// @(#)root/tmva $Id$ // Author: Andreas Hoecker, Joerg Stelzer, Helge Voss, Kai Voss /********************************************************************************** * Project: TMVA - a Root-integrated toolkit for multivariate data analysis * * Package: TMVA * * Class : RegressionVariance * * Web : http://tmva.sourceforge.net * * * * Description: Calculate the separation critiera useded in regression * * * * There are two things: the Separation Index, and the Separation Gain * * Separation Index: * * Measure of the "Variance" of a sample. * * * * Separation Gain: * * the measure of how the quality of separation of the sample increases * * by splitting the sample e.g. into a "left-node" and a "right-node" * * (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right) * * this is then the quality crition which is optimized for when trying * * to increase the information in the system (making the best selection * * * * * * Authors (alphabetical): * * Helge Voss - MPI-K Heidelberg, Germany * * * * Copyright (c) 2005: * * CERN, Switzerland * * U. of Victoria, Canada * * Heidelberg U., Germany * * * * Redistribution and use in source and binary forms, with or without * * modification, are permitted according to the terms listed in LICENSE * * (http://tmva.sourceforge.net/LICENSE) * **********************************************************************************/ #ifndef ROOT_TMVA_RegressionVariance #define ROOT_TMVA_RegressionVariance ////////////////////////////////////////////////////////////////////////// // // // RegressionVariance // // // // Calculate the "SeparationGain" for Regression analysis // // separation critiera used in various training algorithms // // // // There are two things: the Separation Index, and the Separation Gain // // Separation Index: // // Measure of the "Variance" of a sample. // // // // Separation Gain: // // the measure of how the quality of separation of the sample increases // // by splitting the sample e.g. into a "left-node" and a "right-node" // // (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right) // // this is then the quality crition which is optimized for when trying // // to increase the information in the system (making the best selection // // // ////////////////////////////////////////////////////////////////////////// #ifndef ROOT_Rtypes #include "Rtypes.h" #endif #ifndef ROOT_TString #include "TString.h" #endif namespace TMVA { class RegressionVariance { public: //default constructor RegressionVariance(){fName = "Variance for Regression";} //copy constructor RegressionVariance( const RegressionVariance& s ): fName ( s.fName ) {} // destructor virtual ~RegressionVariance(){} // Return the gain in separation of the original sample is splitted in two sub-samples // (N * Index_parent) - (N_left * Index_left) - (N_right * Index_right) Double_t GetSeparationGain( const Double_t &nLeft, const Double_t &targetLeft, const Double_t &target2Left, const Double_t &nTot, const Double_t &targetTot, const Double_t &target2Tot ); // Return the separation index (a measure for "purity" of the sample") virtual Double_t GetSeparationIndex( const Double_t &n, const Double_t &target, const Double_t &target2 ); // Return the name of the concrete Index implementation TString GetName() { return fName; } protected: TString fName; // name of the concrete Separation Index impementation ClassDef(RegressionVariance,0) // Interface to different separation critiera used in training algorithms }; } // namespace TMVA #endif