/* randist/hyperg.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000, 2007 James Theiler, Brian Gough * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include <config.h> #include <math.h> #include <gsl/gsl_rng.h> #include <gsl/gsl_randist.h> #include <gsl/gsl_sf_gamma.h> /* The hypergeometric distribution has the form, prob(k) = choose(n1,t) choose(n2, t-k) / choose(n1+n2,t) where choose(a,b) = a!/(b!(a-b)!) n1 + n2 is the total population (tagged plus untagged) n1 is the tagged population t is the number of samples taken (without replacement) k is the number of tagged samples found */ unsigned int gsl_ran_hypergeometric (const gsl_rng * r, unsigned int n1, unsigned int n2, unsigned int t) { const unsigned int n = n1 + n2; unsigned int i = 0; unsigned int a = n1; unsigned int b = n1 + n2; unsigned int k = 0; if (t > n) { t = n ; } if (t < n / 2) { for (i = 0 ; i < t ; i++) { double u = gsl_rng_uniform(r) ; if (b * u < a) { k++ ; if (k == n1) return k ; a-- ; } b-- ; } return k; } else { for (i = 0 ; i < n - t ; i++) { double u = gsl_rng_uniform(r) ; if (b * u < a) { k++ ; if (k == n1) return n1 - k ; a-- ; } b-- ; } return n1 - k; } } double gsl_ran_hypergeometric_pdf (const unsigned int k, const unsigned int n1, const unsigned int n2, unsigned int t) { if (t > n1 + n2) { t = n1 + n2 ; } if (k > n1 || k > t) { return 0 ; } else if (t > n2 && k + n2 < t ) { return 0 ; } else { double p; double c1 = gsl_sf_lnchoose(n1,k); double c2 = gsl_sf_lnchoose(n2,t-k); double c3 = gsl_sf_lnchoose(n1+n2,t); p = exp(c1 + c2 - c3) ; return p; } }