/* specfunc/bessel_Knu.c * * Copyright (C) 1996, 1997, 1998, 1999, 2000 Gerard Jungman * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 3 of the License, or (at * your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ /* Author: G. Jungman */ #include <config.h> #include <gsl/gsl_math.h> #include <gsl/gsl_errno.h> #include <gsl/gsl_sf_exp.h> #include <gsl/gsl_sf_gamma.h> #include <gsl/gsl_sf_bessel.h> #include "error.h" #include "bessel.h" #include "bessel_temme.h" /*-*-*-*-*-*-*-*-*-*-*-* Functions with Error Codes *-*-*-*-*-*-*-*-*-*-*-*/ int gsl_sf_bessel_Knu_scaled_e(const double nu, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0 || nu < 0.0) { DOMAIN_ERROR(result); } else { gsl_sf_result_e10 result_e10; int status = gsl_sf_bessel_Knu_scaled_e10_e(nu, x, &result_e10); int status2 = gsl_sf_result_smash_e(&result_e10, result); return GSL_ERROR_SELECT_2(status, status2); } } int gsl_sf_bessel_Knu_scaled_e10_e(const double nu, const double x, gsl_sf_result_e10 * result) { /* CHECK_POINTER(result) */ if(x <= 0.0 || nu < 0.0) { DOMAIN_ERROR_E10(result); } else { int N = (int)(nu + 0.5); double mu = nu - N; /* -1/2 <= mu <= 1/2 */ double K_mu, K_mup1, Kp_mu; double K_nu, K_nup1, K_num1; int n, e10 = 0; if(x < 2.0) { gsl_sf_bessel_K_scaled_temme(mu, x, &K_mu, &K_mup1, &Kp_mu); } else { gsl_sf_bessel_K_scaled_steed_temme_CF2(mu, x, &K_mu, &K_mup1, &Kp_mu); } /* recurse forward to obtain K_num1, K_nu */ K_nu = K_mu; K_nup1 = K_mup1; for(n=0; n<N; n++) { K_num1 = K_nu; K_nu = K_nup1; /* rescale the recurrence to avoid overflow */ if (fabs(K_nu) > GSL_SQRT_DBL_MAX) { double p = floor(log(fabs(K_nu))/M_LN10); double factor = pow(10.0, p); K_num1 /= factor; K_nu /= factor; e10 += p; }; K_nup1 = 2.0*(mu+n+1)/x * K_nu + K_num1; } result->val = K_nu; result->err = 2.0 * GSL_DBL_EPSILON * (N + 4.0) * fabs(result->val); result->e10 = e10; return GSL_SUCCESS; } } int gsl_sf_bessel_Knu_e(const double nu, const double x, gsl_sf_result * result) { gsl_sf_result b; int stat_K = gsl_sf_bessel_Knu_scaled_e(nu, x, &b); int stat_e = gsl_sf_exp_mult_err_e(-x, 0.0, b.val, b.err, result); return GSL_ERROR_SELECT_2(stat_e, stat_K); } int gsl_sf_bessel_lnKnu_e(const double nu, const double x, gsl_sf_result * result) { /* CHECK_POINTER(result) */ if(x <= 0.0 || nu < 0.0) { DOMAIN_ERROR(result); } else if(nu == 0.0) { gsl_sf_result K_scaled; /* This cannot underflow, and * it will not throw GSL_EDOM * since that is already checked. */ gsl_sf_bessel_K0_scaled_e(x, &K_scaled); result->val = -x + log(fabs(K_scaled.val)); result->err = GSL_DBL_EPSILON * fabs(x) + fabs(K_scaled.err/K_scaled.val); result->err += GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } else if(x < 2.0 && nu > 1.0) { /* Make use of the inequality * Knu(x) <= 1/2 (2/x)^nu Gamma(nu), * which follows from the integral representation * [Abramowitz+Stegun, 9.6.23 (2)]. With this * we decide whether or not there is an overflow * problem because x is small. */ double ln_bound; gsl_sf_result lg_nu; gsl_sf_lngamma_e(nu, &lg_nu); ln_bound = -M_LN2 - nu*log(0.5*x) + lg_nu.val; if(ln_bound > GSL_LOG_DBL_MAX - 20.0) { /* x must be very small or nu very large (or both). */ double xi = 0.25*x*x; double sum = 1.0 - xi/(nu-1.0); if(nu > 2.0) sum += (xi/(nu-1.0)) * (xi/(nu-2.0)); result->val = ln_bound + log(sum); result->err = lg_nu.err; result->err += 2.0 * GSL_DBL_EPSILON * fabs(result->val); return GSL_SUCCESS; } /* can drop-through here */ } { /* We passed the above tests, so no problem. * Evaluate as usual. Note the possible drop-through * in the above code! */ gsl_sf_result_e10 K_scaled; int status = gsl_sf_bessel_Knu_scaled_e10_e(nu, x, &K_scaled); result->val = -x + log(fabs(K_scaled.val)) + K_scaled.e10 * M_LN10; result->err = GSL_DBL_EPSILON * fabs(x) + fabs(K_scaled.err/K_scaled.val); result->err += GSL_DBL_EPSILON * fabs(result->val); return status; } } /*-*-*-*-*-*-*-*-*-* Functions w/ Natural Prototypes *-*-*-*-*-*-*-*-*-*-*/ #include "eval.h" double gsl_sf_bessel_Knu_scaled(const double nu, const double x) { EVAL_RESULT(gsl_sf_bessel_Knu_scaled_e(nu, x, &result)); } double gsl_sf_bessel_Knu(const double nu, const double x) { EVAL_RESULT(gsl_sf_bessel_Knu_e(nu, x, &result)); } double gsl_sf_bessel_lnKnu(const double nu, const double x) { EVAL_RESULT(gsl_sf_bessel_lnKnu_e(nu, x, &result)); }