// @(#)root/tmva $Id$ // Author: Peter Speckmayer /********************************************************************************** * Project: TMVA - a Root-integrated toolkit for multivariate data analysis * * Package: TMVA * * Class : GeneticPopulation * * Web : http://tmva.sourceforge.net * * * * Description: * * Population definition for genetic algorithm * * * * Authors (alphabetical): * * Peter Speckmayer - CERN, Switzerland * * * * Copyright (c) 2005: * * CERN, Switzerland * * MPI-K Heidelberg, Germany * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted according to the terms listed in LICENSE * * (http://tmva.sourceforge.net/LICENSE) * **********************************************************************************/ #ifndef ROOT_TMVA_GeneticPopulation #define ROOT_TMVA_GeneticPopulation ////////////////////////////////////////////////////////////////////////// // // // GeneticPopulation // // // // Population definition for genetic algorithm // // // ////////////////////////////////////////////////////////////////////////// #include #include #ifndef ROOT_Riosfwd #include "Riosfwd.h" #endif #ifndef ROOT_TMVA_GeneticGenes #include "TMVA/GeneticGenes.h" #endif #ifndef ROOT_TMVA_Interval #include "TMVA/Interval.h" #endif #ifndef ROOT_TMVA_GeneticRange #include "TMVA/GeneticRange.h" #endif class TH1F; namespace TMVA { class MsgLogger; class GeneticPopulation { public: GeneticPopulation(const std::vector& ranges, Int_t size, UInt_t seed = 0); virtual ~GeneticPopulation(); void SetRandomSeed( UInt_t seed = 0); void MakeChildren(); void Mutate( Double_t probability = 20, Int_t startIndex = 0, Bool_t near = kFALSE, Double_t spread = 0.1, Bool_t mirror = kFALSE ); GeneticGenes* GetGenes( Int_t index ); Int_t GetPopulationSize() const { return fGenePool.size(); } Double_t GetFitness() const { return fGenePool.size()>0? fGenePool[0].GetFitness() : 0; } const std::vector& GetGenePool() const { return fGenePool; } const std::vector& GetRanges() const { return fRanges; } std::vector& GetGenePool() { return fGenePool; } std::vector& GetRanges() { return fRanges; } void Print( Int_t untilIndex = -1 ); void Print( std::ostream & out, Int_t utilIndex = -1 ); TH1F* VariableDistribution( Int_t varNumber, Int_t bins, Int_t min, Int_t max ); std::vector< Double_t > VariableDistribution( Int_t varNumber ); // To keep compatibility: These methods might be reimplemented // or just eliminated later on. They are used by the // GeneticFitter class. void MakeCopies( int number ); void NextGeneration() {} void AddPopulation( GeneticPopulation *strangers ); void AddPopulation( GeneticPopulation &strangers ); void TrimPopulation(); void GiveHint( std::vector< Double_t >& hint, Double_t fitness = 0 ); void Sort(); private: GeneticGenes MakeSex( GeneticGenes male, GeneticGenes female ); private: std::vector fGenePool; // the "genePool" where the individuals of the current generation are stored std::vector fRanges; // contains the ranges inbetween the values of the coefficients have to be TRandom3*fRandomGenerator; // random Generator for this population mutable MsgLogger* fLogger; // message logger MsgLogger& Log() const { return *fLogger; } Int_t fPopulationSizeLimit; ClassDef(GeneticPopulation,0) //Population definition for genetic algorithm }; } // namespace TMVA #endif