// @(#)root/tmva $Id$ // Author: Rustem Ospanov /********************************************************************************** * Project: TMVA - a Root-integrated toolkit for multivariate data analysis * * Package: TMVA * * Class : Node * * Web : http://tmva.sourceforge.net * * * * Description: * * kd-tree (binary tree) template * * * * Author: * * Rustem Ospanov - U. of Texas at Austin, USA * * * * Copyright (c) 2007: * * CERN, Switzerland * * MPI-K Heidelberg, Germany * * U. of Texas at Austin, USA * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted according to the terms listed in LICENSE * * (http://tmva.sourceforge.net/LICENSE) * **********************************************************************************/ #ifndef ROOT_TMVA_NodekNN #define ROOT_TMVA_NodekNN // C++ #include #include #include // ROOT #ifndef ROOT_Rtypes #include "Rtypes.h" #endif ////////////////////////////////////////////////////////////////////////// // // // kNN::Node // // // // This file contains binary tree and global function template // // that searches tree for k-nearest neigbors // // // // Node class template parameter T has to provide these functions: // // rtype GetVar(UInt_t) const; // // - rtype is any type convertible to Float_t // // UInt_t GetNVar(void) const; // // rtype GetWeight(void) const; // // - rtype is any type convertible to Double_t // // // // Find function template parameter T has to provide these functions: // // (in addition to above requirements) // // rtype GetDist(Float_t, UInt_t) const; // // - rtype is any type convertible to Float_t // // rtype GetDist(const T &) const; // // - rtype is any type convertible to Float_t // // // // where T::GetDist(Float_t, UInt_t) <= T::GetDist(const T &) // // for any pair of events and any variable number for these events // // // ////////////////////////////////////////////////////////////////////////// namespace TMVA { namespace kNN { template class Node { public: Node(const Node *parent, const T &event, Int_t mod); ~Node(); const Node* Add(const T &event, UInt_t depth); void SetNodeL(Node *node); void SetNodeR(Node *node); const T& GetEvent() const; const Node* GetNodeL() const; const Node* GetNodeR() const; const Node* GetNodeP() const; Double_t GetWeight() const; Float_t GetVarDis() const; Float_t GetVarMin() const; Float_t GetVarMax() const; UInt_t GetMod() const; void Print() const; void Print(std::ostream& os, const std::string &offset = "") const; private: // these methods are private and not implemented by design // use provided public constructor for all uses of this template class Node(); Node(const Node &); const Node& operator=(const Node &); private: const Node* fNodeP; Node* fNodeL; Node* fNodeR; const T fEvent; const Float_t fVarDis; Float_t fVarMin; Float_t fVarMax; const UInt_t fMod; }; // recursive search for k-nearest neighbor: k = nfind template UInt_t Find(std::list *, Float_t> > &nlist, const Node *node, const T &event, UInt_t nfind); // recursive search for k-nearest neighbor // find k events with sum of event weights >= nfind template UInt_t Find(std::list *, Float_t> > &nlist, const Node *node, const T &event, Double_t nfind, Double_t ncurr); // recursively travel upward until root node is reached template UInt_t Depth(const Node *node); // prInt_t node content and content of its children //template //std::ostream& operator<<(std::ostream& os, const Node &node); // // Inlined functions for Node template // template inline void Node::SetNodeL(Node *node) { fNodeL = node; } template inline void Node::SetNodeR(Node *node) { fNodeR = node; } template inline const T& Node::GetEvent() const { return fEvent; } template inline const Node* Node::GetNodeL() const { return fNodeL; } template inline const Node* Node::GetNodeR() const { return fNodeR; } template inline const Node* Node::GetNodeP() const { return fNodeP; } template inline Double_t Node::GetWeight() const { return fEvent.GetWeight(); } template inline Float_t Node::GetVarDis() const { return fVarDis; } template inline Float_t Node::GetVarMin() const { return fVarMin; } template inline Float_t Node::GetVarMax() const { return fVarMax; } template inline UInt_t Node::GetMod() const { return fMod; } // // Inlined global function(s) // template inline UInt_t Depth(const Node *node) { if (!node) return 0; else return Depth(node->GetNodeP()) + 1; } } // end of kNN namespace } // end of TMVA namespace //------------------------------------------------------------------------------------------- template TMVA::kNN::Node::Node(const Node *parent, const T &event, const Int_t mod) :fNodeP(parent), fNodeL(0), fNodeR(0), fEvent(event), fVarDis(event.GetVar(mod)), fVarMin(fVarDis), fVarMax(fVarDis), fMod(mod) {} //------------------------------------------------------------------------------------------- template TMVA::kNN::Node::~Node() { if (fNodeL) delete fNodeL; if (fNodeR) delete fNodeR; } //------------------------------------------------------------------------------------------- template const TMVA::kNN::Node* TMVA::kNN::Node::Add(const T &event, const UInt_t depth) { // This is Node member function that adds a new node to a binary tree. // each node contains maximum and minimum values of splitting variable // left or right nodes are added based on value of splitting variable assert(fMod == depth % event.GetNVar() && "Wrong recursive depth in Node<>::Add"); const Float_t value = event.GetVar(fMod); fVarMin = std::min(fVarMin, value); fVarMax = std::max(fVarMax, value); Node *node = 0; if (value < fVarDis) { if (fNodeL) { return fNodeL->Add(event, depth + 1); } else { fNodeL = new Node(this, event, (depth + 1) % event.GetNVar()); node = fNodeL; } } else { if (fNodeR) { return fNodeR->Add(event, depth + 1); } else { fNodeR = new Node(this, event, (depth + 1) % event.GetNVar()); node = fNodeR; } } return node; } //------------------------------------------------------------------------------------------- template void TMVA::kNN::Node::Print() const { Print(std::cout); } //------------------------------------------------------------------------------------------- template void TMVA::kNN::Node::Print(std::ostream& os, const std::string &offset) const { os << offset << "-----------------------------------------------------------" << std::endl; os << offset << "Node: mod " << fMod << " at " << fVarDis << " with weight: " << GetWeight() << std::endl << offset << fEvent; if (fNodeL) { os << offset << "Has left node " << std::endl; } if (fNodeR) { os << offset << "Has right node" << std::endl; } if (fNodeL) { os << offset << "PrInt_t left node " << std::endl; fNodeL->Print(os, offset + " "); } if (fNodeR) { os << offset << "PrInt_t right node" << std::endl; fNodeR->Print(os, offset + " "); } if (!fNodeL && !fNodeR) { os << std::endl; } } //------------------------------------------------------------------------------------------- template UInt_t TMVA::kNN::Find(std::list *, Float_t> > &nlist, const TMVA::kNN::Node *node, const T &event, const UInt_t nfind) { // This is a global templated function that searches for k-nearest neighbors. // list contains k or less nodes that are closest to event. // only nodes with positive weights are added to list. // each node contains maximum and minimum values of splitting variable // for all its children - this range is checked to avoid descending into // nodes that are defintely outside current minimum neighbourhood. // // This function should be modified with care. // if (!node || nfind < 1) { return 0; } const Float_t value = event.GetVar(node->GetMod()); if (node->GetWeight() > 0.0) { Float_t max_dist = 0.0; if (!nlist.empty()) { max_dist = nlist.back().second; if (nlist.size() == nfind) { if (value > node->GetVarMax() && event.GetDist(node->GetVarMax(), node->GetMod()) > max_dist) { return 0; } if (value < node->GetVarMin() && event.GetDist(node->GetVarMin(), node->GetMod()) > max_dist) { return 0; } } } const Float_t distance = event.GetDist(node->GetEvent()); Bool_t insert_this = kFALSE; Bool_t remove_back = kFALSE; if (nlist.size() < nfind) { insert_this = kTRUE; } else if (nlist.size() == nfind) { if (distance < max_dist) { insert_this = kTRUE; remove_back = kTRUE; } } else { std::cerr << "TMVA::kNN::Find() - logic error in recursive procedure" << std::endl; return 1; } if (insert_this) { // need typename keyword because qualified dependent names // are not valid types unless preceded by 'typename'. typename std::list *, Float_t> >::iterator lit = nlist.begin(); // find a place where current node should be inserted for (; lit != nlist.end(); ++lit) { if (distance < lit->second) { break; } else { continue; } } nlist.insert(lit, std::pair *, Float_t>(node, distance)); if (remove_back) { nlist.pop_back(); } } } UInt_t count = 1; if (node->GetNodeL() && node->GetNodeR()) { if (value < node->GetVarDis()) { count += Find(nlist, node->GetNodeL(), event, nfind); count += Find(nlist, node->GetNodeR(), event, nfind); } else { count += Find(nlist, node->GetNodeR(), event, nfind); count += Find(nlist, node->GetNodeL(), event, nfind); } } else { if (node->GetNodeL()) { count += Find(nlist, node->GetNodeL(), event, nfind); } if (node->GetNodeR()) { count += Find(nlist, node->GetNodeR(), event, nfind); } } return count; } //------------------------------------------------------------------------------------------- template UInt_t TMVA::kNN::Find(std::list *, Float_t> > &nlist, const TMVA::kNN::Node *node, const T &event, const Double_t nfind, Double_t ncurr) { // This is a global templated function that searches for k-nearest neighbors. // list contains all nodes that are closest to event // and have sum of event weights >= nfind. // Only nodes with positive weights are added to list. // Requirement for used classes: // - each node contains maximum and minimum values of splitting variable // for all its children // - min and max range is checked to avoid descending into // nodes that are defintely outside current minimum neighbourhood. // // This function should be modified with care. // if (!node || !(nfind < 0.0)) { return 0; } const Float_t value = event.GetVar(node->GetMod()); if (node->GetWeight() > 0.0) { Float_t max_dist = 0.0; if (!nlist.empty()) { max_dist = nlist.back().second; if (!(ncurr < nfind)) { if (value > node->GetVarMax() && event.GetDist(node->GetVarMax(), node->GetMod()) > max_dist) { return 0; } if (value < node->GetVarMin() && event.GetDist(node->GetVarMin(), node->GetMod()) > max_dist) { return 0; } } } const Float_t distance = event.GetDist(node->GetEvent()); Bool_t insert_this = kFALSE; if (ncurr < nfind) { insert_this = kTRUE; } else if (!nlist.empty()) { if (distance < max_dist) { insert_this = kTRUE; } } else { std::cerr << "TMVA::kNN::Find() - logic error in recursive procedure" << std::endl; return 1; } if (insert_this) { // (re)compute total current weight when inserting a new node ncurr = 0; // need typename keyword because qualified dependent names // are not valid types unless preceded by 'typename'. typename std::list *, Float_t> >::iterator lit = nlist.begin(); // find a place where current node should be inserted for (; lit != nlist.end(); ++lit) { if (distance < lit->second) { break; } ncurr += lit -> first -> GetWeight(); } lit = nlist.insert(lit, std::pair *, Float_t>(node, distance)); for (; lit != nlist.end(); ++lit) { ncurr += lit -> first -> GetWeight(); if (!(ncurr < nfind)) { ++lit; break; } } if(lit != nlist.end()) { nlist.erase(lit, nlist.end()); } } } UInt_t count = 1; if (node->GetNodeL() && node->GetNodeR()) { if (value < node->GetVarDis()) { count += Find(nlist, node->GetNodeL(), event, nfind, ncurr); count += Find(nlist, node->GetNodeR(), event, nfind, ncurr); } else { count += Find(nlist, node->GetNodeR(), event, nfind, ncurr); count += Find(nlist, node->GetNodeL(), event, nfind, ncurr); } } else { if (node->GetNodeL()) { count += Find(nlist, node->GetNodeL(), event, nfind, ncurr); } if (node->GetNodeR()) { count += Find(nlist, node->GetNodeR(), event, nfind, ncurr); } } return count; } #endif