# Some simple financial calculations # patterned after spreadsheet computations. # There is some complexity in each function # so that the functions behave like ufuncs with # broadcasting and being able to be called with scalars # or arrays (or other sequences). import numpy as np __all__ = ['fv', 'pmt', 'nper', 'ipmt', 'ppmt', 'pv', 'rate', 'irr', 'npv', 'mirr'] _when_to_num = {'end':0, 'begin':1, 'e':0, 'b':1, 0:0, 1:1, 'beginning':1, 'start':1, 'finish':0} def _convert_when(when): try: return _when_to_num[when] except KeyError: return [_when_to_num[x] for x in when] def fv(rate, nper, pmt, pv, when='end'): """ Compute the future value. Given: * a present value, `pv` * an interest `rate` compounded once per period, of which there are * `nper` total * a (fixed) payment, `pmt`, paid either * at the beginning (`when` = {'begin', 1}) or the end (`when` = {'end', 0}) of each period Return: the value at the end of the `nper` periods Parameters ---------- rate : scalar or array_like of shape(M, ) Rate of interest as decimal (not per cent) per period nper : scalar or array_like of shape(M, ) Number of compounding periods pmt : scalar or array_like of shape(M, ) Payment pv : scalar or array_like of shape(M, ) Present value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)). Defaults to {'end', 0}. Returns ------- out : ndarray Future values. If all input is scalar, returns a scalar float. If any input is array_like, returns future values for each input element. If multiple inputs are array_like, they all must have the same shape. Notes ----- The future value is computed by solving the equation:: fv + pv*(1+rate)**nper + pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0 or, when ``rate == 0``:: fv + pv + pmt * nper == 0 References ---------- .. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt Examples -------- What is the future value after 10 years of saving $100 now, with an additional monthly savings of $100. Assume the interest rate is 5% (annually) compounded monthly? >>> np.fv(0.05/12, 10*12, -100, -100) 15692.928894335748 By convention, the negative sign represents cash flow out (i.e. money not available today). Thus, saving $100 a month at 5% annual interest leads to $15,692.93 available to spend in 10 years. If any input is array_like, returns an array of equal shape. Let's compare different interest rates from the example above. >>> a = np.array((0.05, 0.06, 0.07))/12 >>> np.fv(a, 10*12, -100, -100) array([ 15692.92889434, 16569.87435405, 17509.44688102]) """ when = _convert_when(when) rate, nper, pmt, pv, when = map(np.asarray, [rate, nper, pmt, pv, when]) temp = (1+rate)**nper miter = np.broadcast(rate, nper, pmt, pv, when) zer = np.zeros(miter.shape) fact = np.where(rate==zer, nper+zer, (1+rate*when)*(temp-1)/rate+zer) return -(pv*temp + pmt*fact) def pmt(rate, nper, pv, fv=0, when='end'): """ Compute the payment against loan principal plus interest. Given: * a present value, `pv` (e.g., an amount borrowed) * a future value, `fv` (e.g., 0) * an interest `rate` compounded once per period, of which there are * `nper` total * and (optional) specification of whether payment is made at the beginning (`when` = {'begin', 1}) or the end (`when` = {'end', 0}) of each period Return: the (fixed) periodic payment. Parameters ---------- rate : array_like Rate of interest (per period) nper : array_like Number of compounding periods pv : array_like Present value fv : array_like (optional) Future value (default = 0) when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) Returns ------- out : ndarray Payment against loan plus interest. If all input is scalar, returns a scalar float. If any input is array_like, returns payment for each input element. If multiple inputs are array_like, they all must have the same shape. Notes ----- The payment is computed by solving the equation:: fv + pv*(1 + rate)**nper + pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) == 0 or, when ``rate == 0``:: fv + pv + pmt * nper == 0 for ``pmt``. Note that computing a monthly mortgage payment is only one use for this function. For example, pmt returns the periodic deposit one must make to achieve a specified future balance given an initial deposit, a fixed, periodically compounded interest rate, and the total number of periods. References ---------- .. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php ?wg_abbrev=office-formulaOpenDocument-formula-20090508.odt Examples -------- What is the monthly payment needed to pay off a $200,000 loan in 15 years at an annual interest rate of 7.5%? >>> np.pmt(0.075/12, 12*15, 200000) -1854.0247200054619 In order to pay-off (i.e., have a future-value of 0) the $200,000 obtained today, a monthly payment of $1,854.02 would be required. Note that this example illustrates usage of `fv` having a default value of 0. """ when = _convert_when(when) rate, nper, pv, fv, when = map(np.asarray, [rate, nper, pv, fv, when]) temp = (1+rate)**nper miter = np.broadcast(rate, nper, pv, fv, when) zer = np.zeros(miter.shape) fact = np.where(rate==zer, nper+zer, (1+rate*when)*(temp-1)/rate+zer) return -(fv + pv*temp) / fact def nper(rate, pmt, pv, fv=0, when='end'): """ Compute the number of periodic payments. Parameters ---------- rate : array_like Rate of interest (per period) pmt : array_like Payment pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) Notes ----- The number of periods ``nper`` is computed by solving the equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate*((1+rate)**nper-1) = 0 but if ``rate = 0`` then:: fv + pv + pmt*nper = 0 Examples -------- If you only had $150/month to pay towards the loan, how long would it take to pay-off a loan of $8,000 at 7% annual interest? >>> np.nper(0.07/12, -150, 8000) 64.073348770661852 So, over 64 months would be required to pay off the loan. The same analysis could be done with several different interest rates and/or payments and/or total amounts to produce an entire table. >>> np.nper(*(np.ogrid[0.07/12: 0.08/12: 0.01/12, ... -150 : -99 : 50 , ... 8000 : 9001 : 1000])) array([[[ 64.07334877, 74.06368256], [ 108.07548412, 127.99022654]], [[ 66.12443902, 76.87897353], [ 114.70165583, 137.90124779]]]) """ when = _convert_when(when) rate, pmt, pv, fv, when = map(np.asarray, [rate, pmt, pv, fv, when]) use_zero_rate = False old_err = np.seterr(divide="raise") try: try: z = pmt*(1.0+rate*when)/rate except FloatingPointError: use_zero_rate = True finally: np.seterr(**old_err) if use_zero_rate: return (-fv + pv) / (pmt + 0.0) else: A = -(fv + pv)/(pmt+0.0) B = np.log((-fv+z) / (pv+z))/np.log(1.0+rate) miter = np.broadcast(rate, pmt, pv, fv, when) zer = np.zeros(miter.shape) return np.where(rate==zer, A+zer, B+zer) + 0.0 def ipmt(rate, per, nper, pv, fv=0.0, when='end'): """ Not implemented. Compute the payment portion for loan interest. Parameters ---------- rate : scalar or array_like of shape(M, ) Rate of interest as decimal (not per cent) per period per : scalar or array_like of shape(M, ) Interest paid against the loan changes during the life or the loan. The `per` is the payment period to calculate the interest amount. nper : scalar or array_like of shape(M, ) Number of compounding periods pv : scalar or array_like of shape(M, ) Present value fv : scalar or array_like of shape(M, ), optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)). Defaults to {'end', 0}. Returns ------- out : ndarray Interest portion of payment. If all input is scalar, returns a scalar float. If any input is array_like, returns interest payment for each input element. If multiple inputs are array_like, they all must have the same shape. See Also -------- ppmt, pmt, pv Notes ----- The total payment is made up of payment against principal plus interest. ``pmt = ppmt + ipmt`` """ total = pmt(rate, nper, pv, fv, when) # Now, compute the nth step in the amortization raise NotImplementedError def ppmt(rate, per, nper, pv, fv=0.0, when='end'): """ Not implemented. Compute the payment against loan principal. Parameters ---------- rate : array_like Rate of interest (per period) per : array_like, int Amount paid against the loan changes. The `per` is the period of interest. nper : array_like Number of compounding periods pv : array_like Present value fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int} When payments are due ('begin' (1) or 'end' (0)) See Also -------- pmt, pv, ipmt """ total = pmt(rate, nper, pv, fv, when) return total - ipmt(rate, per, nper, pv, fv, when) def pv(rate, nper, pmt, fv=0.0, when='end'): """ Compute the present value. Given: * a future value, `fv` * an interest `rate` compounded once per period, of which there are * `nper` total * a (fixed) payment, `pmt`, paid either * at the beginning (`when` = {'begin', 1}) or the end (`when` = {'end', 0}) of each period Return: the value now Parameters ---------- rate : array_like Rate of interest (per period) nper : array_like Number of compounding periods pmt : array_like Payment fv : array_like, optional Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) Returns ------- out : ndarray, float Present value of a series of payments or investments. Notes ----- The present value is computed by solving the equation:: fv + pv*(1 + rate)**nper + pmt*(1 + rate*when)/rate*((1 + rate)**nper - 1) = 0 or, when ``rate = 0``:: fv + pv + pmt * nper = 0 for `pv`, which is then returned. References ---------- .. [WRW] Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt Examples -------- What is the present value (e.g., the initial investment) of an investment that needs to total $15692.93 after 10 years of saving $100 every month? Assume the interest rate is 5% (annually) compounded monthly. >>> np.pv(0.05/12, 10*12, -100, 15692.93) -100.00067131625819 By convention, the negative sign represents cash flow out (i.e., money not available today). Thus, to end up with $15,692.93 in 10 years saving $100 a month at 5% annual interest, one's initial deposit should also be $100. If any input is array_like, ``pv`` returns an array of equal shape. Let's compare different interest rates in the example above: >>> a = np.array((0.05, 0.04, 0.03))/12 >>> np.pv(a, 10*12, -100, 15692.93) array([ -100.00067132, -649.26771385, -1273.78633713]) So, to end up with the same $15692.93 under the same $100 per month "savings plan," for annual interest rates of 4% and 3%, one would need initial investments of $649.27 and $1273.79, respectively. """ when = _convert_when(when) rate, nper, pmt, fv, when = map(np.asarray, [rate, nper, pmt, fv, when]) temp = (1+rate)**nper miter = np.broadcast(rate, nper, pmt, fv, when) zer = np.zeros(miter.shape) fact = np.where(rate == zer, nper+zer, (1+rate*when)*(temp-1)/rate+zer) return -(fv + pmt*fact)/temp # Computed with Sage # (y + (r + 1)^n*x + p*((r + 1)^n - 1)*(r*w + 1)/r)/(n*(r + 1)^(n - 1)*x - p*((r + 1)^n - 1)*(r*w + 1)/r^2 + n*p*(r + 1)^(n - 1)*(r*w + 1)/r + p*((r + 1)^n - 1)*w/r) def _g_div_gp(r, n, p, x, y, w): t1 = (r+1)**n t2 = (r+1)**(n-1) return (y + t1*x + p*(t1 - 1)*(r*w + 1)/r)/(n*t2*x - p*(t1 - 1)*(r*w + 1)/(r**2) + n*p*t2*(r*w + 1)/r + p*(t1 - 1)*w/r) # Use Newton's iteration until the change is less than 1e-6 # for all values or a maximum of 100 iterations is reached. # Newton's rule is # r_{n+1} = r_{n} - g(r_n)/g'(r_n) # where # g(r) is the formula # g'(r) is the derivative with respect to r. def rate(nper, pmt, pv, fv, when='end', guess=0.10, tol=1e-6, maxiter=100): """ Compute the rate of interest per period. Parameters ---------- nper : array_like Number of compounding periods pmt : array_like Payment pv : array_like Present value fv : array_like Future value when : {{'begin', 1}, {'end', 0}}, {string, int}, optional When payments are due ('begin' (1) or 'end' (0)) guess : float, optional Starting guess for solving the rate of interest tol : float, optional Required tolerance for the solution maxiter : int, optional Maximum iterations in finding the solution Notes ----- The rate of interest is computed by iteratively solving the (non-linear) equation:: fv + pv*(1+rate)**nper + pmt*(1+rate*when)/rate * ((1+rate)**nper - 1) = 0 for ``rate``. References ---------- Wheeler, D. A., E. Rathke, and R. Weir (Eds.) (2009, May). Open Document Format for Office Applications (OpenDocument)v1.2, Part 2: Recalculated Formula (OpenFormula) Format - Annotated Version, Pre-Draft 12. Organization for the Advancement of Structured Information Standards (OASIS). Billerica, MA, USA. [ODT Document]. Available: http://www.oasis-open.org/committees/documents.php?wg_abbrev=office-formula OpenDocument-formula-20090508.odt """ when = _convert_when(when) nper, pmt, pv, fv, when = map(np.asarray, [nper, pmt, pv, fv, when]) rn = guess iter = 0 close = False while (iter < maxiter) and not close: rnp1 = rn - _g_div_gp(rn, nper, pmt, pv, fv, when) diff = abs(rnp1-rn) close = np.all(diff>> np.irr([-100, 39, 59, 55, 20]) 0.2809484211599611 (Compare with the Example given for numpy.lib.financial.npv) """ res = np.roots(values[::-1]) # Find the root(s) between 0 and 1 mask = (res.imag == 0) & (res.real > 0) & (res.real <= 1) res = res[mask].real if res.size == 0: return np.nan rate = 1.0/res - 1 if rate.size == 1: rate = rate.item() return rate def npv(rate, values): """ Returns the NPV (Net Present Value) of a cash flow series. Parameters ---------- rate : scalar The discount rate. values : array_like, shape(M, ) The values of the time series of cash flows. The (fixed) time interval between cash flow "events" must be the same as that for which `rate` is given (i.e., if `rate` is per year, then precisely a year is understood to elapse between each cash flow event). By convention, investments or "deposits" are negative, income or "withdrawals" are positive; `values` must begin with the initial investment, thus `values[0]` will typically be negative. Returns ------- out : float The NPV of the input cash flow series `values` at the discount `rate`. Notes ----- Returns the result of: [G]_ .. math :: \\sum_{t=0}^M{\\frac{values_t}{(1+rate)^{t}}} References ---------- .. [G] L. J. Gitman, "Principles of Managerial Finance, Brief," 3rd ed., Addison-Wesley, 2003, pg. 346. Examples -------- >>> np.npv(0.281,[-100, 39, 59, 55, 20]) -0.0066187288356340801 (Compare with the Example given for numpy.lib.financial.irr) """ values = np.asarray(values) return (values / (1+rate)**np.arange(1,len(values)+1)).sum(axis=0) def mirr(values, finance_rate, reinvest_rate): """ Modified internal rate of return. Parameters ---------- values : array_like Cash flows (must contain at least one positive and one negative value) or nan is returned. The first value is considered a sunk cost at time zero. finance_rate : scalar Interest rate paid on the cash flows reinvest_rate : scalar Interest rate received on the cash flows upon reinvestment Returns ------- out : float Modified internal rate of return """ values = np.asarray(values, dtype=np.double) n = values.size pos = values > 0 neg = values < 0 if not (pos.any() and neg.any()): return np.nan numer = np.abs(npv(reinvest_rate, values*pos))*(1 + reinvest_rate) denom = np.abs(npv(finance_rate, values*neg))*(1 + finance_rate) return (numer/denom)**(1.0/(n - 1))*(1 + reinvest_rate) - 1