#include "tmvaglob.C" // this macro plots the distributions of the different input variables // used in TMVA (e.g. running TMVAnalysis.C). Signal and Background are overlayed. // input: - Input file (result from TMVA), // - normal/decorrelated/PCA // - use of TMVA plotting TStyle void variables( TString fin = "TMVA.root", TString dirName = "InputVariables_Id", TString title = "TMVA Input Variables", Bool_t isRegression = kFALSE, Bool_t useTMVAStyle = kTRUE ) { TString outfname = dirName; outfname.ToLower(); outfname.ReplaceAll( "input", "" ); // set style and remove existing canvas' TMVAGlob::Initialize( useTMVAStyle ); // obtain shorter histogram title TString htitle = title; htitle.ReplaceAll("variables ","variable"); htitle.ReplaceAll("and target(s)",""); htitle.ReplaceAll("(training sample)",""); // checks if file with name "fin" is already open, and if not opens one TFile* file = TMVAGlob::OpenFile( fin ); TDirectory* dir = (TDirectory*)file->Get( dirName ); if (dir==0) { cout << "No information about " << title << " available in directory " << dirName << " of file " << fin << endl; return; } dir->cd(); // how many plots are in the directory? Int_t noPlots = TMVAGlob::GetNumberOfInputVariables( dir ) + TMVAGlob::GetNumberOfTargets( dir ); // define Canvas layout here! // default setting Int_t xPad; // no of plots in x Int_t yPad; // no of plots in y Int_t width; // size of canvas Int_t height; switch (noPlots) { case 1: xPad = 1; yPad = 1; width = 550; height = 0.90*width; break; case 2: xPad = 2; yPad = 1; width = 600; height = 0.50*width; break; case 3: xPad = 3; yPad = 1; width = 900; height = 0.4*width; break; case 4: xPad = 2; yPad = 2; width = 600; height = width; break; default: xPad = 3; yPad = 2; width = 800; height = 0.55*width; break; } Int_t noPadPerCanv = xPad * yPad ; // counter variables Int_t countCanvas = 0; Int_t countPad = 0; // loop over all objects in directory TCanvas* canv = 0; TKey* key = 0; Bool_t createNewFig = kFALSE; TIter next(dir->GetListOfKeys()); while ((key = (TKey*)next())) { if (key->GetCycle() != 1) continue; if (!TString(key->GetName()).Contains("__Signal") && !(isRegression && TString(key->GetName()).Contains("__Regression"))) continue; // make sure, that we only look at histograms TClass *cl = gROOT->GetClass(key->GetClassName()); if (!cl->InheritsFrom("TH1")) continue; TH1 *sig = (TH1*)key->ReadObj(); TString hname(sig->GetName()); // create new canvas if (countPad%noPadPerCanv==0) { ++countCanvas; canv = new TCanvas( Form("canvas%d", countCanvas), title, countCanvas*50+50, countCanvas*20, width, height ); canv->Divide(xPad,yPad); canv->Draw(); } TPad* cPad = (TPad*)canv->cd(countPad++%noPadPerCanv+1); // find the corredponding backgrouns histo TString bgname = hname; bgname.ReplaceAll("__Signal","__Background"); TH1 *bgd = (TH1*)dir->Get(bgname); if (bgd == NULL) { cout << "ERROR!!! couldn't find background histo for" << hname << endl; return; } // this is set but not stored during plot creation in MVA_Factory TMVAGlob::SetSignalAndBackgroundStyle( sig, (isRegression ? 0 : bgd) ); sig->SetTitle( TString( htitle ) + ": " + sig->GetTitle() ); TMVAGlob::SetFrameStyle( sig, 1.2 ); // normalise both signal and background if (!isRegression) TMVAGlob::NormalizeHists( sig, bgd ); else { // change histogram title for target TString nme = sig->GetName(); if (nme.Contains( "_target" )) { TString tit = sig->GetTitle(); sig->SetTitle( tit.ReplaceAll("Input variable", "Regression target" ) ); } } // finally plot and overlay Float_t sc = 1.1; if (countPad == 1) sc = 1.3; sig->SetMaximum( TMath::Max( sig->GetMaximum(), bgd->GetMaximum() )*sc ); sig->Draw( "hist" ); cPad->SetLeftMargin( 0.17 ); sig->GetYaxis()->SetTitleOffset( 1.70 ); if (!isRegression) { bgd->Draw("histsame"); TString ytit = TString("(1/N) ") + sig->GetYaxis()->GetTitle(); sig->GetYaxis()->SetTitle( ytit ); // histograms are normalised } // Draw legend if (countPad == 1 && !isRegression) { TLegend *legend= new TLegend( cPad->GetLeftMargin(), 1-cPad->GetTopMargin()-.15, cPad->GetLeftMargin()+.4, 1-cPad->GetTopMargin() ); legend->SetFillStyle(1); legend->AddEntry(sig,"Signal","F"); legend->AddEntry(bgd,"Background","F"); legend->SetBorderSize(1); legend->SetMargin( 0.3 ); legend->Draw("same"); } // redraw axes sig->Draw("sameaxis"); // text for overflows Int_t nbin = sig->GetNbinsX(); Double_t dxu = sig->GetBinWidth(0); Double_t dxo = sig->GetBinWidth(nbin+1); TString uoflow = ""; if (isRegression) { uoflow = Form( "U/O-flow: %.1f%% / %.1f%%", sig->GetBinContent(0)*dxu*100, sig->GetBinContent(nbin+1)*dxo*100 ); } else { uoflow = Form( "U/O-flow (S,B): (%.1f, %.1f)%% / (%.1f, %.1f)%%", sig->GetBinContent(0)*dxu*100, bgd->GetBinContent(0)*dxu*100, sig->GetBinContent(nbin+1)*dxo*100, bgd->GetBinContent(nbin+1)*dxo*100 ); } TText* t = new TText( 0.98, 0.14, uoflow ); t->SetNDC(); t->SetTextSize( 0.040 ); t->SetTextAngle( 90 ); t->AppendPad(); // save canvas to file if (countPad%noPadPerCanv==0) { TString fname = Form( "plots/%s_c%i", outfname.Data(), countCanvas ); TMVAGlob::plot_logo(); TMVAGlob::imgconv( canv, fname ); createNewFig = kFALSE; } else { createNewFig = kTRUE; } } if (createNewFig) { TString fname = Form( "plots/%s_c%i", outfname.Data(), countCanvas ); TMVAGlob::plot_logo(); TMVAGlob::imgconv( canv, fname ); createNewFig = kFALSE; } return; }