/* This file is part of MAUS: http://micewww.pp.rl.ac.uk:8080/projects/maus
*
* MAUS is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* MAUS is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MAUS. If not, see .
*
*/
#include "src/common_cpp/Recon/Bayes/PDF.hh"
#include
namespace MAUS {
PDF::PDF() : _probability(NULL),
_name(""),
_n_bins(0),
_bin_width(0.),
_min(0.),
_max(0.) {}
PDF::PDF(std::string name, double bin_width, double min, double max)
: _probability(NULL),
_name(name),
_bin_width(bin_width) {
_min = min - _bin_width/2.;
_max = max + _bin_width/2.;
const char *c_name = name.c_str();
_n_bins = static_cast ( ((max-min)/_bin_width)+1 );
_probability = new TH1D(c_name, c_name, _n_bins, _min, _max);
for ( int bin = 1; bin <= _n_bins; bin++ ) {
double bin_centre = _probability->GetXaxis()->GetBinCenter(bin);
_probability->Fill(bin_centre, 1./_n_bins);
}
}
PDF::~PDF() {
delete _probability;
}
PDF& PDF::operator=(const PDF &rhs) {
if ( this == &rhs ) {
return *this;
}
_name = rhs._name;
const char *c_name = _name.c_str();
_probability = static_cast(rhs._probability->Clone(c_name));
_n_bins = rhs._n_bins;
_bin_width = rhs._bin_width;
_min = rhs._min;
_max = rhs._max;
return *this;
}
PDF::PDF(const PDF &pdf) {
_name = pdf._name;
const char *c_name = _name.c_str();
_probability = static_cast(pdf._probability->Clone(c_name));
_n_bins = pdf._n_bins;
_bin_width = pdf._bin_width;
_min = pdf._min;
_max = pdf._max;
}
void PDF::ComputeNewPosterior(TH1D likelihood) {
_probability->Multiply(&likelihood);
// The likelihood isn't a PDF. Get around this
// by normalizing the resulting posterior.
double norm = 1./_probability->Integral();
_probability->Scale(norm);
}
} // ~namespace MAUS