#!/usr/bin/env python # This file is part of MAUS: http://micewww.pp.rl.ac.uk/projects/maus # # MAUS is free software: you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # MAUS is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License # along with MAUS. If not, see <http://www.gnu.org/licenses/>. # """ This script loads tracker Recon and MC data and compares the two to produce plots of the reconstruction resolution and residuals. Script Aglorithm : - Create Virtual Plane - Tracker Plane lookup - Load Recon and MC Event - Find trackpoints in each tracker plane - Look for the nearest virtual planes in Z - Create lookup dictionary - Analyse all events - Bin Recon histograms - Bin Residual histograms - Bin residuals in bins of Pt - Bin residuals in bins of Pz - Calculate resolutions from histograms - Save all plots to a single root file (options PDF output) """ # pylint: disable = W0311, E1101, W0613, W0621, C0103, C0111, W0702, W0611 # pylint: disable = R0914, R0912, R0915, W0603, W0612, C0302 # Import MAUS Framework (Required!) import MAUS # Generic Python imports import sys import os import argparse import math from math import sqrt import array # Third Party library import statements import json import event_loader import analysis from analysis import tools from analysis import covariances from analysis import hit_types import ROOT # Useful Constants and configuration RECON_STATION = 1 RECON_PLANE = 0 SEED_STATION = 5 SEED_PLANE = 2 EXPECTED_STRAIGHT_TRACKPOINTS = 9 EXPECTED_HELIX_TRACKPOINTS = 12 REQUIRE_DATA = True P_VALUE_CUT = 0.0 MUON_PID = [13, -13] RECON_TRACKERS = [0, 1] REQUIRE_ALL_PLANES = True P_MIN = 0.0 P_MAX = 1000.0 MAX_GRADIENT = 2.0 PT_MIN = 0.0 PT_MAX = 100.0 PT_BIN = 10 PT_BIN_WIDTH = 10.0 PZ_MIN = 120.0 PZ_MAX = 260.0 PZ_BIN = 14 PZ_BIN_WIDTH = 10.0 ALIGNMENT_TOLERANCE = 0.01 RESOLUTION_BINS = 10 EFFICIENCY_BINS = 10 TRACK_ALGORITHM = 1 ENSEMBLE_SIZE = 2000 #UP_COV_MC = covariances.CovarianceMatrix() #DOWN_COV_MC = covariances.CovarianceMatrix() #UP_COV_RECON = covariances.CovarianceMatrix() #DOWN_COV_RECON = covariances.CovarianceMatrix() UP_COV_MC = [] DOWN_COV_MC = [] UP_COV_RECON = [] DOWN_COV_RECON = [] UP_CORRECTION = covariances.CorrectionMatrix() DOWN_CORRECTION = covariances.CorrectionMatrix() VIRTUAL_PLANE_DICT = None INVERSE_PLANE_DICT = {} TRACKER_PLANE_RADIUS = 150.0 SELECT_EVENTS = False GOOD_EVENTS = None def get_pz_bin(pz) : offset = pz - PZ_MIN return int(offset/PZ_BIN_WIDTH) def init_plots_data() : """ Initialised all the plots in a dictionary to pass around to the other functions. """ global UP_COV_MC global DOWN_COV_MC global UP_COV_RECON global DOWN_COV_RECON global PZ_BIN global PT_BIN PZ_BIN = int(((PZ_MAX-PZ_MIN) / PZ_BIN_WIDTH) + 0.5) PT_BIN = int(((PT_MAX-PT_MIN) / PT_BIN_WIDTH) + 0.5) UP_COV_MC = [ covariances.CovarianceMatrix() for _ in range(PZ_BIN) ] DOWN_COV_MC = [ covariances.CovarianceMatrix() for _ in range(PZ_BIN) ] UP_COV_RECON = [ covariances.CovarianceMatrix() for _ in range(PZ_BIN) ] DOWN_COV_RECON = [ covariances.CovarianceMatrix() for _ in range(PZ_BIN) ] plot_dict = {'upstream' : {}, 'downstream' : {}, \ 'missing_tracks' : {}, 'pulls' : {}} for tracker in [ 'upstream', 'downstream' ] : tracker_dict = {} tracker_dict['ntp'] = ROOT.TH1F(tracker+'_ntp', \ 'No. TrackPoints', 15, 0.5, 15.5 ) tracker_dict['xy'] = ROOT.TH2F( tracker+'_xy', \ 'Position', 500, -200.0, 200.0, 500, -200.0, 200.0 ) tracker_dict['pxpy'] = ROOT.TH2F(tracker+'_pxpy', \ 'Momentum', 500, -200.0, 200.0, 500, -200.0, 200.0 ) tracker_dict['pt'] = ROOT.TH1F( tracker+'_pt', \ 'Transvere Momentum', 500, -0.0, 200.0 ) tracker_dict['pz'] = ROOT.TH1F( tracker+'_pz', \ 'Longitudinal Momentum', 500, 100.0, 300.0 ) tracker_dict['mc_xy'] = ROOT.TH2F( tracker+'_mc_xy', \ 'MC Position', 500, -200.0, 200.0, 500, -200.0, 200.0 ) tracker_dict['mc_pxpy'] = ROOT.TH2F( tracker+'_mc_pxpy', \ 'MC Momentum', 500, -200.0, 200.0, 500, -200.0, 200.0 ) tracker_dict['mc_pt'] = ROOT.TH1F( tracker+'_mc_pt', \ 'MC Transvere Momentum', 500, -0.0, 200.0 ) tracker_dict['mc_pz'] = ROOT.TH1F( tracker+'_mc_pz', \ 'MC Longitudinal Momentum', 500, 100.0, 300.0 ) tracker_dict['residual_xy'] = ROOT.TH2F( tracker+'_residual_xy', \ 'Residual Position', 800, -20.0, 20.0, 800, -20.0, 20.0 ) tracker_dict['residual_mxmy'] = ROOT.TH2F( tracker+'_residual_mxmy', \ 'Residual Gradient', 500, -0.5, 0.5, 500, -0.5, 0.5 ) tracker_dict['residual_pxpy'] = ROOT.TH2F( tracker+'_residual_pxpy', \ 'Residual Momentum', 500, -50.0, 50.0, 500, -50.0, 50.0 ) tracker_dict['residual_pt'] = ROOT.TH1F( tracker+'_residual_pt', \ "p_{t} Residuals", 500, -50.0, 50.0 ) tracker_dict['residual_pz'] = ROOT.TH1F( tracker+'_residual_pz', \ "p_{z} Residuals", 500, -50.0, 50.0 ) tracker_dict['ntp_pt'] = ROOT.TH2F( \ tracker+'_ntp_pt', "No. Trackpoints in P_{t}", \ PT_BIN, PT_MIN, PT_MAX, 15, 0.5, 15.5 ) tracker_dict['ntp_mc_pt'] = ROOT.TH2F( \ tracker+'_ntp_mc_pt', "No. MC Trackpoints in P_{t}", \ PT_BIN, PT_MIN, PT_MAX, 15, 0.5, 15.5 ) tracker_dict['ntp_pz'] = ROOT.TH2F( \ tracker+'_ntp_pz', "No. Trackpoints in P_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 15, 0.5, 15.5 ) tracker_dict['ntp_mc_pz'] = ROOT.TH2F( \ tracker+'_ntp_mc_pz', "No. MC Trackpoints in P_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 15, 0.5, 15.5 ) tracker_dict['trackpoint_efficiency'] = ROOT.TEfficiency( \ tracker+'_trackpoint_efficiency', \ "Track Point Efficiency in P_{z} and P_{#perp}", \ PZ_BIN, PZ_MIN, PZ_MAX, PT_BIN, PT_MIN, PT_MAX ) tracker_dict['trackpoint_efficiency_pt'] = ROOT.TEfficiency( \ tracker+'_trackpoint_efficiency_pt', \ "Track Point Efficiency in P_{#perp}", \ PT_BIN, PT_MIN, PT_MAX ) tracker_dict['trackpoint_efficiency_pz'] = ROOT.TEfficiency( \ tracker+'_trackpoint_efficiency_pz', \ "Track Point Efficiency in P_z", \ PZ_BIN, PZ_MIN, PZ_MAX ) tracker_dict['ntracks_pt'] = ROOT.TH1F( \ tracker+'_ntracks_pt', "No. Tracks in P_{#perp}", \ PT_BIN, PT_MIN, PT_MAX ) tracker_dict['ntracks_mc_pt'] = ROOT.TH1F( \ tracker+'_ntracks_mc_pt', "No. MC Tracks in P_{#perp}", \ PT_BIN, PT_MIN, PT_MAX ) tracker_dict['ntracks_pz'] = ROOT.TH1F( \ tracker+'_ntracks_pz', "No. Tracks in P_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX ) tracker_dict['ntracks_mc_pz'] = ROOT.TH1F( \ tracker+'_ntracks_mc_pz', "No. MC Tracks in P_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX ) tracker_dict['track_efficiency'] = ROOT.TEfficiency( \ tracker+'_track_efficiency', "Track Efficiency in P_z and P_{#perp}", \ PZ_BIN, PZ_MIN, PZ_MAX, PT_BIN, PT_MIN, PT_MAX ) tracker_dict['track_efficiency_pt'] = ROOT.TEfficiency( \ tracker+'_track_efficiency_pt', "Track Efficiency in P_{#perp}", \ PT_BIN, PT_MIN, PT_MAX ) tracker_dict['track_efficiency_pz'] = ROOT.TEfficiency( \ tracker+'_track_efficiency_pz', "Track Efficiency in P_z", \ PZ_BIN, PZ_MIN, PZ_MAX ) tracker_dict['x_residual_p'] = ROOT.TH2F( \ tracker+'_x_residual_p', "X Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -20.0, 20.0 ) tracker_dict['y_residual_p'] = ROOT.TH2F( \ tracker+'_y_residual_p', "Y Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -20.0, 20.0 ) tracker_dict['r_residual_p'] = ROOT.TH2F( \ tracker+'_r_residual_p', "Radius Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, 0.0, 50.0 ) tracker_dict['px_residual_p'] = ROOT.TH2F( \ tracker+'_px_residual_p', "p_{x} Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['py_residual_p'] = ROOT.TH2F( \ tracker+'_py_residual_p', "p_{y} Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['pt_residual_p'] = ROOT.TH2F( \ tracker+'_p_residual_p', "p_{t} Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['pz_residual_p'] = ROOT.TH2F( \ tracker+'_pz_residual_p', "p_{z} Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['p_residual_p'] = ROOT.TH2F( \ tracker+'_p_residual_p', "p Residuals in p", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['x_residual_pt'] = ROOT.TH2F( \ tracker+'_x_residual_pt', "X Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -20.0, 20.0 ) tracker_dict['y_residual_pt'] = ROOT.TH2F( \ tracker+'_y_residual_pt', "Y Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -20.0, 20.0 ) tracker_dict['r_residual_pt'] = ROOT.TH2F( \ tracker+'_r_residual_pt', "Radius Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, 0.0, 50.0 ) tracker_dict['px_residual_pt'] = ROOT.TH2F( \ tracker+'_px_residual_pt', "p_{x} Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -50.0, 50.0 ) tracker_dict['py_residual_pt'] = ROOT.TH2F( \ tracker+'_py_residual_pt', "p_{y} Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -50.0, 50.0 ) tracker_dict['pt_residual_pt'] = ROOT.TH2F( \ tracker+'_pt_residual_pt', "p_{t} Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -50.0, 50.0 ) tracker_dict['pz_residual_pt'] = ROOT.TH2F( \ tracker+'_pz_residual_pt', "p_{z} Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -50.0, 50.0 ) tracker_dict['p_residual_pt'] = ROOT.TH2F( \ tracker+'_p_residual_pt', "p Residuals in p_{t}", \ PT_BIN, PT_MIN, PT_MAX, 500, -50.0, 50.0 ) tracker_dict['x_residual_pz'] = ROOT.TH2F( \ tracker+'_x_residual_pz', "X Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -20.0, 20.0 ) tracker_dict['y_residual_pz'] = ROOT.TH2F( \ tracker+'_y_residual_pz', "Y Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -20.0, 20.0 ) tracker_dict['r_residual_pz'] = ROOT.TH2F( \ tracker+'_r_residual_pz', "Radius Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, 0.0, 50.0 ) tracker_dict['mx_residual_pz'] = ROOT.TH2F( \ tracker+'_mx_residual_pz', "m_{x} Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -0.5, 0.5 ) tracker_dict['my_residual_pz'] = ROOT.TH2F( \ tracker+'_my_residual_pz', "m_{y} Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -0.5, 0.5 ) tracker_dict['px_residual_pz'] = ROOT.TH2F( \ tracker+'_px_residual_pz', "p_{x} Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['py_residual_pz'] = ROOT.TH2F( \ tracker+'_py_residual_pz', "p_{y} Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['pt_residual_pz'] = ROOT.TH2F( \ tracker+'_pt_residual_pz', "p_{t} Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['pz_residual_pz'] = ROOT.TH2F( \ tracker+'_pz_residual_pz', "p_{z} Residuals in p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['p_residual_pz'] = ROOT.TH2F( \ tracker+'_p_residual_pz', "p Residuals in pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, -50.0, 50.0 ) tracker_dict['mc_alpha'] = ROOT.TH2F( tracker+'_mc_alpha', \ "MC Alpha Reconstruction Pz", PZ_BIN, PZ_MIN, PZ_MAX, \ 200, -2.0, 2.0 ) tracker_dict['mc_beta'] = ROOT.TH2F( tracker+'_mc_beta', \ "MC Beta Reconstruction Pz", PZ_BIN, PZ_MIN, PZ_MAX, \ 1000, 0.0, 2500.0 ) tracker_dict['mc_emittance'] = ROOT.TH2F( tracker+'_mc_emittance', \ "MC Emittance Reconstruction Pz", PZ_BIN, PZ_MIN, PZ_MAX, \ 500, 0.0, 20.0 ) tracker_dict['mc_momentum'] = ROOT.TH2F( \ tracker+'_mc_momentum', "MC Momentum Pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -10.0, 10.0 ) tracker_dict['recon_alpha'] = ROOT.TH2F( tracker+'_recon_alpha', \ "Alpha Reconstruction Pz", PZ_BIN, PZ_MIN, PZ_MAX, \ 200, -2.0, 2.0 ) tracker_dict['recon_beta'] = ROOT.TH2F( tracker+'_recon_beta', \ "Beta Reconstruction Pz", PZ_BIN, PZ_MIN, PZ_MAX, \ 1000, 0.0, 2500.0 ) tracker_dict['recon_emittance'] = ROOT.TH2F( \ tracker+'_recon_emittance', "Emittance Reconstruction Pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 500, 0.0, 20.0 ) tracker_dict['recon_momentum'] = ROOT.TH2F( \ tracker+'_recon_momentum', "Recon Momentum Pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -10.0, 10.0 ) tracker_dict['residual_alpha'] = ROOT.TH2F( \ tracker+'_residual_alpha', "Alpha Residual Pz", PZ_BIN, \ PZ_MIN, PZ_MAX, 200, -1.0, 1.0 ) tracker_dict['residual_beta'] = ROOT.TH2F( \ tracker+'_residual_beta', "Beta Residual Pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -100.0, 100.0 ) tracker_dict['residual_emittance'] = ROOT.TH2F( \ tracker+'_residual_emittance', "Emittance Residual Pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -10.0, 10.0 ) tracker_dict['residual_momentum'] = ROOT.TH2F( \ tracker+'_residual_momentum', "Momentum Residual Pz", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -10.0, 10.0 ) for component in ['x', 'y', 'px', 'py', 'pt'] : tracker_dict['seed_'+component+'_residual'] = \ ROOT.TH1F( tracker+'_patrec_seed_'+component+'_residual', \ "Residual: "+component, 201, -10.05, 10.05 ) tracker_dict['seed_mx_residual'] = ROOT.TH1F( \ tracker+'_patrec_seed_mx_residual', "Residual: m_{x}", 501, -0.5, 0.5 ) tracker_dict['seed_my_residual'] = ROOT.TH1F( \ tracker+'_patrec_seed_my_residual', "Residual: m_{y}", 501, -0.5, 0.5 ) tracker_dict['seed_pz_residual'] = ROOT.TH1F( \ tracker+'_patrec_seed_pz_residual', "Residual: pz", 501, -50.1, 50.1 ) tracker_dict['seed_p_residual'] = ROOT.TH1F( \ tracker+'_patrec_seed_p_residual', "Residual: p", 501, -50.1, 50.1 ) tracker_dict['seed_pz_residual_pz'] = ROOT.TH2F( \ tracker+'_patrec_seed_pz-pz', "True p_{z} - Seed p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -50.0, 50.0 ) tracker_dict['seed_pt_residual_pt'] = ROOT.TH2F( \ tracker+'_patrec_seed_pt-pt', "True p_{#perp} - Seed p_{#perp}", \ PT_BIN, PT_MIN, PT_MAX, 200, -50.0, 50.0 ) tracker_dict['seed_pz_residual_pt'] = ROOT.TH2F( \ tracker+'_patrec_seed_pz-pt', "True p_{z} - Seed p_{#perp}", \ PT_BIN, PT_MIN, PT_MAX, 200, -50.0, 50.0 ) tracker_dict['seed_pt_residual_pz'] = ROOT.TH2F( \ tracker+'_patrec_seed_pt-pz', "True p_{#perp} - Seed p_{z}", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -50.0, 50.0 ) tracker_dict['seed_p_residual_p'] = ROOT.TH2F( \ tracker+'_patrec_seed_p-p', "True p - Seed p", \ PZ_BIN, PZ_MIN, PZ_MAX, 200, -50.0, 50.0 ) plot_dict[tracker] = tracker_dict missing_tracks = {} for tracker in [ 'upstream', 'downstream' ] : missing_tracker = {} missing_tracker['x_y'] = ROOT.TH2F(tracker+'_x_y_missing', \ "Missing Tracks x:y", 400, -200.0, 200.0, 400, -200.0, 200.0 ) missing_tracker['px_py'] = ROOT.TH2F(tracker+'_px_py_missing', \ "Missing Tracks p_{x}:p_{y}", 400, -200.0, 200.0, 400, -200.0, 200.0 ) missing_tracker['x_px'] = ROOT.TH2F(tracker+'_x_px_missing', \ "Missing Tracks x:p_{x}", 400, -200.0, 200.0, 400, -200.0, 200.0 ) missing_tracker['y_py'] = ROOT.TH2F(tracker+'_y_py_missing', \ "Missing Tracks y:p_{y}", 400, -200.0, 200.0, 400, -200.0, 200.0 ) missing_tracker['x_py'] = ROOT.TH2F(tracker+'_x_py_missing', \ "Missing Tracks x:p_{y}", 400, -200.0, 200.0, 400, -200.0, 200.0 ) missing_tracker['y_px'] = ROOT.TH2F(tracker+'_y_px_missing', \ "Missing Tracks y:p_{x}", 400, -200.0, 200.0, 400, -200.0, 200.0 ) missing_tracker['pt'] = ROOT.TH1F(tracker+'_pt_missing', \ "Missing Tracks pt", PT_BIN, PT_MIN, PT_MAX ) missing_tracker['pz'] = ROOT.TH1F(tracker+'_pz_missing', \ "Missing Tracks pz", PZ_BIN, PZ_MIN, PZ_MAX ) missing_tracker['pz_pt'] = ROOT.TH2F(tracker+'_pz_pt_missing', \ "Missing Tracks pz", PZ_BIN, PZ_MIN, PZ_MAX, PT_BIN, PT_MIN, PT_MAX ) missing_tracks[tracker] = missing_tracker plot_dict['missing_tracks'] = missing_tracks for pl_id in range( -15, 0 ) + range( 1, 16 ) : pull_plot_name = 'kalman_pulls_{0:02d}'.format(pl_id) plot_dict['pulls'][pull_plot_name] = ROOT.TH1F( \ pull_plot_name, "Kalman Pulls", 101, -5.05, 5.05 ) data_dict = { 'counters' : {'upstream' : {}, 'downstream' : {} }, \ 'data' : {} } data_dict['counters']['number_events'] = 0 for tracker in ['upstream', 'downstream'] : data_dict['counters'][tracker]['number_virtual'] = 0 data_dict['counters'][tracker]['missing_virtuals'] = 0 data_dict['counters'][tracker]['number_tracks'] = 0 data_dict['counters'][tracker]['number_candidates'] = 0 data_dict['counters'][tracker]['found_tracks'] = 0 data_dict['counters'][tracker]['wrong_track_type'] = 0 data_dict['counters'][tracker]['p_value_cut'] = 0 data_dict['counters'][tracker]['superfluous_track_events'] = 0 data_dict['counters'][tracker]['missing_tracks'] = 0 data_dict['counters'][tracker]['missing_reference_hits'] = 0 data_dict['counters'][tracker]['momentum_cut'] = 0 data_dict['counters'][tracker]['gradient_cut'] = 0 data_dict['counters'][tracker]['found_pairs'] = 0 return plot_dict, data_dict def create_virtual_plane_dict(file_reader) : """ Matches up scifitrackpoints to virtual planes to make a lookup dictionary """ virtual_plane_dict = {} for num in range( -15, 0, 1 ) : virtual_plane_dict[ num ] = ( -1, (ALIGNMENT_TOLERANCE * 100.0) ) for num in range( 1, 16, 1 ) : virtual_plane_dict[ num ] = ( -1, (ALIGNMENT_TOLERANCE * 100.0) ) while file_reader.next_event() : scifi_event = file_reader.get_event( 'scifi' ) mc_event = file_reader.get_event( 'mc' ) tracks = scifi_event.scifitracks() for track in tracks : trackpoints = track.scifitrackpoints() for trkpt in trackpoints : z_pos = trkpt.pos().z() plane_id = analysis.tools.calculate_plane_id(\ trkpt.tracker(), trkpt.station(), trkpt.plane()) for vhit_num in xrange(mc_event.GetVirtualHitsSize()) : vhit = mc_event.GetAVirtualHit(vhit_num) diff = math.fabs(vhit.GetPosition().z() - z_pos) if diff < virtual_plane_dict[ plane_id ][1] : virtual_plane_dict[ plane_id ] = ( vhit.GetStationId(), diff ) done = True for tracker in RECON_TRACKERS : for station in [1, 2, 3, 4, 5] : for plane in [0, 1, 2] : plane_id = analysis.tools.calculate_plane_id( \ tracker, station, plane ) if virtual_plane_dict[plane_id][1] > ALIGNMENT_TOLERANCE : # print plane_id, virtual_plane_dict[plane] done = False if done : break else : if REQUIRE_ALL_PLANES : print print virtual_plane_dict raise ValueError("Could not locate all virtuals planes") file_reader.reset() return virtual_plane_dict def inverse_virtual_plane_dict(virtual_plane_dict) : """ Create the inverse lookup. """ inverse_dict = {} for num in range( -15, 0, 1 ) : inverse_dict[virtual_plane_dict[num][0]] = num for num in range( 1, 16, 1 ) : inverse_dict[virtual_plane_dict[num][0]] = num return inverse_dict def get_expected_tracks(mc_event, virtual_plane_dict) : upstream_planes = [ virtual_plane_dict[i][0] for i in range(-15, 0)] downstream_planes = [ virtual_plane_dict[i][0] for i in range(1, 16)] upstream_track = None downstream_track = None upstream_hits = {} downstream_hits = {} for vhit_num in xrange(mc_event.GetVirtualHitsSize()) : vhit = mc_event.GetAVirtualHit(vhit_num) if vhit.GetParticleId() not in MUON_PID : continue station_id = vhit.GetStationId() radius = math.sqrt( vhit.GetPosition().x()**2 + vhit.GetPosition().y()**2 ) if radius > TRACKER_PLANE_RADIUS : continue if station_id in upstream_planes : plane_id = INVERSE_PLANE_DICT[station_id] upstream_hits[plane_id] = vhit if station_id in downstream_planes : plane_id = INVERSE_PLANE_DICT[station_id] downstream_hits[plane_id] = vhit if TRACK_ALGORITHM == 1 : if len(upstream_hits) > EXPECTED_HELIX_TRACKPOINTS : upstream_track = upstream_hits if len(downstream_hits) > EXPECTED_HELIX_TRACKPOINTS : downstream_track = downstream_hits elif TRACK_ALGORITHM == 0 : if len(upstream_hits) > EXPECTED_STRAIGHT_TRACKPOINTS : upstream_track = upstream_hits if len(downstream_hits) > EXPECTED_STRAIGHT_TRACKPOINTS : downstream_track = downstream_hits else: raise ValueError("Unknown track algorithm found!") return upstream_track, downstream_track def get_found_tracks(scifi_event, plot_dict, data_dict) : """ Find all the single tracks that pass the cuts. """ upstream_tracks = [] downstream_tracks = [] tracks = scifi_event.scifitracks() for track in tracks : if track.tracker() == 0 : tracker = "upstream" else : tracker = "downstream" data_dict['counters'][tracker]['number_tracks'] += 1 if track.GetAlgorithmUsed() != TRACK_ALGORITHM : data_dict['counters'][tracker]['wrong_track_type'] += 1 continue if track.P_value() < P_VALUE_CUT : data_dict['counters'][tracker]['p_value_cut'] += 1 continue data_dict['counters'][tracker]['number_candidates'] += 1 if track.tracker() == 0 : upstream_tracks.append(track) if track.tracker() == 1 : downstream_tracks.append(track) if len(upstream_tracks) > 1 : data_dict['counters']['upstream']['superfluous_track_events'] += 1 if len(downstream_tracks) > 1 : data_dict['counters']['downstream']['superfluous_track_events'] += 1 if len(upstream_tracks) == 1 : upstream_track = upstream_tracks[0] data_dict['counters']['upstream']['found_tracks'] += 1 else : upstream_track = None if len(downstream_tracks) == 1 : downstream_track = downstream_tracks[0] data_dict['counters']['downstream']['found_tracks'] += 1 else : downstream_track = None return upstream_track, downstream_track def make_scifi_mc_pairs(plot_dict, data_dict, virtual_plane_dict, \ scif_event, mc_event) : """ Make pairs of SciFiTrackpoints and MC VirtualHits """ paired_hits = [] paired_seeds = [] expected_up, expected_down = get_expected_tracks(mc_event, virtual_plane_dict) found_up, found_down = get_found_tracks(scifi_event, plot_dict, data_dict) downstream_pt = 0.0 downstream_pz = 0.0 data_dict['counters']['number_events'] += 1 for tracker_num, tracker, scifi_track, virtual_track in \ [ (0, "upstream", found_up, expected_up), \ (1, "downstream", found_down, expected_down) ] : if virtual_track is None : continue ref_plane = tools.calculate_plane_id(tracker_num, RECON_STATION, RECON_PLANE) seed_plane = tools.calculate_plane_id(tracker_num, SEED_STATION, SEED_PLANE) virtual_pt = 0.0 virtual_pz = 0.0 virtual_hits = 0 scifi_hits = 0 seed_virt = None reference_virt = None reference_scifi = None for plane in virtual_track : if virtual_track[plane] is not None : hit = virtual_track[plane] virtual_pt += math.sqrt(hit.GetMomentum().x()**2 + \ hit.GetMomentum().y()**2) virtual_pz += hit.GetMomentum().z() virtual_hits += 1 if plane == ref_plane : reference_virt = virtual_track[plane] if plane == seed_plane : seed_virt = virtual_track[plane] virtual_pt /= virtual_hits virtual_pz /= virtual_hits virtual_p = math.sqrt( virtual_pt**2 + virtual_pz**2 ) if virtual_p > P_MAX or virtual_p < P_MIN : data_dict['counters'][tracker]['momentum_cut'] += 1 continue elif virtual_pt / virtual_p > MAX_GRADIENT : data_dict['counters'][tracker]['gradient_cut'] += 1 continue else : data_dict['counters'][tracker]['number_virtual'] += 1 plot_dict[tracker]['ntracks_mc_pt'].Fill( virtual_pt ) plot_dict[tracker]['ntracks_mc_pz'].Fill( virtual_pz ) plot_dict[tracker]['ntp_mc_pt'].Fill( virtual_pt, virtual_hits ) plot_dict[tracker]['ntp_mc_pz'].Fill( virtual_pz, virtual_hits ) if scifi_track is None : plot_dict[tracker]['track_efficiency'].Fill(False, virtual_pz, virtual_pt) plot_dict[tracker]['track_efficiency_pt'].Fill(False, virtual_pt) plot_dict[tracker]['track_efficiency_pz'].Fill(False, virtual_pz) data_dict['counters'][tracker]['missing_tracks'] += 1 # for i in range(virtual_hits) : # plot_dict[tracker]['trackpoint_efficiency'].Fill(False, virtual_pz,\ # virtual_pt) # plot_dict[tracker]['trackpoint_efficiency_pt'].Fill(False, virtual_pt) # plot_dict[tracker]['trackpoint_efficiency_pz'].Fill(False, virtual_pz) if reference_virt is not None : plot_dict['missing_tracks'][tracker]['x_y'].Fill( \ reference_virt.GetPosition().x(), reference_virt.GetPosition().y()) plot_dict['missing_tracks'][tracker]['px_py'].Fill( \ reference_virt.GetMomentum().x(), reference_virt.GetMomentum().y()) plot_dict['missing_tracks'][tracker]['x_px'].Fill( \ reference_virt.GetPosition().x(), reference_virt.GetMomentum().x()) plot_dict['missing_tracks'][tracker]['y_py'].Fill( \ reference_virt.GetPosition().y(), reference_virt.GetMomentum().y()) plot_dict['missing_tracks'][tracker]['x_py'].Fill( \ reference_virt.GetPosition().x(), reference_virt.GetMomentum().y()) plot_dict['missing_tracks'][tracker]['y_px'].Fill( \ reference_virt.GetPosition().y(), reference_virt.GetMomentum().x()) plot_dict['missing_tracks'][tracker]['pz'].Fill( virtual_pz ) plot_dict['missing_tracks'][tracker]['pt'].Fill( virtual_pt ) plot_dict['missing_tracks'][tracker]['pz_pt'].Fill( \ virtual_pz, virtual_pt ) continue # Can't do anything else without a scifi track for scifi_hit in scifi_track.scifitrackpoints() : if scifi_hit.has_data() : scifi_hits += 1 pl_id = analysis.tools.calculate_plane_id(scifi_hit.tracker(), \ scifi_hit.station(), scifi_hit.plane()) plot_name = 'kalman_pulls_{0:02d}'.format(pl_id) plot_dict['pulls'][plot_name].Fill( scifi_hit.pull() ) if scifi_hit.station() == RECON_STATION and \ scifi_hit.plane() == RECON_PLANE : reference_scifi = scifi_hit plot_dict[tracker]['track_efficiency'].Fill(True, virtual_pz, virtual_pt) plot_dict[tracker]['track_efficiency_pt'].Fill(True, virtual_pt) plot_dict[tracker]['track_efficiency_pz'].Fill(True, virtual_pz) plot_dict[tracker]['ntracks_pt'].Fill( virtual_pt ) plot_dict[tracker]['ntracks_pz'].Fill( virtual_pz ) plot_dict[tracker]['ntp'].Fill( scifi_hits ) plot_dict[tracker]['ntp_pt'].Fill( virtual_pt, scifi_hits ) plot_dict[tracker]['ntp_pz'].Fill( virtual_pz, scifi_hits ) if scifi_hits >= virtual_hits : for i in range(virtual_hits) : plot_dict[tracker]['trackpoint_efficiency'].Fill(True, \ virtual_pz, virtual_pt) plot_dict[tracker]['trackpoint_efficiency_pt'].Fill(True, virtual_pt) plot_dict[tracker]['trackpoint_efficiency_pz'].Fill(True, virtual_pz) else : for i in range( virtual_hits - scifi_hits ) : plot_dict[tracker]['trackpoint_efficiency'].Fill(False, \ virtual_pz, virtual_pt) plot_dict[tracker]['trackpoint_efficiency_pt'].Fill(False, virtual_pt) plot_dict[tracker]['trackpoint_efficiency_pz'].Fill(False, virtual_pz) for i in range( scifi_hits ) : plot_dict[tracker]['trackpoint_efficiency'].Fill(True, \ virtual_pz, virtual_pt) plot_dict[tracker]['trackpoint_efficiency_pt'].Fill(True, virtual_pt) plot_dict[tracker]['trackpoint_efficiency_pz'].Fill(True, virtual_pz) if reference_virt is None : data_dict['counters'][tracker]['missing_virtuals'] += 1 if reference_scifi is None : data_dict['counters'][tracker]['missing_reference_hits'] += 1 if reference_virt is not None and reference_scifi is not None : paired_hits.append( (reference_scifi, reference_virt) ) data_dict['counters'][tracker]['found_pairs'] += 1 if seed_virt is not None and scifi_track is not None : paired_seeds.append( (scifi_track, seed_virt)) return paired_hits, paired_seeds def fill_plots(plot_dict, data_dict, hit_pairs) : """ Fill Plots with Track and Residual Data """ for scifi_hit, virt_hit in hit_pairs : tracker_num = scifi_hit.tracker() pz_bin = get_pz_bin( virt_hit.GetMomentum().z() ) if pz_bin >= PZ_BIN or pz_bin < 0 : continue mc_cov = None recon_cov = None correction_matrix = None if tracker_num == 0 : tracker = 'upstream' mc_cov = UP_COV_MC[pz_bin] recon_cov = UP_COV_RECON[pz_bin] correction_matrix = UP_CORRECTION else : tracker = 'downstream' mc_cov = DOWN_COV_MC[pz_bin] recon_cov = DOWN_COV_RECON[pz_bin] correction_matrix = DOWN_CORRECTION tracker_plots = plot_dict[tracker] mc_cov.add_hit(hit_types.AnalysisHit(virtual_track_point=virt_hit)) recon_cov.add_hit(hit_types.AnalysisHit(scifi_track_point=scifi_hit)) correction_matrix.add_hit(\ hit_types.AnalysisHit(scifi_track_point=scifi_hit), \ hit_types.AnalysisHit(virtual_track_point=virt_hit)) scifi_pos = [scifi_hit.pos().x(), scifi_hit.pos().y(), scifi_hit.pos().z()] scifi_mom = [scifi_hit.mom().x(), scifi_hit.mom().y(), scifi_hit.mom().z()] virt_pos = [virt_hit.GetPosition().x(), \ virt_hit.GetPosition().y(), virt_hit.GetPosition().z()] virt_mom = [virt_hit.GetMomentum().x(), \ virt_hit.GetMomentum().y(), virt_hit.GetMomentum().z()] res_pos = [ scifi_pos[0] - virt_pos[0], \ scifi_pos[1] - virt_pos[1], \ scifi_pos[2] - virt_pos[2] ] res_mom = [ scifi_mom[0] - virt_mom[0], \ scifi_mom[1] - virt_mom[1], \ scifi_mom[2] - virt_mom[2] ] res_gra = [ scifi_mom[0]/scifi_mom[2] - virt_mom[0]/virt_mom[2], \ scifi_mom[1]/scifi_mom[2] - virt_mom[1]/virt_mom[2] ] Pt_mc = math.sqrt( virt_mom[0] ** 2 + virt_mom[1] ** 2 ) Pz_mc = virt_mom[2] P_mc = math.sqrt(Pz_mc**2 +Pt_mc**2) Pt_recon = math.sqrt( scifi_mom[0] ** 2 + scifi_mom[1] ** 2 ) P_recon = math.sqrt(Pt_recon**2 + scifi_mom[2]**2) Pt_res = Pt_recon - Pt_mc P_res = P_recon - P_mc tracker_plots['xy'].Fill(scifi_pos[0], scifi_pos[1]) tracker_plots['pxpy'].Fill(scifi_mom[0], scifi_mom[1]) tracker_plots['pt'].Fill(Pt_recon) tracker_plots['pz'].Fill(scifi_mom[2]) tracker_plots['mc_xy'].Fill(virt_pos[0], virt_pos[1]) tracker_plots['mc_pxpy'].Fill(virt_mom[0], virt_mom[1]) tracker_plots['mc_pt'].Fill(Pt_mc) tracker_plots['mc_pz'].Fill(Pz_mc) tracker_plots['residual_xy'].Fill(res_pos[0], res_pos[1]) tracker_plots['residual_pxpy'].Fill(res_mom[0], res_mom[1]) tracker_plots['residual_mxmy'].Fill(res_gra[0], res_gra[1]) tracker_plots['residual_pt'].Fill(Pt_res) tracker_plots['residual_pz'].Fill(res_mom[2]) tracker_plots['x_residual_pt'].Fill( Pt_mc, res_pos[0] ) tracker_plots['y_residual_pt'].Fill( Pt_mc, res_pos[1] ) tracker_plots['r_residual_pt'].Fill( Pt_mc, \ sqrt(res_pos[1]**2 + res_pos[2]**2) ) tracker_plots['px_residual_pt'].Fill( Pt_mc, res_mom[0] ) tracker_plots['py_residual_pt'].Fill( Pt_mc, res_mom[1] ) tracker_plots['pt_residual_pt'].Fill( Pt_mc, Pt_res ) tracker_plots['pz_residual_pt'].Fill( Pt_mc, res_mom[2] ) tracker_plots['p_residual_pt'].Fill( Pt_mc, P_res ) tracker_plots['x_residual_p'].Fill( P_mc, res_pos[0] ) tracker_plots['y_residual_p'].Fill( P_mc, res_pos[1] ) tracker_plots['r_residual_p'].Fill( P_mc, \ sqrt(res_pos[1]**2 + res_pos[2]**2) ) tracker_plots['px_residual_p'].Fill( P_mc, res_mom[0] ) tracker_plots['py_residual_p'].Fill( P_mc, res_mom[1] ) tracker_plots['pt_residual_p'].Fill( P_mc, Pt_res ) tracker_plots['pz_residual_p'].Fill( P_mc, res_mom[2] ) tracker_plots['p_residual_p'].Fill( P_mc, P_res ) tracker_plots['x_residual_pz'].Fill( Pz_mc, res_pos[0] ) tracker_plots['y_residual_pz'].Fill( Pz_mc, res_pos[1] ) tracker_plots['r_residual_pz'].Fill( Pz_mc, \ sqrt(res_pos[1]**2 + res_pos[2]**2) ) tracker_plots['mx_residual_pz'].Fill( Pz_mc, res_gra[0] ) tracker_plots['my_residual_pz'].Fill( Pz_mc, res_gra[1] ) tracker_plots['px_residual_pz'].Fill( Pz_mc, res_mom[0] ) tracker_plots['py_residual_pz'].Fill( Pz_mc, res_mom[1] ) tracker_plots['pt_residual_pz'].Fill( Pz_mc, Pt_res ) tracker_plots['pz_residual_pz'].Fill( Pz_mc, res_mom[2] ) tracker_plots['p_residual_pz'].Fill( Pz_mc, P_res ) if mc_cov.length() == ENSEMBLE_SIZE : pz = mc_cov.get_mean('pz') tracker_plots['mc_alpha'].Fill(pz, mc_cov.get_alpha(['x','y'])) tracker_plots['mc_beta'].Fill(pz, mc_cov.get_beta(['x','y'])) tracker_plots['mc_emittance'].Fill(pz, mc_cov.get_emittance(\ ['x','px','y','py'])) tracker_plots['mc_momentum'].Fill(pz, mc_cov.get_momentum()) tracker_plots['recon_alpha'].Fill(pz, recon_cov.get_alpha(\ ['x','y'])) tracker_plots['recon_beta'].Fill(pz, recon_cov.get_beta(\ ['x','y'])) tracker_plots['recon_emittance'].Fill(pz, \ recon_cov.get_emittance(['x','px','y','py'])) tracker_plots['recon_momentum'].Fill(pz, \ recon_cov.get_momentum()) tracker_plots['residual_alpha'].Fill(pz, \ recon_cov.get_alpha(['x','y']) - mc_cov.get_alpha(['x','y'])) tracker_plots['residual_beta'].Fill(pz, \ recon_cov.get_beta(['x','y']) - mc_cov.get_beta(['x','y'])) tracker_plots['residual_emittance'].Fill(pz, \ recon_cov.get_emittance(['x','px','y','py']) - \ mc_cov.get_emittance(['x','px','y','py'])) tracker_plots['residual_momentum'].Fill(pz, \ recon_cov.get_momentum() - mc_cov.get_momentum()) mc_cov.clear() recon_cov.clear() def fill_plots_seeds(plot_dict, data_dict, hit_pairs) : """ Fill Plots with Track and Residual Data """ for scifi_track, virt_hit in hit_pairs : tracker_num = scifi_track.tracker() pz_bin = get_pz_bin( virt_hit.GetMomentum().z() ) if pz_bin >= PZ_BIN or pz_bin < 0 : continue if tracker_num == 0 : tracker = 'upstream' else : tracker = 'downstream' tracker_plots = plot_dict[tracker] scifi_pos = [scifi_track.GetSeedPosition().x(), \ scifi_track.GetSeedPosition().y(), scifi_track.GetSeedPosition().z()] scifi_mom = [scifi_track.GetSeedMomentum().x(), \ scifi_track.GetSeedMomentum().y(), scifi_track.GetSeedMomentum().z()] virt_pos = [virt_hit.GetPosition().x(), \ virt_hit.GetPosition().y(), virt_hit.GetPosition().z()] virt_mom = [virt_hit.GetMomentum().x(), \ virt_hit.GetMomentum().y(), virt_hit.GetMomentum().z()] res_pos = [ scifi_pos[0] - virt_pos[0], \ scifi_pos[1] - virt_pos[1], \ scifi_pos[2] - virt_pos[2] ] res_mom = [ scifi_mom[0] - virt_mom[0], \ scifi_mom[1] - virt_mom[1], \ scifi_mom[2] - virt_mom[2] ] res_gra = [ scifi_mom[0]/scifi_mom[2] - virt_mom[0]/virt_mom[2], \ scifi_mom[1]/scifi_mom[2] - virt_mom[1]/virt_mom[2] ] Pt_mc = math.sqrt( virt_mom[0] ** 2 + virt_mom[1] ** 2 ) P_mc = math.sqrt( virt_mom[0] ** 2 + virt_mom[1] ** 2 + virt_mom[2] ** 2 ) Pz_mc = virt_mom[2] Pt_recon = math.sqrt( scifi_mom[0] ** 2 + scifi_mom[1] ** 2 ) P_recon = math.sqrt( scifi_mom[0] ** 2 + scifi_mom[1] ** 2 + \ scifi_mom[2] ** 2 ) Pt_res = Pt_recon - Pt_mc P_res = P_recon - P_mc tracker_plots['seed_x_residual'].Fill(res_pos[0]) tracker_plots['seed_y_residual'].Fill(res_pos[1]) tracker_plots['seed_px_residual'].Fill(res_mom[0]) tracker_plots['seed_py_residual'].Fill(res_mom[1]) tracker_plots['seed_pz_residual'].Fill(res_mom[2]) tracker_plots['seed_mx_residual'].Fill(res_gra[0]) tracker_plots['seed_my_residual'].Fill(res_gra[1]) tracker_plots['seed_pt_residual'].Fill(Pt_res) tracker_plots['seed_p_residual'].Fill(P_res) tracker_plots['seed_pz_residual_pz'].Fill(Pz_mc, res_mom[2]) tracker_plots['seed_pt_residual_pt'].Fill(Pt_mc, Pt_res) tracker_plots['seed_pz_residual_pt'].Fill(Pt_mc, res_mom[2]) tracker_plots['seed_pt_residual_pz'].Fill(Pz_mc, Pt_res) tracker_plots['seed_p_residual_p'].Fill(P_mc, P_res) def analyse_plots(plot_dict, data_dict) : """ Use existing plots to perform some useful analysis """ # Print out some simple stats print print "There were:" print " {0:0.0f} Events".format( data_dict['counters']['number_events'] ) print " {0:0.0f} Upstream Tracks".format( \ data_dict['counters']['upstream']['number_tracks'] ) print " {0:0.0f} Downstream Tracks".format( \ data_dict['counters']['downstream']['number_tracks'] ) print " {0:0.0f} Upstream Vitual Tracks".format( \ data_dict['counters']['upstream']['number_virtual'] ) print " {0:0.0f} Downstream Virtual Tracks".format( \ data_dict['counters']['upstream']['number_virtual'] ) print " Excluded {0:0.0f} Upstream Tracks outside momentum window".format( \ data_dict['counters']['upstream']['momentum_cut'] ) print " Excluded {0:0.0f} Downstream Tracks outside momentum window".format(\ data_dict['counters']['upstream']['momentum_cut'] ) print print "Found {0:0.0f} Upstream Tracks of the wrong type".format( \ data_dict['counters']['upstream']['wrong_track_type'] ) print "Found {0:0.0f} Downstream Tracks of the wrong type".format( \ data_dict['counters']['downstream']['wrong_track_type'] ) print "Cut {0:0.0f} Upstream Tracks (P-Value Cut)".format( \ data_dict['counters']['upstream']['p_value_cut'] ) print "Cut {0:0.0f} Downstream Tracks (P-Value Cut)".format( \ data_dict['counters']['downstream']['p_value_cut'] ) print print "{0:0.0f} Upstream Tracks for analysis".format( \ data_dict['counters']['upstream']['number_candidates'] ) print "{0:0.0f} Downstream Tracks for analysis".format( \ data_dict['counters']['downstream']['number_candidates'] ) print print "Missed {0:0.0f} Upstream Virtual Hits".format( \ data_dict['counters']['upstream']['missing_virtuals'] ) print "Missed {0:0.0f} Downstream Virtual Hits".format( \ data_dict['counters']['downstream']['missing_virtuals'] ) print "Missed {0:0.0f} Upstream Reference Plane Hits".format( \ data_dict['counters']['upstream']['missing_reference_hits'] ) print "Missed {0:0.0f} Downstream Reference Plane Hits".format( \ data_dict['counters']['downstream']['missing_reference_hits'] ) print "Missed {0:0.0f} Upstream Tracks".format( \ data_dict['counters']['upstream']['missing_tracks'] ) print "Missed {0:0.0f} Downstream Tracks".format( \ data_dict['counters']['downstream']['missing_tracks'] ) print print "Matched {0:0.0f} Upstream Tracks".format( \ data_dict['counters']['upstream']['found_tracks'] ) print "Matched {0:0.0f} Downstream Tracks".format( \ data_dict['counters']['downstream']['found_tracks'] ) print print "Found {0:0.0f} Upstream Superfluous Track Events".format( \ data_dict['counters']['upstream']['superfluous_track_events'] ) print "Found {0:0.0f} Downstream Superfluous Track Events".format( \ data_dict['counters']['downstream']['superfluous_track_events'] ) print # Make the pretty plots for tracker in [ "upstream", "downstream" ] : for component in [ "x_", "y_", "r_", "px_", "py_", "pt_", "pz_", "p_" ] : for plot_axis in [ "residual_pt", "residual_pz", "residual_p" ] : plot = plot_dict[tracker][component+plot_axis] rms_error = array.array( 'd' ) bin_size = array.array( 'd' ) bins = array.array( 'd' ) rms = array.array( 'd' ) mean = array.array( 'd' ) mean_error = array.array( 'd' ) width = plot.GetXaxis().GetBinWidth(1) for i in range( 0, plot.GetXaxis().GetNbins() ) : projection = plot.ProjectionY( \ tracker+component+plot_axis+'_pro_'+str(i), i, (i+1) ) plot_mean = plot.GetXaxis().GetBinCenter( i ) + width pro_mean, pro_mean_err, pro_std, pro_std_err = \ analysis.tools.fit_gaussian(projection) bin_size.append( width*0.5 ) bins.append( plot_mean ) rms.append( pro_std ) rms_error.append( pro_std_err ) mean.append( pro_mean ) mean_error.append( pro_mean_err ) if len(bins) != 0 : resolution_graph = ROOT.TGraphErrors( len(bins), \ bins, rms, bin_size, rms_error ) bias_graph = ROOT.TGraphErrors( len(bins), \ bins, mean, bin_size, mean_error ) else : resolution_graph = None bias_graph = None plot_dict[tracker][component+plot_axis+'_resolution'] = \ resolution_graph plot_dict[tracker][component+plot_axis+'_bias'] = bias_graph for tracker in [ "upstream", "downstream" ] : # for component in [ "pt_", "pz_", ] : # for plot_axis in [ "residual_pt", "residual_pz" ] : for plot_name in [ "pt_residual_pt", "pt_residual_pz", "pz_residual_pt", \ "pz_residual_pz", "p_residual_p" ] : plot = plot_dict[tracker]['seed_'+plot_name] rms_error = array.array( 'd' ) bin_size = array.array( 'd' ) bins = array.array( 'd' ) rms = array.array( 'd' ) mean = array.array( 'd' ) mean_error = array.array( 'd' ) width = plot.GetXaxis().GetBinWidth(1) for i in range( 0, plot.GetXaxis().GetNbins() ) : projection = plot.ProjectionY( \ tracker+plot_name+'_pro_'+str(i), i, (i+1) ) plot_mean = plot.GetXaxis().GetBinCenter( i ) + width pro_mean, pro_mean_err, pro_std, pro_std_err = \ analysis.tools.fit_gaussian(projection) bin_size.append( width*0.5 ) bins.append( plot_mean ) rms.append( pro_std ) rms_error.append( pro_std_err ) mean.append( pro_mean ) mean_error.append( pro_mean_err ) if len(bins) != 0 : resolution_graph = ROOT.TGraphErrors( len(bins), \ bins, rms, bin_size, rms_error ) bias_graph = ROOT.TGraphErrors( len(bins), \ bins, mean, bin_size, mean_error ) else : resolution_graph = None bias_graph = None plot_dict[tracker]['seed_'+plot_name+'_resolution'] = resolution_graph plot_dict[tracker]['seed_'+plot_name+'_bias'] = bias_graph return data_dict if __name__ == "__main__" : ROOT.gROOT.SetBatch( True ) ROOT.gErrorIgnoreLevel = ROOT.kError parser = argparse.ArgumentParser( description='An example script showing '+\ 'some basic data extraction and analysis routines' ) parser.add_argument( 'maus_root_files', nargs='+', help='List of MAUS '+\ 'output root files containing reconstructed straight tracks') parser.add_argument( '-N', '--max_num_events', type=int, \ help='Maximum number of events to analyse.') parser.add_argument( '-O', '--output_filename', \ default='tracker_resolution_plots', help='Set the output filename') parser.add_argument( '-D', '--output_directory', \ default='./', help='Set the output directory') parser.add_argument( '-V', '--virtual_plane_dictionary', default=None, \ help='Specify a json file containing a dictionary of the '+\ 'virtual plane lookup' ) parser.add_argument( '-P', '--print_plots', action='store_true', \ help="Flag to save the plots as individual pdf files" ) parser.add_argument( '--cut_number_trackpoints', type=int, default=0, \ help="Specify the minumum number of trackpoints required per track" ) parser.add_argument( '--cut_p_value', type=float, default=0.0, \ help="Specify the P-Value below which tracks are removed from the analysis" ) parser.add_argument( '--track_algorithm', type=int, default=1, \ help="Specify the track reconstruction algorithm. "+\ "1 for Helical Tracks and 0 for Straight Tracks" ) parser.add_argument( '--ensemble_size', type=int, default=2000, \ help="Specify the size of the ensemble of particles "+\ "to consider per emittance measurement." ) parser.add_argument( '--pz_bin', type=float, default=PZ_BIN_WIDTH, \ help="Specify the size of the Pz bins which are used to select "+\ "particles for the reconstruction of optical functions." ) parser.add_argument( '--pz_window', type=float, nargs=2, \ default=[PZ_MIN, PZ_MAX], help="Specify the range of Pz to consider "+\ "for the reconstruction of optical functions." ) parser.add_argument( '--pt_bin', type=float, default=PT_BIN_WIDTH, \ help="Specify the size of the Pt bins which are used to select "+\ "particles for the reconstruction of optical functions." ) parser.add_argument( '--pt_window', type=float, nargs=2, \ default=[PT_MIN, PT_MAX], help="Specify the range of Pt to consider "+\ "for the reconstruction of optical functions." ) parser.add_argument( '--trackers', type=int, default=RECON_TRACKERS, \ nargs='+', help="Specifies the trackers to analyse" ) parser.add_argument( '--p_window', type=float, nargs=2, \ default=[P_MIN, P_MAX], help="Specify the range of the total " + \ "momentum to consider for analysis." ) parser.add_argument( '--max_gradient', type=float, default=MAX_GRADIENT, \ help='Specify the maximum gradient to analyse.' + \ ' This eliminates non-physical muons' ) parser.add_argument( '-C', '--save_corrections', action='store_true', \ help="Flag to create the correction matrix files" ) parser.add_argument( '--selection_file', default=None, \ help='Name of a JSON file containing the events to analyses' ) parser.add_argument( '--not_require_cluster', action="store_true", \ help="Don't require a cluster in the reference plane" ) # parser.add_argument( '-C', '--configuration_file', help='Configuration '+\ # 'file for the reconstruction. I need the geometry information' ) try : namespace = parser.parse_args() EXPECTED_HELIX_TRACKPOINTS = namespace.cut_number_trackpoints EXPECTED_STRAIGHT_TRACKPOINTS = namespace.cut_number_trackpoints P_VALUE_CUT = namespace.cut_p_value TRACK_ALGORITHM = namespace.track_algorithm ENSEMBLE_SIZE = namespace.ensemble_size if namespace.not_require_cluster : REQUIRE_DATA = False RECON_TRACKERS = namespace.trackers P_MIN = namespace.p_window[0] P_MAX = namespace.p_window[1] MAX_GRADIENT = namespace.max_gradient PZ_MIN = namespace.pz_window[0] PZ_MAX = namespace.pz_window[1] PZ_BIN_WIDTH = namespace.pz_bin PT_MIN = namespace.pt_window[0] PT_MAX = namespace.pt_window[1] PT_BIN_WIDTH = namespace.pt_bin if namespace.selection_file is not None : SELECT_EVENTS = True with open(namespace.selection_file, 'r') as infile : GOOD_EVENTS = json.load(infile) else : SELECT_EVENTS = False if namespace.virtual_plane_dictionary is not None : VIRTUAL_PLANE_DICT = analysis.tools.load_virtual_plane_dict( \ namespace.virtual_plane_dictionary ) except BaseException as ex: raise else : ##### 1. Load MAUS globals and geometry. - NOT NECESSARY AT PRESENT # geom = load_tracker_geometry(namespace.configuration_file) ##### 2. Intialise plots ###################################################### print sys.stdout.write( "\n- Initialising Plots : Running\r" ) sys.stdout.flush() plot_dict, data_dict = init_plots_data() sys.stdout.write( "- Initialising Plots : Done \n" ) file_reader = event_loader.maus_reader(namespace.maus_root_files) ##### 3. Initialise Plane Dictionary ########################################## if VIRTUAL_PLANE_DICT is None : sys.stdout.write( "\n- Finding Virtual Planes : Running\r" ) sys.stdout.flush() virtual_plane_dictionary = create_virtual_plane_dict(file_reader) VIRTUAL_PLANE_DICT = virtual_plane_dictionary sys.stdout.write( "- Finding Virtual Planes : Done \n" ) INVERSE_PLANE_DICT = inverse_virtual_plane_dict(VIRTUAL_PLANE_DICT) file_reader.select_events(GOOD_EVENTS) file_reader.set_max_num_events(namespace.max_num_events) file_reader.set_print_progress('spill') ##### 4. Load Events ########################################################## print "\n- Loading Spills...\n" try : while file_reader.next_selected_event() : try : scifi_event = file_reader.get_event( 'scifi' ) mc_event = file_reader.get_event( 'mc' ) ##### 5. Extract tracks and Fill Plots ######################################## paired_hits, seed_pairs = make_scifi_mc_pairs(plot_dict, data_dict, \ VIRTUAL_PLANE_DICT, scifi_event, mc_event) fill_plots(plot_dict, data_dict, paired_hits) fill_plots_seeds(plot_dict, data_dict, seed_pairs) except ValueError as ex : print "An Error Occured: " + str(ex) print "Skipping Event: " +\ str(file_reader.get_current_event_number()) + " In Spill: " + \ str(file_reader.get_current_spill_number()) + " In File: " + \ str(file_reader.get_current_filenumber()) + "\n" continue except KeyboardInterrupt : print print " ### Keyboard Interrupt ###" print print "- {0:0.0f} Spills Loaded ".format( \ file_reader.get_total_num_spills()) ##### 6. Analysing Plots ###################################################### print"\n- Analysing Data...\n" analyse_plots(plot_dict, data_dict) ##### 7. Saving Plots and Data ################################################ sys.stdout.write( "\n- Saving Plots and Data : Running\r" ) sys.stdout.flush() # save_pretty(plot_dict, namespace.output_directory ) # save_plots(plot_dict, namespace.output_directory, \ # namespace.output_filename, namespace.print_plots) filename = os.path.join(namespace.output_directory, \ namespace.output_filename) analysis.tools.save_plots(plot_dict, filename+'.root') if namespace.save_corrections : UP_CORRECTION.save_full_correction(filename+'_up_correction.txt') DOWN_CORRECTION.save_full_correction(filename+'_down_correction.txt') UP_CORRECTION.save_R_matrix(filename+'_up_correction-R.txt') UP_CORRECTION.save_C_matrix(filename+'_up_correction-C.txt') DOWN_CORRECTION.save_R_matrix(filename+'_down_correction-R.txt') DOWN_CORRECTION.save_C_matrix(filename+'_down_correction-C.txt') sys.stdout.write( "- Saving Plots and Data : Done \n" ) print print "Complete." print