ERROR("q must be greater than zero", GSL_EINVAL); } if (kind < 1 || kind > 2) { GSL_ERROR("kind must be 1 or 2", GSL_EINVAL); } mm = 0; amax = 0.0; fn = 0.0; u1 = sqrt(qq)*exp(-1.0*zz); u2 = sqrt(qq)*exp(zz); even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Compute the characteristic value. */ status = gsl_sf_mathieu_a(order, qq, &aa); if (status != GSL_SUCCESS) { return status; } /* Compute the series coefficients. */ status = gsl_sf_mathieu_a_coeff(order, qq, aa.val, coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { for (kk=0; kk<GSL_SF_MATHIEU_COEFF; kk++) { amax = GSL_MAX(amax, fabs(coeff[kk])); if (fabs(coeff[kk])/amax < maxerr) break; j1c = gsl_sf_bessel_Jn(kk, u1); if (kind == 1) { z2c = gsl_sf_bessel_Jn(kk, u2); } else /* kind = 2 */ { z2c = gsl_sf_bessel_Yn(kk, u2); } fc = pow(-1.0, 0.5*order+kk)*coeff[kk]; fn += fc*j1c*z2c; } fn *= sqrt(pi/2.0)/coeff[0]; } else { for (kk=0; kk<GSL_SF_MATHIEU_COEFF; kk++) { amax = GSL_MAX(amax, fabs(coeff[kk])); if (fabs(coeff[kk])/amax < maxerr) break; j1c = gsl_sf_bessel_Jn(kk, u1); j1pc = gsl_sf_bessel_Jn(kk+1, u1); if (kind == 1) { z2c = gsl_sf_bessel_Jn(kk, u2); z2pc = gsl_sf_bessel_Jn(kk+1, u2); } else /* kind = 2 */ { z2c = gsl_sf_bessel_Yn(kk, u2); z2pc = gsl_sf_bessel_Yn(kk+1, u2); } fc = pow(-1.0, 0.5*(order-1)+kk)*coeff[kk]; fn += fc*(j1c*z2pc + j1pc*z2c); } fn *= sqrt(pi/2.0)/coeff[0]; } result->val = fn; result->err = 2.0*GSL_DBL_EPSILON; factor = fabs(fn); if (factor > 1.0) result->err *= factor; return GSL_SUCCESS; } int gsl_sf_mathieu_Ms(int kind, int order, double qq, double zz, gsl_sf_result *result) { int even_odd, kk, mm, status; double maxerr = 1e-14, amax, pi = M_PI, fn, factor; double coeff[GSL_SF_MATHIEU_COEFF], fc; double j1c, z2c, j1mc, z2mc, j1pc, z2pc; double u1, u2; gsl_sf_result aa; /* Check for out of bounds parameters. */ if (qq <= 0.0) { GSL_ERROR("q must be greater than zero", GSL_EINVAL); } if (kind < 1 || kind > 2) { GSL_ERROR("kind must be 1 or 2", GSL_EINVAL); } mm = 0; amax = 0.0; fn = 0.0; u1 = sqrt(qq)*exp(-1.0*zz); u2 = sqrt(qq)*exp(zz); even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Compute the characteristic value. */ status = gsl_sf_mathieu_b(order, qq, &aa); if (status != GSL_SUCCESS) { return status; } /* Compute the series coefficients. */ status = gsl_sf_mathieu_b_coeff(order, qq, aa.val, coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { for (kk=0; kk<GSL_SF_MATHIEU_COEFF; kk++) { amax = GSL_MAX(amax, fabs(coeff[kk])); if (fabs(coeff[kk])/amax < maxerr) break; j1mc = gsl_sf_bessel_Jn(kk, u1); j1pc = gsl_sf_bessel_Jn(kk+2, u1); if (kind == 1) { z2mc = gsl_sf_bessel_Jn(kk, u2); z2pc = gsl_sf_bessel_Jn(kk+2, u2); } else /* kind = 2 */ { z2mc = gsl_sf_bessel_Yn(kk, u2); z2pc = gsl_sf_bessel_Yn(kk+2, u2); } fc = pow(-1.0, 0.5*order+kk+1)*coeff[kk]; fn += fc*(j1mc*z2pc - j1pc*z2mc); } fn *= sqrt(pi/2.0)/coeff[0]; } else { for (kk=0; kk<GSL_SF_MATHIEU_COEFF; kk++) { amax = GSL_MAX(amax, fabs(coeff[kk])); if (fabs(coeff[kk])/amax < maxerr) break; j1c = gsl_sf_bessel_Jn(kk, u1); j1pc = gsl_sf_bessel_Jn(kk+1, u1); if (kind == 1) { z2c = gsl_sf_bessel_Jn(kk, u2); z2pc = gsl_sf_bessel_Jn(kk+1, u2); } else /* kind = 2 */ { z2c = gsl_sf_bessel_Yn(kk, u2); z2pc = gsl_sf_bessel_Yn(kk+1, u2); } fc = pow(-1.0, 0.5*(order-1)+kk)*coeff[kk]; fn += fc*(j1c*z2pc - j1pc*z2c); } fn *= sqrt(pi/2.0)/coeff[0]; } result->val = fn; result->err = 2.0*GSL_DBL_EPSILON; factor = fabs(fn); if (factor > 1.0) result->err *= factor; return GSL_SUCCESS; } int gsl_sf_mathieu_Mc_array(int kind, int nmin, int nmax, double qq, double zz, gsl_sf_mathieu_workspace *work, double result_array[]) { int even_odd, order, ii, kk, mm, status; double maxerr = 1e-14, amax, pi = M_PI, fn; double coeff[GSL_SF_MATHIEU_COEFF], fc; double j1c, z2c, j1pc, z2pc; double u1, u2; double *aa = work->aa; /* Initialize the result array to zeroes. */ for (ii=0; ii<nmax-nmin+1; ii++) result_array[ii] = 0.0; /* Check for out of bounds parameters. */ if (qq <= 0.0) { GSL_ERROR("q must be greater than zero", GSL_EINVAL); } if (kind < 1 || kind > 2) { GSL_ERROR("kind must be 1 or 2", GSL_EINVAL); } mm = 0; amax = 0.0; fn = 0.0; u1 = sqrt(qq)*exp(-1.0*zz); u2 = sqrt(qq)*exp(zz); /* Compute all eigenvalues up to nmax. */ gsl_sf_mathieu_a_array(0, nmax, qq, work, aa); for (ii=0, order=nmin; order<=nmax; ii++, order++) { even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Compute the series coefficients. */ status = gsl_sf_mathieu_a_coeff(order, qq, aa[order], coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { for (kk=0; kk<GSL_SF_MATHIEU_COEFF; kk++) { amax = GSL_MAX(amax, fabs(coeff[kk])); if (fabs(coeff[kk])/amax < maxerr) break; j1c = gsl_sf_bessel_Jn(kk, u1); if (kind == 1) { z2c = gsl_sf_bessel_Jn(kk, u2); } else /* kind = 2 */ { z2c = gsl_sf_bessel_Yn(kk, u2); } fc = pow(-1.0, 0.5*order+kk)*coeff[kk]; fn += fc*j1c*z2c; } fn *= sqrt(pi/2.0)/coeff[0]; } else { for (kk=0; kk<GSL_SF_MATHIEU_COEFF; kk++) { amax = GSL_MAX(amax, fabs(coeff[kk])); if (fabs(coeff[kk])/amax < maxerr) break; j1c = gsl_sf_bessel_Jn(kk, u1); j1pc = gsl_sf_bessel_Jn(kk+1, u1); if (kind == 1) { z2c = gsl_sf_bessel_Jn(kk, u2); z2pc = gsl_sf_bessel_Jn(kk+1, u2); } else /* kind = 2 */ { z2c = gsl_sf_bessel_Yn(kk, u2); z2pc = gsl_sf_bessel_Yn(kk+1, u2); } fc = pow(-1.0, 0.5*(order-1)+kk)*coeff[kk]; fn += fc*(j1c*z2pc + j1pc*z2c); } fn *= sqrt(pi/2.0)/coeff[0]; } result_array[ii] = fn; } /* order loop */ return GSL_SUCCESS; } int gsl_sf_mathieu_Ms_array(int kind, int nmin, int nmax, double qq, double zz, gsl_sf_mathieu_workspace *work, double result_array[]) { int even_odd, order, ii, kk, mm, status; double maxerr = 1e-14, amax, pi = M_PI, fn; double coeff[GSL_SF_MATHIEU_COEFF], fc; double j1c, z2c, j1mc, z2mc, j1pc, z2pc; double u1, u2; double *bb = work->bb; /* Initialize the result array to zeroes. */ for (ii=0; ii<nmax-nmin+1; ii++) result_array[ii] = 0.0; /* Check for out of bounds parameters. */ if (qq <= 0.0) { GSL_ERROR("q must be greater than zero", GSL_EINVAL); } if (kind < 1 || kind > 2) { GSL_ERROR("kind must be 1 or 2", GSL_EINVAL); } mm = 0; amax = 0.0; fn = 0.0; u1 = sqrt(qq)*exp(-1.0*zz); u2 = sqrt(qq)*exp(zz); /* Compute all eigenvalues up to nmax. */ gsl_sf_mathieu_b_array(0, nmax, qq, work, bb); for (ii=0, order=nmin; order<=nmax; ii++, order++) { even_odd = 0; if (order % 2 != 0) even_odd = 1; /* Compute the series coefficients. */ status = gsl_sf_mathieu_b_coeff(order, qq, bb[order], coeff); if (status != GSL_SUCCESS) { return status; } if (even_odd == 0) { for (kk=0; kk<GSL_SF_MATHIEU_COEFF; kk++) { amax = GSL_MAX(amax, fabs(coeff[kk])); if (fabs(coeff[kk])/amax < maxerr) break; j1mc = gsl_sf_bessel_Jn(kk, u1); j1pc = gsl_sf_bessel_Jn(kk+2, u1); if (kind == 1) { z2mc = gsl_sf_bessel_Jn(kk, u2); z2pc = gsl_sf_bessel_Jn(kk+2, u2); } else /* kind = 2 */ { z2mc = gsl_sf_bessel_Yn(kk, u2); z2pc = gsl_sf_bessel_Yn(kk+2, u2); } fc = pow(-1.0, 0.5*order+kk+1)*coeff[kk]; fn += fc*(j1mc*z2pc - j1pc*z2mc); } fn *= sqrt(pi/2.0)/coeff[0]; } else { for (kk=0; kk<GSL_SF_MATHIEU_COEFF; kk++) { amax = GSL_MAX(amax, fabs(coeff[kk])); if (fabs(coeff[kk])/amax < maxerr) break; j1c = gsl_sf_bessel_Jn(kk, u1); j1pc = gsl_sf_bessel_Jn(kk+1, u1); if (kind == 1) { z2c = gsl_sf_bessel_Jn(kk, u2); z2pc = gsl_sf_bessel_Jn(kk+1, u2); } else /* kind = 2 */ { z2c = gsl_sf_bessel_Yn(kk, u2); z2pc = gsl_sf_bessel_Yn(kk+1, u2); } fc = pow(-1.0, 0.5*(order-1)+kk)*coeff[kk]; fn += fc*(j1c*z2pc - j1pc*z2c); } fn *= sqrt(pi/2.0)/coeff[0]; } result_array[ii] = fn; } /* order loop */ return GSL_SUCCESS; }