
MAUS Analysis User System
User Guide

1

Contents

1 What Who and How? 3
1.1 Who Should Use MAUS . 3
1.2 Getting the Code and Installing MAUS 3
1.3 Citing MAUS . 3
1.4 Running MAUS . 4

1.4.1 Run Control . 4
1.4.2 Other Applications . 5
1.4.3 Choosing the Unpacker Version 5

1.5 Accessing Data . 5
1.5.1 Loading ROOT Files in Python Using PyROOT 5
1.5.2 Loading ROOT Files in C++ Compiled Analysis Code . . 6
1.5.3 Loading ROOT Files on the ROOT Command Line . . . 6

2 Using and Modifying the Data Structure 8
2.1 Metadata . 8
2.2 The Spill Datastructure . 10
2.3 Image Datastructure . 11
2.4 Accessing ROOT files . 12
2.5 Conversion to, and Working With, JSON 12
2.6 Extending the Data Structure . 12

2.6.1 Pointer Handling . 13

3 Introduction to the MAUS API 15
3.1 Motivation . 15
3.2 Everything starts with a ‘Module’ 15
3.3 Inheritance . 16
3.4 Data Mangling . 16
3.5 Module Initialisation and Destruction 16
3.6 Global Objects - Objects for Many Modules 17

3.6.1 Global Object Initialisation 17
3.7 Internal Classes . 17

3.7.1 Abstraction Layers . 17
3.7.2 C++ Python Wrapper . 18
3.7.3 Data Mangling . 18

4 Utilities 19
4.1 Logging . 19

2

5 Running the Monte Carlo 21
5.1 Beam Generation . 21

5.1.1 Beam Polarisation . 22
5.1.2 Amplitude Momentum Correlation 22

5.2 Getting the Right Answer . 22
5.2.1 Geometry . 28
5.2.2 Tracking . 28
5.2.3 Energy Deposition and Showering 28

5.3 GEANT4 Bindings . 29

6 Geometry 35
6.1 Geometry Access Scripts . 36
6.2 Using the Geometry Download Executables 37
6.3 A Little GDML . 40

6.3.1 Define . 41
6.3.2 Materials . 41
6.3.3 Solids . 41
6.3.4 Structure . 41
6.3.5 Additional Features and Sensitive Detectors 41

6.4 Creation of New Geometries in MAUS 42

7 How to Define a Geometry 43
7.0.1 Configuration File . 43
7.0.2 Module Files . 45
7.0.3 Volume and Dimensions 45
7.0.4 Properties . 46
7.0.5 Child Modules . 46
7.0.6 Module Hierarchy and GEANT4 Physical Volumes 46
7.0.7 A Sample Configuration File 47
7.0.8 A Sample Child Module File 48

8 Geometry and Tracking MiceModule Properties 49
8.1 General Properties . 49
8.2 Sensitive Detectors . 49

8.2.1 Scintillating Fibre Detector (SciFi) 50
8.2.2 Cerenkov Detector (CKOV) 50
8.2.3 Time Of Flight Counter (TOF) 50
8.2.4 Special Virtual Detectors 50
8.2.5 Virtual Detectors . 50
8.2.6 Envelope Detectors . 51

8.3 Unconventional Volumes . 53
8.3.1 Trapezoid Volume . 53
8.3.2 Volume Wedge . 53
8.3.3 Volume Polycone . 53
8.3.4 Volume Quadrupole . 53
8.3.5 Volume Multipole . 54
8.3.6 Volume Boolean . 54
8.3.7 Volume Sphere . 55

8.4 Repeating Modules . 55
8.5 Beam Definition and Beam Envelopes 56

3

8.6 Optimiser . 59

9 Field Properties 61
9.0.1 FieldType CylindricalField 61
9.0.2 FieldType RectangularField 61
9.0.3 FieldType Solenoid . 62
9.0.4 FieldType FieldAmalgamation 62
9.0.5 FieldType DerivativesSolenoid 63
9.0.6 Phasing Models . 63
9.0.7 Tracking Stability Around RF Cavities 64
9.0.8 FieldType PillBox . 64
9.0.9 FieldType RFFieldMap 65
9.0.10 FieldType Multipole . 65
9.0.11 FieldType CombinedFunction 66
9.0.12 EndFieldTypes . 67
9.0.13 FieldType MagneticFieldMap 67

10 TOF Detector 70
10.1 Simulation . 70

10.1.1 Digitization . 71
10.2 Reconstruction . 71
10.3 Database . 74

11 The Trackers 75
11.1 Introduction . 75

11.1.1 Overview . 75
11.1.2 Quick start guide . 75

11.2 Definitions . 76
11.2.1 Labelling of upstream and downstream trackers 76
11.2.2 Station numbering . 76
11.2.3 Doublet layer . 77
11.2.4 Fibre-channel numbering 77

11.3 Reference surfaces and coordinate systems 80
11.3.1 Doublet layer . 80
11.3.2 Station . 80
11.3.3 Tracker . 81
11.3.4 Coordinate transformations 81

11.4 Reconstruction Algorithms . 81
11.4.1 Hits and clusters . 81
11.4.2 Space-point reconstruction 83
11.4.3 Pattern recognition . 85
11.4.4 Track fit . 91

11.5 Data structure . 91
11.6 Code Design . 91

11.6.1 General Code Structure 91
11.6.2 Tracker configuration variables 96

11.7 The Monte Carlo . 97
11.7.1 Station Geometry . 97
11.7.2 MC VLPC Dark Count 97
11.7.3 Building Digits . 97

4

12 Global Track Matching 98
12.1 Introduction . 98
12.2 Purpose . 98
12.3 Process . 98

12.3.1 4th Order Runge-Kutta Propagation 98
12.3.2 TOF1, TOF2, KL . 99
12.3.3 TOF0 . 99
12.3.4 Cherenkov Detectors . 99
12.3.5 EMR . 99
12.3.6 Upstream-Downstream Matching 99

12.4 Usage . 100
12.5 Configuration . 100

13 Global PID 101
13.1 Introduction . 101

13.1.1 Using the PID scripts . 101
13.1.2 Producing PDFs . 101

13.2 MapCppGlobalPID and ReduceCppGlobalPID 105
13.2.1 MapCppGlobaPID . 105

13.3 ReduceCppGlobalPID . 105
13.4 PID Variables . 106

13.4.1 PID Base Class . 106
13.4.2 PID Variable Classes . 107

14 The Envelope Tool 111
14.1 Example Usage . 111
14.2 Envelope Tool main window . 111
14.3 Beam Setup . 111
14.4 Magnet Setup . 112
14.5 Plot Setup . 113

15 G4beamline-MAUS Integration 114

16 Appendix C: Tracker Appendices 116
16.1 Kuno’s Conjecture . 116
16.2 Space-point variance . 116
16.3 Circle parameters from three points 120
16.4 Helical Track Pattern Recognition 122

5

Chapter 1

What Who and How?

MAUS (MICE Analysis User Software) is the MICE project’s tracking, detector
reconstruction and accelerator physics analysis framework. MAUS is designed
to fulfil a number of functions for physicists interested in studying MICE data:

• Model the behaviour of particles traversing MICE

• Model the MICE detector’s electronics response to particles

• Perform pattern recognition to reconstruct particle trajectories from elec-
tronics output

• Provide a framework for high level accelerator physics analysis

• Provide online diagnostics during running of MICE

In addition to MAUS’s role within MICE, the code is also used for generic
accelerator development, in particular for the Neutrino Factory.

1.1 Who Should Use MAUS
MAUS is intended to be used by physicists interested in studying the MICE
data. MAUS is designed to function as a general tool for modelling particle
accelerators and associated detector systems. The modular system, described
in the API section, makes MAUS suitable for use by any accelerator or detector
group wishing to perform simulation or reconstruction work.

1.2 Getting the Code and Installing MAUS
Installation is described in a separate document, available at http://micewww.
pp.rl.ac.uk/projects/maus/wiki/Install

1.3 Citing MAUS
MAUS should be cited according to the guidelines in the file CITATION.

6

http://micewww.pp.rl.ac.uk/projects/maus/wiki/Install
http://micewww.pp.rl.ac.uk/projects/maus/wiki/Install

1.4 Running MAUS
MAUS contains several applications to perform various tasks. Two main appli-
cations are provided. bin/simulate_mice.py makes a Monte Carlo simulation
of the experiment and bin/analyze_data_offline.py reconstructs an existing
data file. Start a clean shell and move into the top level MAUS directory. Then
type

> source env.sh
> ${MAUS_ROOT_DIR}/bin/simulate_mice.py
> ${MAUS_ROOT_DIR}/bin/analyze_data_offline.py

1.4.1 Run Control
The routines can be controlled by a number of settings that enable users to
specify run configurations, as specified in this document. Most control variables
can be controlled directly from the comamnd line, for example doing

> ${MAUS_ROOT_DIR}/bin/simulate_mice.py \
--simulation_geometry_filename Test.dat

to run the Monte Carlo against a given geometry. As another example, it is
possible to run the data reconstruction against a given run

> cd ${MAUS_ROOT_DIR}
> ${MAUS_ROOT_DIR}/bin/analyze_data_offline.py \

--daq_data_file 02873 \
--daq_data_path src/input/InputCppDAQData

This will run against data in run 02873 looking for files in directory src/input/InputCppDAQData.
To get a (long) list of all command line variables use the -h switch.

> ${MAUS_ROOT_DIR}/bin/simulate_mice.py -h

More complex control variables can be controlled using a configuration file,
which contains a list of configuration options.

> ${MAUS_ROOT_DIR}/bin/simulate_mice.py --configuration_file config.py

where a sample configuration file for the example above might look like

simulation_geometry_filename = "Test.dat"

Note that where on the command line a tag like --variable value was used,
in the configuration file variable = "value" is used. In fact the configuration
file is a python script. When loaded, MAUS looks for variables in it’s variable
list and loads them in as configuration options. Other variables are ignored.
This gives users the full power of a scripting language while setting up run
configurations. For example, one might choose to use a different filename,

import os
simulation_geometry_filename = os.path.join(

os.environ["MICEFILES"]
"Models/Configurations/Test.dat"

)

7

This configuration will then load the file at $MICEFILES/Models/Configurations/Test.dat
The default configuration file can be found at src/common_py/ConfigurationDefaults.py

which contains a list of all possible configuration variables and is loaded by de-
fault by MAUS. Any variables not specified by the user are taken from the
configuration defaults.

1.4.2 Other Applications
There are several other applications in the bin directory and associated subdi-
rectories.

• bin/examples contains example scripts for accessing a number of useful
features of the API

• bin/utilities contains utility functions that perform a number of useful
utilities to do with data manipulation, etc

• bin/user contains analysis functions that our users have found useful, but
are not necessarily thoroughly tested or documented

• bin/publications contains analysis code used for writing a particular
(MICE) publication

1.4.3 Choosing the Unpacker Version
The unpacker is the third party library shipped with MAUS used to unpack the
MICE DAQ binary data. It comes in two versions, one for Step I data and one
for Step IV data. The current default unpacker version is Step IV. In order to
switch unpacker versions, set up the MAUS environment, and source (not run)
the script switch_unpacker.bash in the MAUS root directory supplying either
StepI or StepIV as an argument, depending on the unpacker needed. This will
then build the correct unpacker, clean and rebuild MAUS, modify env.sh and
test the new configuration.

1.5 Accessing Data
By default, MAUS writes data as a ROOT file. ROOT is a widely available high
energy physics data analysis library, available from ’’http://root.cern.ch’’
and prepacked with the MAUS third party libraries. Two techniques are foreseen
for accessing the data, either using PyRoot python interface or using a compiled
C++ binary. Some mention of ROOT cint scripting tools is made below, but
this is not supported by MAUS developers beyond the most basic usage.

1.5.1 Loading ROOT Files in Python Using PyROOT
The standard scripting tool in MAUS is python. The ROOT data structure can
be loaded in python using the PyROOT package. An example of how to perform
a simple analysis with PyROOT is available in bin/examples/load_root_file.py.
This example runs the reconstruction code to produce an output data file
${MAUS_ROOT_DIR}/tmp/example_load_root_file.root and then runs a toy
analysis that plots digits at TOF1 for plane 0 and plane 1. This example pro-
duces two histograms, tof1_digits_0_load_root_file.png and tof1_digits_1_load_root_file.png.

8

''http://root.cern.ch''

1.5.2 Loading ROOT Files in C++ Compiled Analysis
Code

The ROOT data structure can be loaded in C++ by compiling the Make file
found in bin/examples/load_root_file_cpp/Makefile. This compiles the
sample analysis in bin/examples/load_root_file_cpp/load_root_file.cc.
For example,

$ source env.sh
$ cd ${MAUS_ROOT_DIR}/bin/examples
$ python load_root_file.py
$ cd ${MAUS_ROOT_DIR}/bin/examples/load_root_file_cpp/
$ make clean
$ make
$./load_root_file

This example performs a simple analysis against the data file generated by
load_root_file.py, which is identical to the analysis performed by load_root_file.py.
The executable produces two histograms, tof1_digits_0_load_root_file_cpp.png
and tof1_digits_1_load_root_file_cpp.png; they should be identical to the
histograms produced by load_root_file.py.

1.5.3 Loading ROOT Files on the ROOT Command Line
One can load ROOT files from the command line using the ROOT interac-
tive display. It is first necessary to load the MAUS class dictionary. Then
The TBrowser ROOT GUI can be used to browse to the desired location and
interrogate the data structure interactively. For example,

$ source env.sh
$ root

* *
* W E L C O M E to R O O T *
* *
* Version 5.30/03 20 October 2011 *
* *
* You are welcome to visit our Web site *
* http://root.cern.ch *
* *

ROOT 5.30/03 (tags/v5-30-03@41540, Oct 24 2011, 11:51:36 on linuxx8664gcc)

CINT/ROOT C/C++ Interpreter version 5.18.00, July 2, 2010
Type ? for help. Commands must be C++ statements.
Enclose multiple statements between { }.
root [0] .L $MAUS_ROOT_DIR/build/libMausCpp.so
root [1] TBrowser b

9

Note: ROOT infrastructure can only be used to plot data nested within up
to two dynamic arrays. Data nested in three or more dynamic arrays is beyond
the capabilities of ROOT interactive plotting tools; explicit loops over the data
are required in a PyROOT script or C++ code. In general, working through
the ROOT command line or ROOT macros is notoriously unreliable and is not
supported by the MAUS development team; it is useful as a basic check of data
integrity and no more.

More information on the data is available in the data structure chapter 2.

10

Chapter 2

Using and Modifying the
Data Structure

MAUS operates on data in discrete blocks, primarily spills, with one spill repre-
senting the particle burst generated by one dip of the MICE target. Additionally,
MAUS can write data into a JobHeader, RunHeader, RunFooter and JobFooter
data type. Histograms for plotting in online mode are encoded into an Image
data type. The top level branch in the data tree inherits from MAUSEvent<T>,
defined in src/common_cpp/DataStructure/MAUSEvent.hh (C++) with type
identified by GetEventType() string; in JSON the top level branch always has
a maus_event_type member which is a string value corresponding to the out-
put of MAUSEvent<T>::GetEventType(). A summary of configuration cards
affecting Input, Output and data structure is shown below.

2.1 Metadata
Job metadata is stored in JobHeader and JobFooter data structures. (Data)
Run metadata is stored in RunHeader and RunFooter data structures. The
JobHeader is created at the start and end of an execution of the code and
stores data on datacards, bzr state and so forth. The RunHeader is created at
the start of each run and stores per run metadata such as the calibrations and
cablings used. One RunHeader and RunFooter is written for each process in the
entire transform and merge execution structure; so in multithreading mode this
would yield one RunHeader and RunFooter for each Celery subprocess (which
runs the Input/Transform) and an additional RunHeader and RunFooter for
the merge/output process. In single threaded mode a single RunHeader and
RunFooter is generated. The RunFooter and JobFooter are created at the end of
the run and store run and job summary information. For more details on writing
to these metadata types and multithreading modes, please see the section on
API.

The Metadata is stored in ROOT in trees separate to the main Spill data
tree. In JSON, these data are stored as separate lines often at the start and end
of the run, and distinguished by the maus_event_type branch in the root. The
structure of a MAUS output file is shown below.

11

Table 2.1: I/O control variables.

Name Meaning
input_root_file_name Set the file name used for reading input files by In-

putCppRoot module
output_root_file_name Set the file name used for writing output files by

OutputCppRoot module
end_of_run_output
_root_directory

Set target directory for end of run file placement.
The user must ensure that this directory exists or
MAUS will throw an exception.

output_root_file_mode Controls how root files are handled across mul-
tiple run numbers. Set to one_big_file to
put everything into one big file with file name
given by output_root_file_name. Set to
one_file_per_run to split the filename by the
trailing ‘.’ and insert the run number, for each
run. For example, output.root would become
output_999.root for run number 999. Set to
end_of_run_file_per_run to place in a directory
specified by end_of_run_output_root_directory.
Data from each run will be placed in a sub-
directory specified by the run number, and a
file specified by the output_root_file_name
within that directory. MAUS will create the
run number directory if one does not exist but
not the end_of_run_output_root_directory.
So in the example above, if
end_of_run_output_root_directory is
end_of_run files will be placed like
./end_of_run/999/output.root

input_json_file_name Set the file name used for reading input files by In-
putPyJSON module

input_json_file_type Set to gzip to read input from a gzipped file; set to
text to read input from a plain text file

output_json_file_name Set the file name used for writing output files by
OutputPyJSON module

output_json_file_type Set to gzip to write output as a gzipped file; set to
text to write output as a plain text file

header_and_footer_mode Set to append to write out job and run headers and
footers; set to dont_append to suppress this output.

12

Figure 2.1: The MAUS file structure including metadata. The top label in each
box describes the representation in C++/ROOT. The bottom label describes
the representation in JSON.

2.2 The Spill Datastructure
The major part of the MAUS data structure therefore is a tree of which each en-
try corresponds to the data associated with one spill. The spill is separated into
three main sections: the MCEventArray contains an array of data each member
of which represents the Monte Carlo of a single primary particle crossing the
system; the ReconEventArray contains an array of data each member of which
corresponds to a particle event (i.e. set of DAQ triggers); and the DAQData
corresponds to the raw data readout. Additionally there are branches for re-
constructed scalars, which are handled spill by spill and EMR data, which also
read out on the spill rather than event by event.

Figure 2.2: The MAUS output structure for a spill event. The top label in each
box is the name of the C++ class and the bottom label is the json branch name.
If a [] is shown, this indicates that child objects are array items.

The MCEvent is subdivided into sensitive detector hits and some pure Monte
Carlo outputs. The primary that led to data being created is held in the Pri-
mary branch. Here the random seed, primary position momentum and so forth
is stored. Sensitive detector hits have Hit data (energy deposited, position, mo-
mentum, etc) and a detector specific ChannelId that represents the channel of
the detector that was hit - e.g. for TOF this indexes the slab, plane and station.
Virtual hits are also stored - these are not sensitive detector hits, rather output
position, momenta etc of particles that cross a particular plane in space, time
or proper time is recorded. Note virtual hits do not inherit from the Hit class
and have a slightly different data structure.

The ReconEvent and DAQEvents are subdivided by detector. ReconEvents
contain reconstructed particle data for each detector and the trigger. There
is an additional branch that contains global reconstruction output, that is the
track fitting between detectors.

The data can be written in two formats. The main data format is a ROOT

13

binary format. This requires the ROOT package to read and write, which is a
standard analysis/plotting package in High Energy Physics and is installed by
the MAUS build script. The secondary data format is JSON. This is an ascii
data-tree format that in principle can be read by any text editor. Specific JSON
parsers are also available - for example, the python json module is available and
comes prepackaged with MAUS.

2.3 Image Datastructure
There is a final data type that MAUS handles, the Image type. The Image data
structure is written by ReducePyMatplotHistogram and ReducePyROOTHis-
togram data types. Image data is only available in JSON format. The data
structure is shown in Fig. 2.3.

Figure 2.3: The MAUS output structure for an Image event. The top label in
each box is the name of the JSON branch and the bottom label is the data type.
If a [] is shown, this indicates that child objects are array items. Note there is
no C++ implementation of Image events

Each document contains a maus_event_type that should always be Image,
and a list of images; the image data is encoded as a base 64 image and other
data associated with the image is stored alongside. The tag names the image,
while image_type describes the data format (png, jpeg, etc). OutputPyImage
stores data with image_type.tag as the file name. description contains a
description of the file and keywords describes a list of key phrases that can be
used when searching.

14

2.4 Accessing ROOT files
For details on how to access the ROOT files, please see the introduction section
of this document.

2.5 Conversion to, and Working With, JSON
MAUS also provides output in the JSON data format. This is an ascii format
with IO libraries available for C++, Python and other languages. Two utilities
are provided to perform conversions, bin/utilities/json_to_root.py and
bin/utilities/root_to_json.py for conversion from and to JSON format
respectively. JSON Input and Output modules are provided, InputPyJson and
OutputPyJson.

An example json analysis is available in bin/examples/load_json_file.py/

2.6 Extending the Data Structure
The data structure can be extended in MAUS by adding extra classes to the ex-
isting data structure. The data classes are in src/common_cpp/DataStructure.
In order to make these classes accessible to ROOT, the following steps must be
taken:

• Add a new class in src/common_cpp/DataStructure.

• Ensure that default constructor, copy constructor, equality operator and
destructor is present. The destructor must be virtual.

• Add #include "src/common_cpp/Utils/VersionNumber.hh" and a call
to the MAUS_VERSIONED_CLASS_DEF() macro at the end of the class def-
inition before the closing braces. MAUS_VERSIONED_CLASS_DEF calls the
ROOT ClassDef() macro which generates metaclasses based on informa-
tion in the class. This is put into the (dynamically generated) MausDataStructure.h,cc
files.

• Add the class to the list of classes in src/common_cpp/DataStructure/LinkDef.hh.
This is required for the class to be linked properly to the main library, and
a linker error will result if this step is not taken.

• Add any template definitions which you used, including STL classes (e.g.
std::vector<MyClass> or whatever) to linkdef. Otherwise ROOT will
generate a segmentation fault whenever the user tries to call functions of
the templated class (but the code will link successfully in this case).

In order to make these classes accessible to JSON, it is necessary to add a new
processor in src/common_cpp/JsonCppProcessors. There are a few default
processors available.

• src/common_cpp/JsonCppProcessors/ProcessorBase.hh contains IPro-
cessor pure interface class for all processors and ProcessorBase base class
(which may contain some implementation)

15

• src/common_cpp/JsonCppProcessors/PrimitivesProcessors.hh contains
processors for primitive types; BoolProcessor, IntProcessor, UIntProces-
sor, StringProcessor, DoubleProcessor

• src/common_cpp/JsonCppProcessors/ArrayProcessors.hh contains pro-
cessors for array types. Two processors are available: PointerArrayPro-
cessor which converts an STL vector of pointers to data; and ValueAr-
rayProcessor which converts an STL vector of values to data.

• src/common_cpp/JsonCppProcessors/ObjectProcessor.hh contains a pro-
cessor for object types. Most of the classes in the MAUS data structure
are represented in JSON as objects (string value pairs) where each string
names a branch and each value contains data, which may be another class.

• src/common_cpp/JsonCppProcessors/ObjectMapProcessors.hh contains
a processor for converting from JSON objects to STL maps. This is useful
for JSON objects that contain lots of branches all of the same type.

A script, bin/user/json_branch_to_data_structure_and_cpp_processor.py
is available that analyses a JSON object or JSON tree of nested objects and
converts to C++ classes. The script is provided "as-is" and it is expected that
developers will check the output, adding comments and tests where appropriate.

2.6.1 Pointer Handling
MAUS can handle pointers for arrays and classes using ROOT native support
(via the TRef and TRefArray classes) or the standard JSON reference syntax.
JSON references are indexed by a path relative to the root value of a JSON doc-
ument. JSON references are formatted like URIs, for example the JSON object
{"$ref":"#spill/recon_events/1"} would index the second recon_event in
the spill object (indexing from 0). MAUS can only handle paths relative to the
top level of the JSON document for the same MAUS event. Absolute URIs,
URIs relative to another position in the JSON document or URIs to another
MAUS event are not supported.

In MAUS, it is necessary to make a distinction between data that is stored
as a value in C++ and JSON (value-as-data), data that is stored as a pointer
in C++ and a value in JSON (pointer-as-data) and data that is stored as a
pointer in C++ and JSON to some other data in the same tree (pointer-as-
reference). In the latter case, the C++ parent object does not own the memory;
rather it is owned by some other object in the same tree and borrowed by the
C++ object holding the pointer-as-reference. The TRef and TRefArray classes
provide this functionality by default; never owning the memory but only storing
a relevant pointer. All objects referenced by a TRef or TRefArray must inherit
from TObject. ROOT handles all memory management while writing to and
reading from ROOT files, and the order of reading is unimportant, as long as
both reference and value have been read before the reference is used.

Pointers-as-data are converted between JSON arrays and C++ objects using
the ObjectProcessor<ParentType>::RegisterPointerBranch<ChildType>method.
This takes a Processor for the ChildType as an argument. For C++ arrays / vec-
tors, the Processor argument is instead a PointerArrayProcessor<ArrayContents>.
Pointers-as-reference (TRef and TRefArray) are converted using the ObjectProcessor<ParentType>::RegisterTRef
and ObjectProcessor<ParentType>::RegisterTRefArraymethods respectively.

16

Other equivalent data formats, for example YAML, use a unique identifier to
reference a pointer-as-reference and store the pointer-as-data in a reserved part
of the data tree. There are some consequences of storing pointers-as-reference
using the path to a pointer-as-data as implemented in MAUS.

• The user must specify which data is the primary data source (pointer-as-
data) and which data is a cross reference (pointer-as-reference).

• Pointers-as-reference are position dependent. If the associated pointer-
as-data is moved the pointer-as-reference can no longer be resolved. For
example, inserting an element into an array can cause misalignment of
pointers-as-reference.

• Pointer data will always be available at the location of the pointer-as-data
in the JSON tree, even when using a parser that is not pointer aware.

• A unique identifier type algorithm can be implemented as a relatively
simple extension of the data format outlined here; but it is relatively hard
to extend a unique identifier algorithm to reference existing parts of the
data tree.

Pointer Resolution

Conversion from C++ pointers to JSON pointers is handled in a type-safe way.
Values-as-data are stored in the data tree converted at run time from JSON to
C++ and vice versa. Pointers-as-data are handled in the same way as Values-
as-data. Pointers-as-references are stored in the C++ data tree as a TRef (or
TRefArray element) in the normal way, and in JSON as an address to the
position in the tree to a pointer-as-data. It is an error to store a pointer-
as-reference without storing an associated pointer-as-data as the pointer-as-
reference cannot be converted, unless the pointer-as-reference is set to NULL
(in which case it may be an error depending on caller settings). It is an error
to store multiple C++ pointers-as-data to the same memory address as the
conversion from C++ to JSON and back again would yield logically different
data and the resolution of associated pointers-as-reference is dependent on the
resolution order of the data tree, which is ill-defined.

In order to implement the data conversion, the pointers have to be resolved
in a two-stage process. In the first stage, it is necessary to collect all of the
pointers-as-data and pointers-as-reference by traversing the data tree. This is
performed during the standard data conversion, but pointers-as-reference are
left pointing to NULL. A mapping from the pointer-as-data in the original data
format to the pointer-as-data in the converted data format is stored, together
with a list of pointers-as-reference in the original data format and the necessary
mutators in the converted data format. In the second stage MAUS iterates over
the pointers-as-reference, finds the appropriate pointer-as-data and writes the
location of the pointer-as-data to the pointer-as-reference in the converted data
format. The code is templated to maintain full type-safety during this process.

17

Chapter 3

Introduction to the MAUS
API

This chapter introduces the MAUS API framework and looks in depth at the
structure of the classes and interfaces that it comprises of. Several example
minimal implementations are given before a note on scalability and extending
the framework.

3.1 Motivation
The MAUS API framework provides MAUS developers with a well-defined envi-
ronment for developing reconstruction code, while allowing independent devel-
opment of the backend and code sharing of common elements like error handling
and data mangling.

3.2 Everything starts with a ‘Module’
An Module is the basic building block of the MAUS API framework. Four types
of module exist within MAUS.

• An Input module is used to create an instance of a MAUS Spill structure.

• An Output module is used to store an instance of a MAUS data structure.

• A Map module is used to modify a single Spill item. This enables the
reconstruction to be parallelised across multiple Maps.

• A Reduce module is used to act on a collection of Spills.

Every module has a constructor, destructor, a birth and a death method.
Input modules have an emitter function that yields a new data object. Output
modules have a save function that takes a data object and stores it (either on
disk, or for example broadcasting across a socket).

Map modules and Reduce modules have a process function that takes a data
object and modifies it. The important difference is that Map modules have no
internal state, meaning that they can be run in parallel. Reduce modules, on

18

the other hand, do have internal state. This means that they can act on groups
of Spills, for example collecting histogram data.

3.3 Inheritance
In order to correctly make a module, one should inherit from the correct type.

• Input modules should inherit from InputBase.

• Output modules should inherit from OutputBase.

• Map modules should inherit from MapBase.

• Reduce modules should inherit from ReduceBase.

Base types are defined in src/common_cpp/API for C++modules and src/common_py/API
for python modules.

3.4 Data Mangling
MAUS supports representation of the data structure in various different formats.
MAUS support representation in ROOT, ascii string and json formats. It is
recommended that reconstruction routines use the ROOT format. For legacy
reasons, MAUS supports reconstruction of data stored in ascii or json formats.

In python, the representation (i.e. format) of the data can be changed by
using the module maus_cpp.converter. If a module implements conversion to
a specific data type, the can_convert flag should be set to True; otherwise
MAUS will always hand data in string format.

In C++, mappers are templated to a MAUS data type. The API then
handles any necessary conversion to that data type, and provides the appropriate
python wrapper code for that module.

Currently only map modules support data mangling.

3.5 Module Initialisation and Destruction
MAUS has two execution concepts. A Job refers to a single execution of the
code, while a Run refers to the processing of data for a MICE data run or Monte
Carlo run.

In MAUS, Inputters, Mappers, Reducers and Outputters are initialised at
the start of every Job and destructed at the end of every Job. birth(...)
for Inputters and Outputters is called at the start of every Job and death() is
called at the end of every Job. The birth(...) for Mappers and Reducers is
called at the start of every Run and death() is called at the end of every Run.

The logic is that for each code execution we typically want to access data
from a single data source and output data to a single data file. But mappers and
reducers are reinitialised for each run to enable loading of new calibrations, etc.
It is required that all transient information about the reconstruction pertaining
to a run - particularly ID of the calibration and cabling used - is recorded in
the StartOfRun data structure. Any summary information on code execution

19

during the run may be stored in the EndOfRun data structure. All transient
information pertaining to a job - for example code version or bzr branch - should
be recorded in the StartOfJob data structure. Any summary information on
code execution during the job may be stored in the EndOfJob data structure.

3.6 Global Objects - Objects for Many Modules
There are some objects that sit outside the scope of the modular framework
described above. Typically these are objects that do not belong to any one mod-
ule, but need to be accessed by many. Examples are the logging functionality
(Squeak), ErrorHandler, Configuration datacards, field maps, geometry descrip-
tion and Geant4 interfaces. These are accessed through the static singleton class
Globals defined in src/common_cpp/Utils/Globals.hh. Initialisation is han-
dled in src/common_cpp/Globals/GlobalsManager.hh. One Globals instance
is initialised per subprocess when running in multiprocessing mode.

For python users, some Global objects can be accessed by reference to the
maus_cpp.globals module.

3.6.1 Global Object Initialisation
Global objects are initialised before any modules in Go.py and deleted after all
modules are deathed. Global object initialisation and destruction is handled
at the Job level by src/common_cpp/Globals/GlobalManager.hh and called in
python via maus_cpp.globals as above.

Run-by-run initialisation is handled by the RunActionManager, defined in
src/common_cpp/Utils/RunActionManager.hh. The RunActionManager holds
a list of objects inheriting from RunActionBase each of which defines functions
to call at the start and end of each run.

3.7 Internal Classes
The following classes and namespaces are used to provide an interface between
reconstruction modules and the framework (backend).

3.7.1 Abstraction Layers
These are all defined in src/common_cpp/API and src/common_py/API folders

• IModule - interface class for all modules; defines birth and death

• ModuleBase - base class for modules, includes some error handling.

• IInput - interface class for all inputs; defines emitter and inherits from
IModule

• InputBase - base class for all inputs, includes some error handling and
inherits from ModuleBase and IInput

• IMap - interface class for all inputs; defines process and inherits from
IModule

20

• MapBase - base class for all inputs, includes some error handling and
inherits from ModuleBase and IMap

• IReduce - interface class for all reducers; defines process and inherits
from IModule

• ReduceBase - base class for all reducers, includes some error handling and
inherits from ModuleBase and IReduce

• IOutput - interface class for all outputs; defines save and inherits from
IModule

• OutputBase - base class for all outputs, includes some error handling and
inherits from ModuleBase and IOutput

3.7.2 C++ Python Wrapper
src/common_cpp/API/PyWrapMapBase is a templated class that wraps a generic
map object and provides python interfaces to that map object.

Currently, Input, Reduce, Output wrappers are provided by SWIG.

3.7.3 Data Mangling
Data mangling is handled in a variety of layers.

• src/common_cpp/Converter/ConverterBase provides an abstraction for
conversion from one type to another

• src/common_cpp/Converter/DataConverters provides implementations
of the data conversions

• src/common_cpp/Converter/ConverterFactory provides a function like
TYPE2* convert<TYPE1, TYPE2>(TYPE1* data) with implementations for
each of the types. This then provides explicit conversion (i.e. where both
input and output types are known.

• src/common_cpp/Utils/PyObjectWrapper provides functions for wrap-
ping all of the data types into a PyObject*. It also provides a function
that unwraps the PyObject*, figures out the data type and returns a data
of the appropriate type.

• src/common_cpp/API/PyWrapMapBase calls unwrap based on the type
stored in the PyObject*.

21

Chapter 4

Utilities

This chapter describes the various utilties present in MAUS, such as the built-in
logger.

4.1 Logging
The MAUS logging system is built around the Squeak class. The code for
the Squeak class is located in src/common_cpp/Utils. It is implemented as a
singleton class, designed to wrap the standard output, log and error streams
(cout, clog, cerr). It addition to this the ability to output to a standard log file
is present.

The key interface point with the class for the user is the mout method, which
takes an “error level” as an argument and returns an output stream which may
be streamed to. The error levels themselves are defined in an enum and may
take the values described in table 4.1.

Name Value Default stream
debug 0 cout
info 1 clog
warning 2 cerr
error 3 cerr
fatal 4 cerr
log 5 file

Table 4.1: The MAUS logging error levels.

Prior to use Squeal must be configure by calling the following methods:

Squeal : : setStandardOutputs (ve rbose_leve l) ;
Squeal : : setOutputs (verbose_leve l , l o g_ l eve l) ;

where both verbose_level and log_level are integers. The first function config-
ures whether cout, clog and cerr point to the screen, the log file or /dev/null.
If the verbose level supplied is 0 everything goes to screen, 1 clog and cerr only
go to screen, 2 and 3 only cerr goes to screen, >3 none go to screen.

22

The second function controls where different mout error levels go. If the
verbosity level supplied is less than or equal to the enum value (defined in
table 4.1) of the particular error level then that value goes to screen. The
exception to this is log which may only go to file. If an error level does not go
to screen then it goes to either /dev/null or the log file, depending on the log
level.

The log level defines what data is sent to the log file. When set to 0 no log
file is create, streams to Squeal::log are thrown away, together with all other
error levels not going to screen. When set to 1 a log file is created which records
only explicit calls to Squeal::log. When set to 2 a log file is again created
which captures calls to Squeal::log and any other error level which does not
make it to screen.

Both the verbose and log level may be set via datacards using the variables
verbose_level and log_level (set to 1 and 0 respectively by default). The
log file name defaults to “maus.log”. It may be changed using the method:

Squeal : : setLogName ("some_name . l og ")

This must be called prior to the log file being initialised with the setOutputs
method. If logging has been used the file must be closed prior to programme
termination with:

Squeak : : c lo seLog () ;

When running as part of standard MAUS execution both Squeal initialisation
and closing the log are taken care of by the GlobalsManager and the user need
do nothing.

An example use of Squeal to send text to standard output:

Squeal : : mout (Squeal : : debug) << "A message" << std : : endl ;

A short example programme illustrating use of Squeal is present in
bin/user/examples/logging/.

23

Chapter 5

Running the Monte Carlo

The simulation module provides particle generation routines, GEANT4 bind-
ings to track particles through the geometry and routines to convert modelled
energy loss in detectors into digitised signals from the MICE DAQ. The Digiti-
sation models are documented under each detector. Here we describe the beam
generation and GEANT4 interface.

5.1 Beam Generation
Beam generation is handled by the MapPyBeamMaker module. Beam genera-
tion is separated into two classes. The MapPyBeamGenerator has routines to
assign particles to a number of individual beam classes, each of which samples
particle data from a predefined parent distribution. Beam generation is handled
by the beam datacard.

The MapPyBeamMaker can either take particles from an external file, over-
write existing particles in the spill, add a specified number of particles from each
beam definition, or sample particles from a binomial distribution. The random
seed is controlled at the top level and different algorithms can be selected influ-
encing how this is used to generate random seeds on each particle.

Each beam definition has routines for sampling from a multivariate gaussian
distribution or generating ensembles of identical particles (called "pencil" beams
here). Additionally it is possible to produce time distributions that are either
rectangular or triangular in time to give a simplistic representation of the MICE
time distribution.

The beam definition controls are split into four parts. The reference branch
defines the centroid of the distribution; the transverse branch defines the trans-
verse coordinates, x, y, px, py; the longitudinal branch defines the longitudi-
nal coordinates - time and energy/momentum and the coupling branch defines
correlations between longitudinal and transverse. Additionally a couple of pa-
rameters are available to control random seed generation and relative weighting
between different beam definitions.

In transverse, beams are typically sampled from a multivariate gaussian.

24

The Twiss beam ellipse is defined by

B⊥ = m

εxβx/p −εxαx 0 0
−εxαx εxγxp 0 0

0 0 εyβy/p −εyαy
0 0 −εyαy εyγyp

 (5.1)

The Penn beam ellipse is defined by,

B⊥ = mε⊥

β⊥/p −α⊥ 0 −L+ β⊥B0/2p
−α⊥ γ⊥p L − β⊥B0/2p 0

0 L − β⊥B0/2p β⊥/p −α⊥
−L+ β⊥B0/2p 0 −α⊥ γ⊥p

(5.2)

where parameters can be controlled in datacards as described below. Note
that using the datacards it is possible to define a beam ellipse that is poorly
conditioned (determinant nearly zero). In this case MAUS will print an error
message like Warning: invalid value encountered in double_scalars for
each primary.

5.1.1 Beam Polarisation
It is also possible to pass a polarised beam through MAUS. A polarised beam can
be generated using the beam_polarisation variable on an individual beam pa-
rameter. Currently only one polarisation model has been implemented, gaussian_unit_vectors.
This throws a Gaussian in each of the x, y and z directions and uses this to gen-
erate a spin vector. The spin vector is then normalised to 1. Correlations are
not implemented.

5.1.2 Amplitude Momentum Correlation
It is possible to introduce artificially a correlation between transverse amplitude
(action) and momentum. This can be of use for high emittance beams, such as
those in MICE, where the time of flight of high amplitude particles is signifi-
cantly different to the time of flight of low amplitude particles. The optional
a-p_correlation dict enables one to specify a correlation C (see table 5.8). In
this case, the momentum_variable Wo is modified according to

Wo = Wi(1 + CA). (5.3)

Wi is the momentum_variable as calculated by the longitudinal routines above,
C is the correlation magnitude and amplitude A is calculated using

A = |V|1/4m2(~uTV−1~u) (5.4)

where ~u is the particle phase space vector, m is the particle mass and V is the
ideal beam matrix defined by the transverse dict.

5.2 Getting the Right Answer
In MICE, the code is required to get the right answer for a number of differ-
ence use cases. MICE needs accurate stepping through the complex field maps,

25

Table 5.1: Control parameters pertaining to all beam definitions.
Name Meaning
beam dict containing beam definition parameters.
The following cards should all be defined within the beam dict.
particle_generator Set to binomial to choose the number of par-

ticles by sampling from a binomial distribu-
tion. Set to counter to choose the number
of particles in each beam definition explicitly.
Set to file to generate particles by reading
an input file. Set to overwrite_existing
to generate particles by overwriting existing
primaries.

binomial_n When using a binomial
particle_generator, this controls the
number of trials to make. Otherwise ignored.

binomial_p When using a binomial
particle_generator, this controls the
probability a trial yields a particle. Other-
wise ignored.

beam_file_format When using a file particle_generator, set
the input file format - options are

• icool_for009

• icool_for003,

• g4beamline_bl_track_file

• g4mice_special_hit

• g4mice_virtual_hit

• mars_1

• maus_virtual_hit

• maus_primary

beam_file When using a file particle_generator, set
the input file name. Environment variables
are automatically expanded by MAUS.

file_particles_per_spill When using a file particle_generator, this
controls the number of particles per spill that
will be read from the file.

random_seed Set the random seed, which is used to gener-
ate individual random seeds for each primary
(see below).

definitions A list of dicts, each item of which is a dict
defining the distribution from which to sam-
ple individual particles.

26

Table 5.2: Individual beam distribution parameters.
Name Meaning
The following cards should be inside a dict in the beam definitions list.
random_seed_algorithm Choose from the following options

• beam_seed: use the random_seed for all
particles

• random: use a different randomly deter-
mined seed for each particle

• incrementing: use the random_seed but
increment by one each time a new particle
is generated

• incrementing_random: determine a seed
at random before any particles are gener-
ated; increment this by one each time a new
particle is generated

weight When particle_generator is binomial or
overwrite_existing, the probability that a
particle will be sampled from this distribution
is given by weight/(sumofweights).

n_particles_per_spill When particle_generator is counter, this sets
the number of particles that will be generated in
each spill.

reference Dict containing the reference particle definition.
transverse Dict defining the longitudinal phase space distri-

bution.
longitudinal Dict defining the longitudinal phase space distri-

bution.
coupling Dict defining any correlations between transverse

and longitudinal.
beam_polarisation Optional dict defining the polarisation of the

beam. If this dict is not included, the beam is
taken to be unpolarised.

a-p_correlation Optional dict that defines a correlation between
transverse amplitude and longitudinal momen-
tum. If this dict is not included, no such corre-
lation is introduced.

27

Table 5.3: Beam distribution reference definition.
Name Meaning
The following cards should be defined in each beam definition reference dict.
position dict with elements x, y and z that define the reference posi-

tion (mm).
momentum dict with elements x, y and z that define the reference mo-

mentum direction. Normalised to 1 at runtime.
particle_id PDG particle ID of the reference particle.
energy Reference energy.
time Reference time (ns).
random_seed Set to 0 - this parameter is ignored.

Table 5.4: Beam definition transverse parameters.
Name Meaning
The following cards should be defined in each beam definition transverse dict.
transverse_mode Options are

• pencil: x, py, y, py taken from reference

• penn: cylindrical beam symmetric in x and
y

• constant_solenoid: cylindrical beam
symmetric in x and y, with beam radius
calculated from on-axis B-field to give con-
stant beam radius along a solenoid.

• twiss: beam with decoupled x and y beam
ellipses.

normalised_angular_
momentum if transverse_mode is penn or

constant_solenoid, set L.
emittance_4d if transverse_mode is penn or

constant_solenoid, set ε⊥.
beta_4d if transverse_mode is penn, set β⊥.
alpha_4d if transverse_mode is penn, set α⊥.
bz if transverse_mode is constant_solenoid, set

the B-field used to calculate β⊥ and α⊥.
beta_x if transverse_mode is twiss, set βx.
alpha_x if transverse_mode is twiss, set αx.
emittance_x if transverse_mode is twiss, set εx.
beta_y if transverse_mode is twiss, set βy.
alpha_y if transverse_mode is twiss, set αy.
emittance_y if transverse_mode is twiss, set εy.

28

Table 5.5: Beam definition longitudinal parameters.
Name Meaning
The following cards should be defined in each beam definition longitudinal dict.
momentum_variable In all modes, set this variable to control which lon-

gitudinal variable will be used to control the input
beam. Options are energy, p, pz.

longitudinal_mode Options are

• pencil: time, energy/p/pz taken from
reference

• gaussian: uncorrelated gaussians in time and
energy/p/pz

• twiss: multivariate gaussian in time and ener-
gy/p/pz

• uniform_time: gaussian in energy/p/pz and
uniform in time.

• sawtooth_time: gaussian in energy/p/pz and
sawtooth in time.

beta_l In Twiss mode, set βl
alpha_l In Twiss mode, set αl
emittance_l In Twiss mode, set εl
sigma_t In gaussian mode, set the RMS time.
sigma_p
sigma_energy
sigma_pz

In gaussian, uniform_time, sawtooth_time mode,
set the RMS energy/p/pz.

cov(t,p)
cov(t,energy)
cov(t,pz)

In gaussian mode, set the covariance between p/en-
ergy/pz and time and energy. It is an error if this
results in a matrix that is not positive definite (eigen-
values positive).

t_start In uniform_time and sawtooth_time mode, set the
start time of the parent distribution

t_end In uniform_time and sawtooth_time mode, set the
end time of the parent distribution

Table 5.6: Beam definition coupling parameters.
Name Meaning
The following cards should be defined in each beam definition coupling dict.
coupling_mode Set to none - not implemented yet.

29

Table 5.7: Beam definition polarisation.
Name Meaning
The following cards should be defined in each beam definition beam_polarisation dict.
polarisation_mode If set to flat, the beam is taken as unpolarised. If

set to gaussian_unit_vectors, spin vector is given
by a gaussian distribution in x, y, z; the spin vector
is then normalised to 1 before tracking.

beam_mean_x If beam_polarisation is set to
gaussian_unit_vectors, the mean x value of
the gaussian.

beam_sigma_x If beam_polarisation is set to
gaussian_unit_vectors, the sigma x value of
the gaussian.

beam_mean_y If beam_polarisation is set to
gaussian_unit_vectors, the mean y value of
the gaussian.

beam_sigma_y If beam_polarisation is set to
gaussian_unit_vectors, the sigma y value of
the gaussian.

beam_mean_z If beam_polarisation is set to
gaussian_unit_vectors, the mean z value of
the gaussian.

beam_sigma_z If beam_polarisation is set to
gaussian_unit_vectors, the sigma z value of
the gaussian.

Table 5.8: Beam definition amplitude-momentum correlation.
Name Meaning
The following cards should be defined in each beam definition a-p_correlation dict.
magnitude The magnitude of the amplitude-momentum correla-

tion.
momentum_variable Optional parameter to specify the momentum vari-

able W. Options are energy, p, pz. If not specified,
defaults to momentum_variable from longitudinal
dict.

30

correct energy loss and scattering in the emittance absorbers and diffuser and
accurate energy deposition in the sensitive detectors and correct showering es-
pecially in the downstream detectors. The Right Answer in this case is the one
that agrees with experiment.

5.2.1 Geometry
There are copious comments on setting up your own geometry in the relevant
chapter. I only remark here that you should

• Visualise the geometry.

• Set verbose_level to 1 so that MAUS reports the field configuration in
it’s output file.

• Check the field maps using e.g. bin/examples/make_field_map.py.

• Set check_volume_overlaps to True to call Geant4 internal checks for
geometry consistency.

Otherwise it is highly unlikely that you will get the correct geometry.

5.2.2 Tracking
The principle tool that can be used to ensure a correct answer from tracking
through the field maps is the step size. This is controlled either from Mice-
Modules by setting the G4StepMax parameter per volume; or from data cards
by setting the max_step_length parameter. Setting this parameter to a small
value increases the tracking time; setting it to a large value decreases the ac-
curacy. Numerically, 100 mm is found to be a reasonable value for sufficiently
accurate stepping through the fields [citation: C Rogers thesis]. No one has ever
studied effect of miss distance on e.g. some of the MICE apertures.

It is also wise to avoid hard field edge boundaries in the cooling channel.
MAUS uses by default 4th order Runge Kutta for numerical integration (RK4,
stepping_algorithm = "ClassicalRK4"). For each tracking step, RK4 calls
the MAUS field map routines 4 times. Geant4/RK4 only knows about the
field value at these four points, and makes some smoothing approximation at
intermediate points. If the geometry presents a field inhomogeneity i.e. a hard
edged boundary, it will severely degrade the stability of the tracking. The way
to fix this is to implement Geant4 volume boundaries on either side of the
edge of any field maps. This forces Geant4 to stop tracking, step over the field
boundary, and then start tracking again.

5.2.3 Energy Deposition and Showering
There are a couple of other considerations for handling energy deposition, decays
and so forth. physics_model is the master control variable, which tells Geant4
which physics model to use. The Geant4 mindset is that Geant4 provides a
library of physics processes, and that the defaults are not necessarily correct
for all use cases. This is different to e.g. MARS or equivalent tools. Rogers
has selected QGSP_BERT as a reasonable default, following recommendation from
G4Beamline developers.

31

The MICE beam is quite highly polarised. Polarised decay is possible to do
in MAUS (polarised_decay and spin_tracking), but it is poorly understood
experimentally so it is not active by default. Be aware that probably electron
background estimation is wrong in MICE/MAUS.

If the physics you wish to study includes showering effects, check that you
are happy with the kinetic_energy_threshold, production_threshold and
fine_grained_production_threshold parameters. The kinetic_energy_threshold
sets the minimum energy of particles that will be tracked and the production_threshold
parameters control the minimum range of particles that will be produced.

The fine_grained_production_threshold sets the geant4 production thresh-
old per particle and per region. Regions are defined using the MiceModule
Region string property, which can map several volumes to the same region.
fine_grained_production_threshold should be a dictionary that maps the
string name of a region to another dictionary. This dictionary should map
the string name or pdg encoded integer id in string format to the production
threshold. For example, the entry in the datacards file might look like

fine_grained_production_threshold = {
"my_region":{

"e+":0.1,
"11":0.01,
"22":-1

}
}

which would set production thresholds for all MiceModules in my_region to
0.1 mm for positrons, 0.01 mm for electrons, and use the Geant4 defaults for
gammas. All other particles would take their production threshold defaults from
production_threshold datacard.

5.3 GEANT4 Bindings
The GEANT4 bindings are encoded in the Simulation module. GEANT4 groups
particles by run, event and track. A GEANT4 run maps to a MICE spill; a
GEANT4 event maps to a single inbound particle from the beamline; and a
GEANT4 track corresponds to a single particle in the experiment.

A number of classes are provided for basic initialisation of GEANT4.

• MAUSGeant4Manager: is responsible for handling interface to GEANT4.
MAUSGeant4Manager handles initialisation of the GEANT4 bindings as
well as accessors for individual GEANT4 objects (see below). Interfaces
are provided to run one or many particles through the geometry, returning
the relevant event data. The MAUSGeant4Manager sets and clears the
event action before each run.

• MAUSPhysicsList: contains routines to set up the GEANT4 physical pro-
cesses. Datacards settings are provided to disable stochastic processes or
all processes and set a few parameters. In the end, the physics list set up
gets called by the FieldPhaser.

32

• FieldPhaser: the field phaser is a MAUS-specific tool for automatically
phasing fields, for example RF cavities, such that they ramp coinciden-
tally with incoming particles. The FieldPhaser contains routines to fire
test ("reference") particles through the accelerator lattice and phase fields
appropriately. The FieldPhaser phasing routines are called after GEANT4
is first initialised.

• DetectorConstruction: the DetectorConstruction routines provide an in-
terface between the MAUS internal geometry representation encoded in
MiceModules and GEANT4. DetectorConstruction is responsible for call-
ing the relevant routines for setting up the general engineering geometry,
calling detector-specific geometry set-up routines and calling the field map
set-up routines.

• VirtualPlanes: the VirtualPlanes routines are designed to extract particle
data from the GEANT4 tracking independently of the GEANT4 geometry.
The VirtualPlanes routines watches for steps that step across some plane
in physical space, or some time, or some proper time, and then interpolates
from the step ends to the plane in question.

• FillMaterials: (legacy) the FillMaterials routines are used to initialise a
number of specific

• MAUSVisManager the MAUSVisManager is responsible for handling in-
terfaces with the GEANT4 visualisation.

The GEANT4 Action objects provide interfaces for MAUS-specific function
calls at certain points in the tracking.

• MAUSRunAction: sets up the running for a particular spill. In MAUS, it
just reinitialises the visualisation.

• MAUSEventAction: sets up the running for a particular inbound particle.
At the beginning of each event, the virtual planes, tracking, detectors and
stepping are all cleared. After the event the event data is pulled into the
event data from each element.

• MAUSTrackingAction: is called when a new track is created or destroyed.
If keep_tracks datacard is set to True, on particle creation, MAUS-
TrackingAction writes the initial and final track position and momentum
to the output data tree. If keep_steps is set to True MAUSTrackingAc-
tion gets step data from MAUSSteppingAction and writes this also.

• MAUSSteppingAction: is called at each step of the particle. If keep_steps
datacard is set to True, output step data is recorded. MAUSSteppingAc-
tion kills particles if they exceed the maximum_number_of_steps datacard.
MAUSSteppingAction calls the VirtualPlanes routines on each step.

• MAUSStackingAction: is called when a new track is created, prioritising
particle tracking. Handles killing particles based on the kinetic_energy_threshold,
default_keep_or_kill and keep_or_kill_particles datacards.

33

Table 5.9: Monte Carlo control parameters.
Name Meaning
General Monte Carlo controls.
simulation_geometry_filename Filename for the simulation geometry

- searches first in files tagged by envi-
ronment variable ${MICEFILES}, then
in the local directory.

simulation_reference_particle Reference particle used for phasing
fields. The format is as defined for a
reference entry in a beam.

keep_tracks Set to boolean true to store the initial
and final position/momentum of each
track generated by MAUS.

keep_steps Set to boolean true to store every step
generated by MAUS - warning this can
lead to large output files.

check_volume_overlaps Set to a boolean value. Check for over-
laps in volumes. If an overlap is de-
tected, Geant4 will report a warning
and then quit.

everything_special_virtual Set to a boolean value. If true, all vol-
umes will be made special virtual and
record e.g. energy deposited.

• MAUSPrimaryGeneratorAction: is called at the start of every event and
sets the particle data for each event. In MAUS, this particle generation
is handled externally and so the MAUSPrimaryGeneratorAction role is to
look for the primary object on the Monte Carlo event and convert this
into a GEANT4 event object.

34

Table 5.10: Tracking control parameters.
Tracking control parameters.
max_step_length Default maximum step size during

tracking. Override with G4StepMax in
MiceModule.

max_track_time Kill tracks with time above this time.
Override with G4TimeMax in MiceMod-
ule.

max_track_length Kill tracks with track length above this
length. Override with G4TrackMax in
MiceModule.

maximum_number_of_steps Set to an integer value. Tracks taking
more steps are assumed to be looping
and are killed.

kinetic_energy_threshold Kill tracks with initial kinetic energy
below this threshold. Override with
G4KinMin in MiceModule.

field_tracker_absolute_error Set absolute error on MAUS internal
stepping routines - used by e.g. Virtu-
alPlanes to control accuracy of interpo-
lation.

field_tracker_relative_error Set relative error on MAUS internal
stepping routines - used by e.g. Virtu-
alPlanes to control accuracy of interpo-
lation.

stepping_algorithm String to control the numerical in-
tegration routine - choose from
ClassicalRK4, SimpleHeum, Implici-
tEuler, SimpleRunge, ExplicitEuler or
CashKarpRKF45.

spin_tracking Set to true to use G4 routines to precess
the spin vector as particles go through
EM fields.

delta_one_step Accuracy with which Geant4 steps
within a volume.

epsilon_min Geant4 minimum stepping relative error
over a single step. Takes precedence over
delta_one_step.

epsilon_max Geant4 maximum stepping relative error
over a single step. Takes precedence over
delta_one_step.

delta_intersection Accuracy with which Geant4 enters vol-
ume boundaries.

miss_distance Maximum distance between track and
corners, used for estimating whether a
track crosses a boundary.

35

Table 5.11: Physics list control parameters.
Physics list controls.
physics_model GEANT4 physics model used to

set up the physics list.
physics_processes Choose which physics processes

normal particles observe during
tracking. Options are

• normal particles will obey
normal physics processes,
scattering and energy strag-
gling will be active.

• mean_energy_loss parti-
cles will lose a deterministic
amount of energy during
interaction with materials
and will never decay.

• none Particles will never
lose energy or scatter during
tracking and will never de-
cay.

reference_physics_processes Choose which physics processes
the reference particle observes
during tracking. Options are
mean_energy_loss and none.
The reference particle can never
have stochastic processes enabled.

particle_decay Set to boolean true to enable par-
ticle decay; set to boolean false to
disable.

polarised_decay Set to boolean true to make
muons decay according to stan-
dard physics for a polarised muon;
set to boolean false to make muons
decay as if unpolarised. If po-
larised decay is true, then spin
tracking is automatically enabled,
regardless of the value of the
spin_tracking datacard.

charged_pion_half_life Set the half life for charged pions.
muon_half_life Set the half life for muons.
production_threshold Set the geant4 production

threshold. Uses geant4 de-
faults if negative. Ignored if
physics_processes are not
normal.

fine_grained_production_threshold Set the geant4 production thresh-
old per particle and per region.
See text.

kinetic_energy_threshold Threshold for kinetic energy of
new particles at production. Par-
ticles with kinetic energy below
this value will not be tracked.

default_keep_or_kill If set to true, keep parti-
cles with type not listed in
keep_or_kill_particles.
If set to false, kill parti-
cles with type not listed in
keep_or_kill_particles

keep_or_kill_particles Maps string particle type name to
boolean flag. If set to true, al-
ways keep particles of this type.
If set to false, always kill parti-
cles of this type. If not set, apply
default_keep_or_kill

36

Table 5.12: Visualisation control parameters.
Visualisation controls.
geant4_visualisation Set to boolean true to activate GEANT4 visuali-

sation.
visualisation_viewer Control which viewer to use to visualise GEANT4

tracks. Currently only vrmlviewer is compiled
into GEANT4 by default. Users can recompile
GEANT4 with additional viewers enabled at their
own risk.

visualisation_theta Set the theta angle of the camera.
visualisation_phi Set the phi angle of the camera.
visualisation_zoom Set the camera zoom.
accumulate_tracks Set to 1 to accumulate all of the simulated tracks

into one vrml file. 0 for multiple files.
default_vis_colour Set the RGB values to alter the default colour of

particles.
pi_plus_vis_colour Set the RGB values to alter the colour of positive

pions.
pi_minus_vis_colour Set the RGB values to alter the colour of negative

pions.
mu_plus_vis_colour Set the RGB values to alter the colour of positive

muons.
mu_minus_vis_colour Set the RGB values to alter the colour of negative

muons.
e_plus_vis_colour Set the RGB values to alter the colour of

positrons.
e_minus_vis_colour Set the RGB values to alter the colour of electrons.
gamma_vis_colour Set the RGB values to alter the colour of gammas.
neutron_vis_colour Set the RGB values to alter the colour of neutrons.
photon_vis_colour Set the RGB values to alter the colour of photons.

37

Chapter 6

Geometry

MAUS uses the on-line Configuration Database to store all of its geometries.
These geometries have been transferred from CAD drawings which are based
on the latest surveys and technical drawings available. The CAD drawings
are translated to a geometry specific subset of XML, the Geometry Descrip-
tion Markup Language (GDML) prior to being recorded in the configuration
database. Translation of the CAD drawings was accomplished through the use
of a commercial software package known as Fast-RAD. This can be done using
a combination of the open source software packages FreeCAD and CADMesh
to translate the CAD drawings into a GEANT4 readable format; generation of
an open source solution for MAUS is in progress.

The CAD drawings contain the beam-line elements and the positions of the
detector survey points. These objects are described in the GDML files using
Tessellated solids to define the shapes of the physical volumes. The detectors
themselves are described using an independently generated set of GDML files
using GEANT4 standard volumes. An additional XML file is appended to the
geometry description that assigns magnetic fields and associates the detectors
to their locations in the GDML files generated by Fast-RAD. This file is ini-
tially written by the geometry maintainers and formatted to contain run specific
information during download.

The GDML format has a number of benefits. the files can be read via a
number of already existing libraries in GEANT4 and ROOT for the purpose
of independent verification and validation. For example the GEANT4 exam-
ple “extended/persistancy/gdml/G01” was used extensively for validating the
GDML files produced by Fast-RAD. Because it is a subset of XML, the data
contained in the GDML files are readily accessible through the application of the
“libxml2” python extension. The GDML are in turn translated into the MAUS
readable geometry files either by directly accessing the data using the python
extension (which is the method applied to the detector objects) or through the
use of EXtensible Stylesheet Language Transformations (XSLT) which applies
a set of predefined transformations to the XML files.

The following section shall describe how to use the available executable to
access and use these models.

38

6.1 Geometry Access Scripts
There are three executable files available to users which reside in the directory
/bin/utilities found within your copy of MAUS. The three files of interest are
upload_geometry.py, download_geometry.py and get_geometry_ids.py. These
files do the following.

Upload Geometry

1. Set up the Configreader class and read the values provided by Con-
figurationDefaults.py or by custom configure files.

2. Instantiate an Uploader class object using the upload directory and
geometry note taken from the configuration file.

3. The list of files which is created by the Uploader class is used to
compress the geometry files into one zip file.

4. This zip file is then used as the argument for the upload_to_CDB
method which takes the contents of the zip and then uploads this, as
a single string to the CDB.

Optional If cleanup is specified in the configuration file then the file list and
the original GDML files are the deleted leaving only the zip file.

Download Geometry

1. Set up the Configreader() class and read the values provided by Con-
figurationDefaults.py or by custom configuration files.

2. Instantiate a Downloader class object and downloads either the cur-
rent, time specified or run number zipped geometry to a temporary
cache location.

3. The zip file is then unzipped in this location.

4. The Formatter class is called which formats the GDML files. The for-
matting alters the schema location of these files and points them to
the correct local locations of the Materials GDML file. This format-
ting leaves the original GDMLs in the temporary cache and places
the new formatted files in the download directory specified by the
configuration file.

5. GDMLtoMAUS is then called with the location of the new formatted
files as its argument. This class converts the CAD GDMLs to the
MICE Module text files using the XSLT stylesheets previously de-
scribed and the Detector GDMLs to MICE modules using a python
driven routine. Note that this step is used even when the geometry
is designed for use with the GDMLParser.

Optional If specified in the configuration file the temporary cache location is
removed along with the zip file and unzipped files.

Get Geometry IDs 1. Set up the Configreader() class and read the val-
ues provided by ConfigurationDefaults.py or by custom configuration
files. This file takes start and stop time arguments to specify a period
to search the CDB.

39

2. A CDB class object is then instantiated with the server specified in
the configuration file.

3. The get ids method from the CDB class is called and the python dict
which is downloaded is formatted and either printed to screen or to
file as specified in the configuration file.

Two other python files are also present in the utilities directory; process_geometry.py
which fits, formats, and processes the GDML files assuming the download is
complete, and download_fit_geometry.py which downloads, formats, and pro-
cesses the GDML files while applying the location fit— the GDML files gen-
erated for Step IV running will have the fit applied prior to upload. To use
these files the user must use the arguments in the “ConfigurationDefaults.py”
file. The arguments relating to these executables are as follows.

6.2 Using the Geometry Download Executables
The three executables described above will allow the user to accomplish three
different tasks; adding a new geometry to the database, checking what ge-
ometries are available, and downloading the desired geometry. The majority
of users will not need to upload a new geometry. At present this can only
be done from the MLCR. The second two operations are of primary inter-
est for the everyday user. A list of the CAD based geometries appears at
http://cdb.mice.rl.ac.uk/cdbviewer/, and selecting the geometry tab. The
user should be advised, however, that this list does not contain all of the infor-
mation necessary to run the geometry download procedure. The best procedure
is to use the get_geometry_ids.py executable described above. For example to
get all available entries in the geometry database a user should run the command
(from the maus root directory)

> python /bin/utilities/get_geometry_ids.py
--get_ids_start_time ‘‘1999-01-01 00:00:00’’ --get_ids_stop_time ‘‘2035-01-01 00:00:00’’

By default, the output file is saved to $MAUS_ROOT_DIR/tmp/geometry_ids.txt.
The typical output looks like the following:

[...]
Geometry Number = 46
Geometry Note = Step I geometry consistent with the October 2011 data run. All detector descriptions consistent and up to date.
ValidFrom = 2011-12-01 19:17:00
Date Created = 2015-01-07 14:19:51.055000

Geometry Number = 47
Geometry Note = Step I geometry consistent with the October 2013 EMR comissioning run. All detector descriptions consistent and up to date.
ValidFrom = 2013-10-06 19:17:00
Date Created = 2015-01-07 14:30:32.987000

Geometry Number = 49
Geometry Note = Step IV geometry with detectors including the TOFs, Ckov, EMR, Tracker, and KL included as GDML files. Update to the EMR geometry.
ValidFrom = 2034-01-03 19:17:00
Date Created = 2015-03-23 17:24:23.079000

40

http://cdb.mice.rl.ac.uk/cdbviewer/

Table 6.1: Geometry control parameters.
Geometry controls.
cdb_upload_url Sets the upload url relating to

the Configuration Database.
cdb_download_url Sets the download url re-

lating to the Configuration
Database.

cdb_cc_download_url Sets the download url relating
to the Configuration Database
for the super-conducting chan-
nels only.

geometry_download_wsdl Name of the web service used
for downloads.

geometry_download_directory Set the directory where you
wish the geometry to be down-
loaded to.

geometry_download_by This can be set to either cur-
rent, id or run_number. Cur-
rent will download the current
valid geometry stored on the
CDB. ID will download the
geometry for the ID specified
N.B ID numbers can be found
using the get geometry ids ex-
ecutable. Run_number will
download the geometry along
with control room information
for specified run including the
beam-line currents.

geometry_download_run_number Set the number of the run to
be downloaded.

geometry_download_beamline_for_run Set the beamline information
to match a run independent of
the geometry download. To be
used when geometry is down-
loaded by ID.

geometry_download_coolingchannel_tag Download the cooling channel
data matching a specific tag.

geometry_download_id Set the number of the geome-
try ID to be downloaded.

geometry_download_cleanup Set to True in order to cleanup
the temporary files created
during the download process.
These are the zip file down-
loaded and the original GDML
files from this zip file.

g4_step_max Set the G4 step max number
which will be set in the Par-
entGeometryFile. This relates
to the size of steps carried out
during the simulation.

geometry_upload_wsdl Name of the web service used
for uploads. For developers
use only.

geometry_upload_directory Set the the directory which
stores the Fast-RAD produced
GDML files which will be
stored on the CDB. For Devel-
opers use only.

geometry_upload_note Write the description of the ge-
ometry which is going to be
uploaded. This should de-
scribe what is in the beam
line specifically what is new
to the model. It should also
include any other information
the developer wishes the user
to know. For developers use
only.

geometry_upload_valid_from Set the date-time format of
the date when this geometry
about to be uploaded is valid
from. For developers use only.

geometry_upload_cleanup Set to True in order to cleanup
the temporary files created
during the upload process.
These are the file containing
the list of GDMLs to be up-
loaded and also the original
GDML files. For developers
use only.

get_ids_start_time Set the start time of the pe-
riod which you would like to
get the ids from the configu-
ration database. Must be in
date-time format.

get_ids_stop_time Set the stop time of the pe-
riod which you would like to
get the ids from the configu-
ration database. Must be in
date-time format.

get_ids_create_file Set to True in order to create a
file which lists the geometries
available within the time pe-
riod specified. If set to False
the geometry information will
be printed to screen.

41

Geometry Number = 50
Geometry Note = Step IV geometry with detectors including the TOFs, Ckov, EMR, Tracker, and KL included as GDML files. Written for GDMLParser. Diffuser corrected to match design specification.
ValidFrom = 2034-05-13 19:17:00
Date Created = 2015-05-14 16:29:01.124000

Three different flavors of geometry are represented here. The first is the
geometry of the Step I geometry as it existed in the hall during data collection
in Autumn 2013 (id 47). This description includes the survey information taken
prior to data collection although the positions of the detectors have not been
adjusted to match that information in the upload; a fit mut be done at download
time. The second is a prospective Step IV geometry based on the CAD geom-
etry (id 49). This geometry was intended to be used after the MICE module
translation. In contrast the third type of geometry is meant to be used with the
GDMLParser (id 50). This geometry should load in a much shorter time than
the MICE module translation due to the optimized treatment of the tesselated
solid objects. Both of these last two cases do not contain survey information
and are therefore dated to be valid from a date far in the future (2034).

The CAD-based geometry can be downloaded via a number of different
modes. The simplest way is to download the geometry by its id number. From
the MAUS root directory the debug geometry as described above can be down-
loaded with the command

> python bin/utilities/download_geometry.py --geometry_download_id 50

By default the unformatted GDML files will be removed with this command. If
the user wishes to download the full geometry without removing the unformat-
ted GDML files because that user wants to run a systematic study requiring
reprocessing the geometry then the following command should be used:

> python bin/utilities/download_geometry.py --geometry_download_id 50 --geometry_download_cleanup False

A more complicated use is to test a prospective geometry with a predefined
beamline setting as defined using a “tagged” beamline:

> python bin/utilities/download_geometry.py --geometry_download_id 50 --geometry_download_beamline_tag ’6-200+M0’

A common usage for the geometry download is to reproduce a given run. To
simulate a representative run from the 2013 EMR run the following command
should be used:

> python bin/utilities/download_fit_geometry.py --geometry_download_by run_number --geometry_download_run 5519

This function reads the beamline currents from the configuration database and
adjusts the fields of the beamline magnets appropriately.

A final application is to download the latest uploaded geometry. This func-
tion can be completed using the following command:

> python bin/utilities/download_fit_geometry.py --geometry_download_by current

All of these commands described will by default place the geometry in the di-
rectory $MAUS_ROOT_DIR/files/geometry/download. This directory may
be changed using the --geometry_download_directory flag. To use the down-
loaded geometry in the simulation, the --simulation_geometry_filename flag
must be set to the download directory.

42

6.3 A Little GDML
While the detectors are already defined and the beam line elements are defined
from the CAD information, it is potentially useful for users and developers to
understand these data structures. The overall structure of a GDML file is always
the same; the lithium hydride disk absorber is described using the following lines

<?xml ve r s i on ="1.0" encoding="UTF−8" standa lone="no" ?>
<gdml xmlns : x s i="http ://www.w3 . org /2001/XMLSchema−i n s t anc e "

x s i : noNamespaceSchemaLocation="http :// s e rv i c e−s p i . web . cern
. ch/ s e r v i c e−s p i /app/ r e l e a s e s /GDML/schema/gdml . xsd">

<de f i n e/>
<mater ia l s>

<i s o t ope name="Li6 " Z="3" N="6" formula="6Li">
<MEE value ="6.015122" un i t="eV"/>
<D value ="0.534" un i t="g/cm3"/>
<atom value ="6.00" un i t="g/mole"/>

</i sotope>
<i s o t ope name="Li7 " Z="3" N="7" formula="7Li">

<MEE value ="7.016004" un i t="eV"/>
<D value ="0.534" un i t="g/cm3"/>
<atom value ="7.00" un i t="g/mole"/>

</i sotope>
<element name="Li">

<f r a c t i o n n="0.075" r e f="Li6"/>
<f r a c t i o n n="0.925" r e f="Li7"/>

</element>
<element name="H" N="1" Z="1" formula="H">

<atom value ="1.008" un i t="g/mole"/>
</element>
<mate r i a l name="LITHIUM_HYDRIDE">

<D value ="0.78" un i t="g/cm3"/>
<composite n="1" r e f="Li"/>
<composite n="1" r e f="H"/>

</mater ia l>
</mater ia l s>
<so l i d s >

<tube rmax="225.0" z="65" l u n i t="mm" de l t aph i ="360"
auni t="degree " name="d i sk_so l id"/>

</s o l i d s >
<st ruc ture >

<volume name="Disk_LiH">
<mat e r i a l r e f r e f="LITHIUM_HYDRIDE"/>
<s o l i d r e f r e f="d i sk_so l id"/>
<aux i l i a r y auxtype="BlueColour " auxvalue="0.5"/>
<aux i l i a r y auxtype="Sen s i t i v eDe t e c t o r " auxvalue="

Spe c i a lV i r t u a l "/>
</volume>

</st ruc ture >
<setup name="Defau l t " ve r s i on ="1.0">

<world r e f="Disk_LiH"/>
</setup>

</gdml>

43

More fundamental definitions appear at the top while more derived objects
appear at the bottom culminating in the “world” definition as the last object.
Variables are defined in the “define” section, material definitions appear in the
“materials” section, solid objects used in the definition of the structure appear in
the “solids” section, and the volumes making up the simulated geometry appear
in the “structure” section. A little more detail and MICE specific examples
are given below, but it is highly suggested that an interested user refer to the
“GDML Users Guide”1.

6.3.1 Define
This is where constants, matrices, and variables are defined. The obvious bene-
fit is that any variables defined here may be referenced multiple times through-
out the GDML document. Trivial examples include the definition of pi or the
identity rotation. A slightly more interesting example is the use of a matrix in
EMR.gdml to indicate whether a 90◦ rotation needs to be applied to a scintillator
bar or a plane at a given location.

6.3.2 Materials
All materials are defined internally to the GDML file. Each detector has only
the materials used in its construction defined in the source file, while a stock
summary of all materials used are written to the files derived from the MICE en-
gineering drawings. Materials are composed of elements or mixtures of elements
defined by the mass fraction or the atom count.

6.3.3 Solids
The definition of solid objects parallels the definition of solids in Geant. Prim-
itive solids such as spheres, tubes, cones, and boxes, may be explicitly defined.
All of the detectors are defined entirely using primitive volumes. More compli-
cated, tessellated solids may also be defined, with the vertices written to the
“define” section of the code. The MICE engineering drawings are defined entirely
using tessellated solids using the FastRAD package.

6.3.4 Structure
Definition of the geometry volume is contained in the structure section of the
file. Volumes are defined based on references to predefined solids and materials.
Daughter volumes to objects may be defined through the use of physvol and
paramvol. Relative positions and rotations of daughter objects are defined
as part of these definitions. Loops and ensembles may also be used to define
multiple copies of objects displaced in position or rotations.

6.3.5 Additional Features and Sensitive Detectors
When defining a volume it is possible to define auxiliary properties. These
properties do not affect the structural behaviour of the detector within the sim-
ulation but may be used to alter the properties of the simulation. An example

1http://gdml.web.cern.ch/GDML/doc/GDMLmanual.pdf

44

http://gdml.web.cern.ch/GDML/doc/GDMLmanual.pdf

is the sensitive detector definition. For every volume with a auxiliary property
SensitiveDetector a matching sensitive detector object is constructed and
linked to the source volume. The requirements of the MICE sensitive detector
objects to use detector identity information explicitly written to the MICE mod-
ule files have forced the GDML files to avoid the use of loops for the definition
of repeated objects within the TOFs and the Trackers. No such requirement
exists for the definition of sensitive detectors in the EMR because the sensitive
detectors are defined using GEANT’s native touchable volume definitions.

6.4 Creation of New Geometries in MAUS
A python class, CADModuleExtraction, is available that automatically gener-
ates a set of geometry files suitable for upload to CDB. It is run during the
course of the standard installation tests to provide a native version of the Step
IV geometry but this class should not be run by the casual user. To use this
class the user must provide a GDML file containing references to all of the
GDML files generated from the CAD and the detector GDML files positioned
in their approximate locations (which should be furnished by a subset of the
CAD drawings) as well as the location of a MAUS information file, which need
not be in the same directory as the source GDML file. A destination direc-
tory and file name must also be provided. The script then runs through the
referenced GDML files and copies the objects contained therein to a new set of
defined by location, instead of by material which is the arrangement required
by the CAD model. This processing is required to make a single set of files
that can be read into GEANT4 efficiently. The output of this script may be
uploaded to CDB after applying corrections to the detector locations based on
the fits to the survey information and passing the validation tests.

45

Chapter 7

How to Define a Geometry

Mice Modules are the objects that control the geometry and fields that are
simulated in MAUS. They are used in conjunction with a datacard file, which
provides global run control parameters. Mice Modules are created by reading
in a series of text files when MAUS applications are run.

This geometry information is used primarily by the Simulation application
for tracking of particles through magnetic fields. A few commands are specific
to detector Reconstruction and accelerator beam Optics applications.

The Mice Modules are created in a tree structure. Each module is a parent
of any number of child modules. Typically the parent module will describe a
physical volume, and child modules will describe physical volumes that sit inside
the parent module. Modules cannot be used to describe volumes that do not
sit at least partially inside the volume if the parent module.

Each Mice Module file consists of a series of lines of text. Firstly the Module
name is defined. This is followed by an opening curly bracket, then the descrip-
tion of the module and the placement of any child modules, and finally a closing
curly bracket. Commands, curly brackets etc must be separated by an end of
line character.

Comments are indicated using either two slashes or an exclamation mark.
Characters placed after a comment on a line are ignored.

MAUS operates in a right handed coordinate system (x, y, z). In the absence
of any rotation, lengths are considered to be extent along the z -axis, widths to
be extent along the x -axis and heights to be extent along the y-axis. Rotations
(θx, θy, θz) are defined as a rotation about the z-axis through θz, followed by a
rotation about the y-axis through θy, followed by a rotation about the x-axis
through θx.

7.0.1 Configuration File
The Configuration file places the top level objects in MICE. The location of the
file is controlled by the datacard simulation_geometry_file_name. MAUS
looks for the configuration file in the first instance in the directory

${MICEFILES}/Models/Configuration/<MiceModel>

where ${MICEFILES} is a user-defined environment variable. If MAUS fails to
find the file it searches the local directory.

The world volume is defined in the Configuration file and any children of the
world volume are referenced by the Configuration file. The Configuration file
looks like

Configuration <Configuration Name>

46

{
Dimensions <x> <y> <z> <Units>
<Properties>
<Child Modules>

}

<Configuration Name> is the name of the configuration. Typically the
Configuration file name is given by <Configuration Name>.dat. The world
volume is always a rectangular box centred on (0, 0, 0) with x, y, and z extent
set by the Dimensions. Properties and Child Modules are described below and
added as in any Module.

Substitutions

It is possible to make keyword substitutions that substitutes all instances of
<name> with <value> in all Modules. The syntax is

Substitution <name> <value>

<name> must start with a single $ sign. Substitutions must be defined in the
Configuration file. Note this is a direct text substitution in the MiceModules
before the modules are parsed properly. So for example,

Substitution $Sub SomeText
PropertyString FieldType \$Sub}
PropertyDouble \$SubValue 10}

would be parsed as MAUS like

PropertyString FieldType SomeText}
PropertyDouble SomeTextValue 10}

Expressions

The use of equations in properties of type double and Hep3Vector is also allowed
in place of a single value. So, for example,

PropertyDouble FieldStrength 0.5*2 T

would result in a FieldStrength property of 1 Tesla.

Expression Substitutions

Some additional variables can be defined in specific cases by MAUS itself for
substitution into experssions, in which case they will start with @ symbol. For
these variable substitutions, it is only possible to make the substitution into
expressions. So for example,

PropertyDouble ScaleFactor 2*@RepeatNumber

Would substitute @RepeatNumber into the expression. @RepeatNumber is de-
fined by MAUS when repeating modules are used (see RepeatModule2, below).
Note the following code is not valid

PropertyString FileName File@RepeatNumber //NOT VALID

This is because Expression Substitutions can only be used in an expression (i.e.
an equation).

47

7.0.2 Module Files
Children of the top level Mice Module are defined by Modules. MAUS will
attempt to find a module in an external file. The location of the file is controlled
by the parent Module. Initially MAUS looks in the directory

${MICEFILES}/Models/Modules/<Module>

If the Mice Module cannot be found, MAUS searches the local directory. If the
module file still cannot be found, MAUS will issue a warning and proceed.

The Module description is similar in structure to the Configuration file:

Module <Module Name>
{

PropertyString Volume <Volume Type>
PropertyHep3Vector Dimensions <Dimension1> <Dimension2> <Dimension3> <Units>
<Properties>

<Child Modules>
}

<Module Name> is the name of the module. Typically the Module file name is
given by <Module Name>.dat.

The definition of Volume, Dimensions, Properties and Child Modules are
described below.

7.0.3 Volume and Dimensions
The volume described by the MiceModule can be one of several types. Replace
<Volume Type> with the appropriate volume below. Cylinder, Box and Tube
define cylindrical and cuboidal volumes. Polycone defines an arbitrary volume
of rotation and is described in detail below. Wedge describes a wedge with a
triangular projection in the y-z plane and rectangular projections in x-z and x-y
planes. Quadrupole defines an aperture with four cylindrical pole tips.

In general, the physical volumes that scrape the beam are defined indepen-
dently of the field maps. This is the more versatile way to do things, but there
are some pitfalls which such an implementation introduces. For example, in
hard-edged fields like pillboxes, tracking errors can be introduced when MAUS
steps into the field region. This can be avoided by adding windows (probably
made of vacuum material) to force GEANT4 to stop tracking, make a small step
over the field boundary, and then restart tracking inside the field. However, such
details are left for the user to implement.

Volume Dimension1 Dimension2 Dimension3
None No dimensions required. Note cannot define daughter Modules for this volume type.
Cylinder Radius Length in z Not used (leave blank)
Box Width in x Height in y Length along z
Tube Inner Radius Outer Radius Length in z
Trapezoid Half Width in x Half Height in y Half Length in z
Wedge See documentation below.
Polycone No dimensions required. Volume defined from external file.
Quadrupole No dimensions required. Dimensions defined from module properties.
Multipole No dimensions required. Dimensions defined from module properties.
Boolean No dimensions required. Dimensions defined from module properties.
Sphere See documentation below.

48

Volume Dimension1 Dimension2 Dimension3

7.0.4 Properties
Many of the features of MAUS that can be enabled in a module are described
using properties. For example, properties enable the user to define detectors
and fields. Properties can be either of several types: PropertyDouble, Prop-
ertyString, PropertyBool, PropertyHep3Vector or PropertyInt. A property is
declared via

<Property Type> <Property Name> <Value> <Units if appropriate>

Different properties that can be enabled for Mice Modules are described else-
where in this document. Properties of type PropertyDouble and Property-
Hep3Vector can have units. Units are defined in the CLHEP library. Units
are case sensitive; MAUS will return an error message if it fails to parse units.
Combinations of units such as T/m or N*m can be defined using ’*’ and ’/’
as appropriate. Properties cannot be defined more than once within the same
module.

7.0.5 Child Modules
Child Modules are defined with a position, rotation and scale factor. This
places, and rotates, the child volume and any fields present relative to the parent
volume. Scale factor scales fields defined in the child module and any of its
children. Scale factors are recursively multiplicative; that is the field generated
by a child module will be scaled by the product of the scale factor defined in
the parent module and all of its parents.

The child module definition looks like:

Module <Module File Name>
{

PropertyHep3Vector Position <x position> <y position> <z position> <Units>
PropertyHep3Vector Rotation <x rotation> <y rotation> <z rotation> <Units>
PropertyDouble ScaleFactor <Value>
<Define volume, dimensions and properties for this instance only>

}

MAUS searches for <Module File Name> first relative to ${MICEFILES}/Models/Modules/
and subsequently relative to the current working directory. The position and
rotation default to 0, 0, 0 and the scale factor defaults to 1.

• Volume, Dimension and Properties of the child module can be defined at
the level of the parent; in this case these values will be used only for this
instance of the module.

• If no file can be found, MAUS will press on regardless, attempting to build
a geometry using the information defined in the parent volume.

7.0.6 Module Hierarchy and GEANT4 Physical Volumes
MAUS enables users to place arbitrary physical volumes in a GEANT4 geom-
etry. The formatting of MAUS is such that users are encouraged to use the
GEANT4 tree structure for placing physical volumes. This is a double-edged
sword, in that it provides users with a convenient interface for building geome-
tries, but it is not a terribly safe interface.

49

Figure 7.1: The diagram shows a schematic for a square placed inside a cylinder
inside a rectangle. This nesting must be replicated in the MiceModules in order
for the volumes to be correctly represented by MAUS.

Consider the cartoon of physical volumes shown above. Here there is a blue
volume sitting inside a red volume sitting inside the black world volume. For
the volumes to be represented properly, the module that represents the blue
volume MUST be a child of the module that represents the red volume. The
module that represents the red volume MUST, in turn, be a child of the module
that represents the black volume, in this case the Configuration file.

What would happen if we placed the blue volume directly into the Black
volume, i.e. the Configuration file? GEANT4 would silently ignore the blue
volume, or the red volume, depending on the order in which they are added
into the GEANT4 geometry. What would happen if we placed the blue volume
overlapping the red and black volumes? The behaviour of GEANT4 is not clear
in this case.

• Never allow a volume to overlap any part of another volume that is not
it’s direct parent.

It is possible to check for overlaps by setting the datacard CheckVolumeOverlaps
to 1.

7.0.7 A Sample Configuration File
Below is listed a sample configuration file, which is likely to be included in
the file ExampleConfiguration.dat; the actual name is specified by the datacard
MiceModel.

Configuration ExampleConfiguration
{

Dimensions 1500.0 1000.0 5000.0 cm
PropertyString Material AIR
Substitution $MyRedColour 0.75
Module BeamLine/SolMag.dat
{

Position 140.0 0.0 -2175.0 cm

50

Rotation 0.0 30.0 0.0 degree
ScaleFactor 1.

}
Module BeamLine/BendMag.dat
{

Position 0.0 0.0 -1935.0 cm
Rotation 0.0 15.0 0.0 degree
ScaleFactor 1.

}
Module NoFile_Box1
{

Volume Box
Dimension 1.0 1.0 1.0
Position 0.0 0.0 200.0 cm
Rotation 0.0 15.0 0.0 degree
PropertyString Material Galactic
PropertyDouble RedColour $MyRedColour

}
Module NoFile_Box2}
{

Volume Box
Dimension 0.5 0.5 0.5*3 m //z length = 0.5*3 = 1.5 m
Rotation 0.0 15.0 0.0 degree //Rotation relative to parent
PropertyString Material Galactic
PropertyDouble RedColour $MyRedColour

}
}

7.0.8 A Sample Child Module File
Below is listed a sample module file, which is likely to be included in the file
SolMag.dat ; the actual location is specified by the module or configuration that
calls FCoil. The module contains a number of properties that define the field.

Module SolMag
{

Volume Tube
Dimensions 263.0 347.0 210.0 mm
PropertyString Material Al
PropertyDouble BlueColour 0.75
PropertyDouble GreenColour 0.75
//field}
PropertyString FieldType Solenoid
PropertyString FileName focus.dat
PropertyDouble CurrentDensity 1.
PropertyDouble Length 210. mm
PropertyDouble Thickness 84. mm
PropertyDouble InnerRadius 263. mm

}

51

Chapter 8

Geometry and Tracking
MiceModule Properties

In general, MAUS treats physical geometry distinct from fields. Fields can be
placed overlapping physical objects, or entirely independently of them, as the
user desires. Properties for various aspects of the physical and engineering model
of the simulation are described below. This includes properties for sensitive
detectors.

8.1 General Properties
There are a number of properties that are applicable to any MiceModule.

Property Type Description
Material string The material that the volume is made up from

Invisible bool Set to 1 to make the object invisible in visualisation, or 0 to make the object
visible.

RedColour double
GreenColour double
BlueColour double

Alter the colour of objects as they are visualised

G4StepMax double The maximum step length that Geant4 can make in the volume. Inherits values
from the parent volumes.

G4TrackMax double
G4TimeMax double

The maximum track length and particle time of a track. Tracks outside this
bound are killed. Inherits values from the parent volumes.

G4KinMin double The minimum kinetic energy of a track. Tracks outside this bound are killed.
Inherits values from the parent volumes.

SensitiveDetector string Set to the type of sensitive detector required. Possible sensitive detectors are
TOF, SciFi, CKOV, SpecialVirtual, Virtual, Envelope or EMCAL.

Region string

Allocate the volume to the named Geant4 Region. This is used for setting up
production thresholds (see simulation chapter). Child modules are automati-
cally assigned to the parent module’s region. The Root module is automatically
assigned to DefaultRegionForTheWorld.

8.2 Sensitive Detectors
A sensitive detector (one in which hits are recorded) can be defined by including
the SensitiveDetector property. When a volume is set to be a sensitive detec-
tor MAUS will automatically record tracks entering, exiting and crossing the

52

volume. Details such as the energy deposited by the track are sometimes also
recorded in order to enable subsequent modelling of the detector response.

Some sensitive detectors use extra properties.

8.2.1 Scintillating Fibre Detector (SciFi)

8.2.2 Cerenkov Detector (CKOV)

8.2.3 Time Of Flight Counter (TOF)

8.2.4 Special Virtual Detectors
Special virtual detectors are used to monitor tracking through a particular physi-
cal volume. Normally particle tracks are written in the global coordinate system,
although an alternate coordinate system can be defined. Additional properties
can be used to parameterise special virtual detectors.

Property Type Description
ZSegmentation int
PhiSegmentation int
RSegmentation int

Set the number of segments in the detector in Z, R or f. Defaults to 1.

SteppingThrough bool
SteppingInto bool
SteppingOutOf bool
SteppingAcross bool

Set to true to record tracks stepping through, into, out of or across the volume.
Defaults to true.

Station int
Define an integer that is written to the output file to identify the station.
Defaults to a unique integer identifier chosen by MAUS, which will be different
each time the same Special Virtual is placed.

LocalRefRotation Hep3
Vector

If set, record hits relative to a reference rotation in the coordinate system of
the SpecialVirtual detector.

GlobalRefRotation Hep3
Vector

If set, record hits relative to a reference rotation in the coordinate system of
the Configuration.

LocalRefPosition Hep3
Vector

If set, record hits relative to a reference position in the coordinate system of
the SpecialVirtual detector.

GlobalRefPosition Hep3
Vector

If set, record hits relative to a reference position in the coordinate system of
the Configuration.

8.2.5 Virtual Detectors
Virtual detectors are used to extract all particle data at a particular plane, irre-
spective of geometry. Virtual detectors do not need to have a physical volume.
The plane can be a plane in z, time, proper time, or a physical plane with some
arbitrary rotation and translation.

53

Property Type Description

IndependentVariable String

• If set to t, particle data will be written for particles at the time defined
by the PlaneTime property.

• If set to tau, particle data will be written for particles at the proper time
defined by the PlaneTime property.

• If set to z, particle data will be written for particles crossing the module’s
z-position.

• If set to u, particle data will be written for particles crossing a plane
extending in x and y.

PlaneTime Double If IndependentVariable is t or tau, particle data will be written out at this time.
Mandatory if IndependentVariable is t or tau.

RadialExtent Double If set, particles outside this radius in the plane of the detector will not be
recorded by the Virtual detector.

GlobalCoordinates Bool If set to 0, particle data is written in the coordinate system of the module.
Otherwise particle data is written in global coordinates.

MultiplePasses String

Set how the VirtualPlane handles particles that pass through more than once.
If set to Ignore, particles will be ignored on second and subsequent passes. If
set to SameStation, particles will be registered with the same station number.
If set to NewStation, particles will be registered with a NewStation number
given by the (total number of stations) + (this plane’s station number), i.e. a
new station number appropriate for a ring geometry.

AllowBackwards Bool Set to false to prevent backwards-going particles from being recorded. Default
is true.

8.2.6 Envelope Detectors
Envelope detectors are a type of Virtual detector that take all of the properties
listed under virtual detectors, above. In addition, in the optics application they
can be used to interact with the beam envelope in a special way. The following
properties can be defined for Envelope Detectors in addition to the properties
specified above for virtual detectors.

The The EnvelopeOut properties are used to make output from the envelope
for use in the Optics optimiser.

Property Type Description

EnvelopeOut1_Name String
Defines the variable name that can be used as an expression substitution at
the end of each iteration, typically substituted into the Score parameters in
the optimiser (see optimiser, below).

EnvelopeOut1_Type String

Defines the type of variable that will be calculated for the substitution. Options
are

• Mean

• Covariance

• Standard_Deviation

• Correlation

• Bunch_Parameter

54

Property Type Description

EnvelopeOut1_Variable String

Defines the variable that will be calculated for the substitution. Options are
for Bunch_Parameter

• ◦ emit_6d : 6d emittance

◦ emit_4d: 4d emittance (in x-y space)

◦ emit_t: 2d emittance (in time space)

◦ emit_x: 2d emittance (in x space)

◦ emit_y: 2d emittance (in y space)

◦ beta_4d: 4d transverse beta function

◦ beta_t: 2d longitudinal beta function

◦ beta_x: 2d beta function (in(x space)

◦ beta_y: 2d beta function (in y space)

◦ alpha_4d: 4d transverse alpha function

◦ alpha_t: 2d longitudinal alpha function

◦ alpha_x: 2d alpha function (in(x space)

◦ alpha_y: 2d alpha function (in y space)

◦ gamma_4d: 4d transverse gamma function

◦ gamma_t: 2d longitudinal gamma function

◦ gamma_x: 2d gamma function (in(x space)

◦ gamma_y: 2d gamma function (in y space)

◦ disp_x: x-dispersion

◦ disp_y: y-dispersion

◦ ltwiddle: normalised angular momentum

◦ lkin: standard angular momentum

For Mean, Standard_Deviation, Covariance and Correlation, variables should
be selected from the options

• x: x-position

• y:y-position

• t: time

• px: x-momentum

• py: y-momentum

• E: energy

For Mean, a single variable should be selected and value corresponding to the
reference trajectory will be returned.
For Standard_Deviation, a single variable should be selected and the 1 sigma
beam size will be returned.
For Covariance and Correlation, two variables should be selected separated by
a comma.

55

Property Type Description

8.3 Unconventional Volumes
It is possible to define a number of volumes that use properties rather than the
Dimensions keyword to define the volume size.

Volume Trapezoid
Volume Trapezoid gives a trapezoid which is not necessarily isosceles. Its

dimensions are given by:

Property Type Description
TrapezoidWidthX1 Double Gives width1 in x
TrapezoidWidthX2 Double Gives width2 in x
TrapezoidWidthY1 Double Gives height1 in y
TrapezoidWidthY2 Double Gives height2 in y
TrapezoidLengthZ Double Gives length along z

8.3.1 Trapezoid Volume
A Trapezoid Volume is like a Wedge Volume (look visualization below) with the
possibility to have different values for x width and 2 (non-zero) values for y.

8.3.2 Volume Wedge
A wedge is a triangular prism as shown in the diagram. Here the blue line
extends along the positive z-axis and the red line extends along the x-axis.

Property Type Description

Dimensions Hep3
Vector

1. Width of the prism in x

2. Open end height of the prism in y

3. Length of the prism in z

8.3.3 Volume Polycone
A polycone is a volume of rotation, defined by a number of points in r and z.
The volume is found by a linear interpolation of the points.

Property Type Description

PolyconeType string Set to Fill to define a solid volume of rotation. Set to Cone to define a shell
volume of rotation with an inner and outer surface.

FieldMapMode string The name of the file that contains the polycone data.

8.3.4 Volume Quadrupole
Quadrupoles are defined by an empty cylinder with four further cylinders that
are approximations to pole tips.

Property Type Description
PhysicalLength double The length of the quadrupole container.

56

Property Type Description
QuadRadius double The distance from the quad centre to the outside of the quad.
PoleTipRadius double The distance from the quad centre to the pole tip.
CoilRadius double
CoilHalfWidth double
BeamlineMaterial string The material from which the beamline volume is made.
QuadMaterial string The material from which the quadrupole volume is made.

8.3.5 Volume Multipole
Multipoles are defined by an empty box with an arbitrary number of cylinders
that are approximations to pole tips. Poles are placed around the centre of the
box with n-fold symmetry. Multipoles can be curved, in which case poles cannot
be defined – only a curved rectangular aperture will be present.

Property Type Description

ApertureCurvature double Radius of curvature of the multipole aperture. For now curved apertures
cannot have poles. Set to 0 for a straight aperture.

ApertureLength double Length of the multipole aperture.
NumberOfPoles int Number of poles.

PoleCentreRadius double The distance from the centre of the aperture to the centre of the cylindrical
pole.

PoleTipRadius double The distance from the centre of the aperture to the tip of the cylindrical pole.
ApertureInnerHeight double The inner full height of the aperture.
ApertureInnerWidth double The inner full width of the aperture.
AppertureOuterHeight double The outer full height of the aperture.
ApertureOuterWidth double The outer full width of the aperture.

8.3.6 Volume Boolean
Boolean volumes enable several volumes to be combined to make very sophisti-
cated shapes from a number of elements. Elements can be combined either by
union, intersection or subtraction operations. A union creates a volume that is
the sum of two elements; an intersection creates a volume that covers the region
where two volumes intersect each other; and a subtraction creates a volume that
contains all of one volume except the region that another volume sits in.

Boolean volumes combine volumes modelled by other MiceModules (sub-
modules), controlled using the properties listed below. Only the volume shape
is used; position, rotation and field models etc are ignored. Materials, colours
and other relevant properties are all taken only from the Boolean Volume’s
properties.

Note that unlike in other parts of MAUS, submodules for use in Booleans
(BaseModule, BooleanModule1, BooleanModule2 ...) must be defined in a sep-
arate file, either defined in $MICEFILES/Models/Modules or in the working
directory.

Also note that visualisation of boolean volumes is rather unreliable. Unfor-
tunately this is a feature of GEANT4. An alternative technique is to use special
virtual detectors to examine hits in boolean volumes.

Property Type Description

BaseModule string
Name of the physical volume that the BooleanVolume is based on. This
volume will be placed at (0,0,0) with no rotation, and all subsequent volumes
will be added, subtracted or intersected with this one.

57

Property Type Description

BooleanModule1 string The first module to add. MAUS will search for the MiceModule with path
$MICEFILES/Models/Modules/<BooleanModule1>.

BooleanModule1Type string The type of boolean operation to apply, either “Union”, “Intersection” or “Sub-
traction”.

BooleanModule1Pos Hep3
Vector The position of the new volume with respect to the Base volume.

BooleanModule1Rot Hep3
Vector The rotation of the new volume with respect to the Base volume.

BooleanModuleN string

Add extra modules as required. Replace “N” with the module number. N must
be a continuous series incrementing by 1 for each new module. Note that the
order in which modules are added is important – (A-B) U C is different to
A-(B U C).

BooleanModuleNType string

BooleanModuleNPos Hep3
Vector

BooleanModuleNRot Hep3
Vector

8.3.7 Volume Sphere
A sphere is a spherical shell, with options for opening angles to make segments.

Property Type Description

Dimensions Hep3
Vector

The x value defines the inner radius. The y value defines the outer radius of
the shell. The z value is not used.

Phi Hep3
Vector

The x value defines the start opening angle in phi. The y value defines the
end opening angle. The z value is not used. Phi values must be in the range
0 to 360 degrees. If undefined, defaults to the range 0-360 degrees.

Theta Hep3
Vector

The x value defines the start opening angle in theta. The y value defines the
end opening angle. The z value is not used. Theta values must be in the
range 0 to 180 degrees. If undefined, defaults to the range 0-360 degrees.

8.4 Repeating Modules
It is possible to set up a repeating structure for e.g. a repeating magnet lattice.
The RepeatModule property enables the user to specify that a particular module
will be repeated a number of times, with all properties passed onto the child
module, but with a new position, orientation and scale factor. Each successive
repetition will be given a translation and a rotation relative to the coordinate
system of the previous repetition, enabling the construction of circular and
straight accelerator lattices. Additionally, successive repetitions can have fields
scaled relative to previous repetitions, enabling for example alternating lattices.

Property Type Description
RepeatModule bool Set to 1 to enable repeats in this module.

NumberOfRepeats int Number of times the module will be repeated in addition to the initial place-
ment.

RepeatTranslation Hep3
Vector

Translation applied to successive repeats, applied in the coordinate system of
the previous repetition.

RepeatRotation Hep3
Vector

Rotation applied to successive repeats, applied in the coordinate system of
the previous repetition.

RepeatScaleFactor double ScaleFactor applied to successive repeats, applied relative to previous repeti-
tion’s scale factor.

58

Property Type Description

The RepeatModule2 property also enables the user to specify that a particu-
lar module will be repeated a number of times. In this case, MAUS will set
a substitution variable @RepeatNumber that holds an index between 0 and
NumberOfRepeats. This can be used in an expression in to provide a versatile
interface between user and accelerator lattice.

Property Type Description
RepeatModule2 bool Set to 1 to enable repeats in this module.

NumberOfRepeats int Number of times the module will be repeated in addition to the initial place-
ment.

8.5 Beam Definition and Beam Envelopes
The Optics application can be used to track a trajectory and associated beam
envelope through the accelerator structure. Optics works by finding the Jaco-
bian around some arbitrary trajectory using a numerical differentiation. This is
used to define a linear mapping about this trajectory, which can then be used
to transport the beam envelope.

A beam envelope is defined by a reference trajectory and a beam ellipse.
The reference trajectory takes its position and direction from the position and
rotation of the module. If no rotation is defined the reference trajectory is taken
along the z-axis. The magnitude of the momentum and the initial time of the
reference trajectory is defined by properties. RF cavities are phased using the
reference trajectory defined here.

The beam ellipse is represented by a matrix, which can either be set using

• Twiss-style parameters in (x, px), (y, py) and (t, E) spaces.

• Twiss-style parameters in (t, E) space and Penn-style parameters in a
cylindrically symmetric (x, px, y, py) space.

• A 6x6 beam ellipse matrix where the ellipse equation is given by X.T()MX =
1.

The Penn ellipse matrix is given by

M =

εLmc
βL

p −εLmcαL 0 0 0 0

εLmcγLp
Dx

E V (E)
D′

x

E V (E)
Dy

E V (E)
D′

y

E V (E)

εTmc
βT

p −εTmcαT 0 −εTmc(q2βT
Bz

P − L)

εTmcγT p εTmc(
q
2βT

Bz

P − L) 0

εTmc
βT

p −εTmcαT
εLmcγT p

Here L is a normalised canonical angular momentum, q is the reference particle
charge, Bz is the nominal on-axis magnetic field, p is the reference momentum,
m is the reference mass, εT is the transverse emittance, βT and αT are the
transverse Twiss-like functions, εL is the longitudinal emittance and βL and αL
are the longitudinal Twiss-like functions. Additionally Dx, Dy, D′x and D′y are
the dispersions and their derivatives with respect to z and V (E) is the variance
of energy (given by the (2, 2) term in the matrix above).

The Twiss ellipse matrix is given by

59

M =

εLmc
βL

p −εLmcαL 0 0 0 0

εLmcγLp
Dx

E V (E)
D′

x

E V (E)
Dy

E V (E)
D′

y

E V (E)

εxmc
βx

p −εxmcαx 0 0

εxmcγxp 0 0

εymc
βy

p −εymcαy
εymcγyp

Here p is the reference momentum, m is the reference mass, ei, bi and ai are
the emittances and Twiss functions in the (t,E), (x,px) and (y,py) planes respec-
tively, Dx, Dy, D’x, D’y are the dispersions and their derivatives with respect
to z and V(E) is the variance of energy (given by the (2,2) term in the matrix
above).

Property Type Description
EnvelopeType string Set to TrackingDerivative to evolve a beam envelope in the Optics application.

BeamType string

Set to Random to generate a beam using the parameters below for the Simu-
lation application. Set to Pencil to generate a pencil beam (with no random
distribution). Set to ICOOL, Turtle, MAUS_PrimaryGenHit or G4BeamLine
to use a beam file.

Pid int The particle ID of particles in the envelope or beam.
Time double Set the time of the envelope reference trajectory

Longitudinal Variable string Set the longitudinal variable used to define the reference trajectory momentum.
Options are Energy, KineticEnergy, Momentum and ZMomentum.

Energy
KineticEnergy
Momentum
ZMomentum

double
double
double
double

Define the value of the longitudinal variable used to calculate the mean mo-
mentum and energy. The usual relationship E2+p2c2=m2c4 applies. Kinetic
energy Ek is related to energy E by Ek+m=E.

EllipseDefinition string
Define the beam ellipse that will be used in calculating the evolution of the
Envelope, or used to generate a beam for BeamType Random. Options are
Twiss, Penn and Matrix.

The following properties are only used if EllipseDefinition is set to Twiss
Emittance_X double
Emittance_Y double
Emittance_L double

Emittance in each 2d subspace, (x,px), (y,py) and (t,E).

Beta_X double
Beta_Y double
Beta_L double

Twiss b function in each 2d subspace, (x,px), (y,py) and (t,E).

Alpha_X double
Alpha_Y double
Alpha_L double

Twiss a function in each 2d subspace, (x,px), (y,py) and (t,E).

The following properties are only used if EllipseDefinition is set to Matrix
Covariance(t,t) double
Covariance(t,E) double
Covariance(t,x) double
... double
Covariance(Py,Py) double

Set the 6x6 matrix that will be used in the to define the beam ellipse. Covari-
ances should be covariances of elements of the matrix (x,Px,y,Py,t,E).
This must be a positive definite matrix, i.e. determinant > 0. Note that this
means that at least the 6 terms on the diagonal must be defined. Other terms
default to 0.

60

Property Type Description
The following properties are only used if EllipseDefinition is set to Penn
Emittance_T double Transverse emittance for the 4d (x,px,y,py) subspace.
Emittance_L double Longitudinal emittance for the 2d (t,E) subspace.
Beta_T double Transverse beta for the 4d (x,px,y,py) subspace.
Beta_L double Longitudinal beta for the 2d (t,E) subspace.
Alpha_T double Transverse alpha for the 4d (x,px,y,py) subspace.
Alpha_L double Longitudinal alpha for the 2d (t,E) subspace.
Normalised
AngularMomentu double Normalised angular momentum for the transverse phase space.

Bz double Nominal magnetic field on the reference particle.
The following properties are used if EllipseDefinition is set to Penn or Twiss
Dispersion_X double Dispersion in x (x-energy correlation).
Dispersion_Y double Dispersion in y (y-energy correlation).
DispersionPrime_X double D’ in x (Px-energy correlation).
DispersionPrime_Y double D’ in y (Py-energy correlation).
The following properties are only relevant for generating a beam envelope
RootOutput string Output file name for writing output beam envelope in ROOT binary format.
LongTextOutput string Output file name for writing output beam envelope in string format.

ShortTextOutput string
Output file name for writing output beam envelope in string format. This
abbreviated output omits some of the fields that are present in LongTextOutput
files.

BeamOutput string If a BeamType is defined, this property controls the file name to which beam
data is written.

Delta_t double Offset in time used for calculating numerical derivatives. Default is 0.1 ns.
Delta_E double Offset in energy used for calculating numerical derivatives. Default is 1 MeV.

Delta_x double Offset in x position used for calculating numerical derivatives. Default is 1
mm.

Delta_Px double Offset in x momentum used for calculating numerical derivatives. Default is 1
MeV/c.

Delta_y double Offset in y position used for calculating numerical derivatives. Default is 1
mm.

Delta_Py double Offset in y momentum used for calculating numerical derivatives. Default is 1
MeV/c.

Max_Delta_t double
Max_Delta_E double
Max_Delta_x double
Max_Delta_Px double
Max_Delta_y double
Max_Delta_Py double

Maximum offsets when polyfit algorithm is used. In some cases the offset can
keep increasing without limit unless these maximum offsets are defined. Default
is no limit.

The following properties are only relevant for generating a particle beam

UseAsReference Bool

If set to true and the datacard FirstParticleIsReference is set to 0, the first
event in the Module will be used as the reference particle that sets cavity
phases. This particle will then have the mean trajectory (i.e. no gaussian
distribution).

BeamFile string If the BeamType is ICOOL, Turtle, MAUS_PrimaryGenHit or G4BeamLine,
this property defines the name of the file containing tracks for MAUS.

NumberOfEvents int

Set the maximum number of events to take from this module. If other modules
are defined, MAUS will iterate over the modules until it the datacard numEvts
is reached or all modules have been run to NumberOfEvents. Default is for
MAUS to keep tracking from the first module it finds until numEvts is reached.

61

Property Type Description

8.6 Optimiser
It is possible to define an optimiser for use in the Optics application. The
optimiser enables the user to vary parameters in the MiceModule file and try
to find some optimum setting. For each value of the parameters, MAUS Optics
will calculate a score; the optimiser attempts to find a minimum value for this
score.

Property Type Description

Optimiser string Controls the function used for optimising. For now Minuit is the only available
option.

Algorithm string

For Minuit optimiser, controls the Minuit algorithm used. In general Simplex
is a good option to use here. An alternative is Migrad. See Minuit documenta-
tion (for example at http://root.cern.ch/root/html/TMinuit.html) for further
information. Minuit attempts to minimise the score function defined by the
Score properties.

NumberOfTries int Maximum number of iterations MAUS will make in order to find the optimum
value.

StartError double Guess at the initial error in the score.
EndError double Required final error in the score for the optimisation to converge successfully.

RebuildSimulation bool
Set to False to tell MAUS not to rebuild the simulation on each iteration. This
should be used to speed up the optimiser when a parameter is used that does
not change the field maps. Default is true.

Parameter1_Start double Seed value for the parameter, that is used in the first iteration.

Parameter1_Name string
Name of the parameter. This name is used as an expression substitution vari-
able elsewhere in the code and should start with @. See Expression Substitu-
tions above for details on usage of expression substitutions.

Parameter1_Delta double Estimated initial error on the parameter. Default is 1.

Parameter1_Fixed bool Set to true to fix the parameter (so that it is excluded from the optimisation).
Default is false.

Parameter1_Min double If required, set to the minimum value that the parameter can hold.
Parameter1_Max double If required, set to the maximum value that the parameter can hold.
Parameter2_Start ...
... ...
Parameter2_Max ...
Score1 double
Score2 ...
... ...

Define an arbitrary number of parameters. Parameters must be numbered con-
secutively, and each parameter must have at least the start value and name
defined. The optimiser will attempt to optimise against a score that is calcu-
lated by summing the Score1, Score2,... parameters on each iteration.

62

Figure 8.1: Schematic of the geometry of a Wedge volume.

63

Chapter 9

Field Properties

Invoke a field using PropertyString FieldType <fieldtype>. The field will be
placed, normally centred on the MiceModule Position and with the appropriate
Rotation. Further options for each field type are specified below, and relevant
datacards are also given. If a fieldtype is specified some other properties must
also be specified, while others may be optional, usually taking their value from
defaults specified in the datacards. Only one fieldtype can be specified per mod-
ule. However, fields from multiple modules are superimposed, each transformed
according to the MiceModule specification. This enables many different field
configurations to be simulated using MAUS.

To use BeamTools fields, datacard FieldMode Full must be set. This is the
default.

Property Type Description
FieldType string Set the field type of the MiceModule.

9.0.1 FieldType CylindricalField
Sets a constant magnetic field in a cylindrical region symmetric about the z-axis
of the module.

Property Type Description

ConstantField Hep3
Vector The magnetic field that will be placed in the region.

Length double
FieldRadius double

The physical extent of the region.

9.0.2 FieldType RectangularField
Sets a constant magnetic field in a rectangular region.

Property Type Description

ConstantField Hep3
Vector The magnetic field that will be placed in the region.

Length double
Width double
Height double

The physical extent of the region.

64

Property Type Description

9.0.3 FieldType Solenoid
MAUS simulates solenoids using a series of current sheets. The field for each
solenoid is written to a field map on a rectangular grid and can then be reused.
The field from each current sheet is calculated using the formula for current
sheets detailed in MUCOOL Note 281, Modeling solenoids using coil, sheet and
block conductors.

Property Type Description

FileName string Read or write solenoid data to the filename. If different modules have the same
filename, MAUS assumes they are the same.

FieldMapMode string

If set to Read, MAUS will attempt to read existing data from the FileName. If
set to Write, MAUS will generate new data and write it to the FileName. If set
to Analytic, MAUS will calculate fields directly without interpolating. If set to
WriteDynamic acts as in Write except the grid extent and grid spacing at each
point is chosen dynamically to some tolerance defined in the FieldTolerance
property. Takes default from datacard SolDataFiles (Write).

Length double
Thickness double
InnerRadius double

Coil physical parameters. Only used in Write/Analytic mode where they are
mandatory.

CurrentDensity double The current density of the solenoid, in A/mm2.

Current double
The current in the solenoid coil; the CurrentDensity is calculated from current I,
number of turns n, length l and thickness t using J = nI/(lt). If CurrentDensity
is also defined, it overrides any Current setting.

NumberOfTurns int The total number of turns in the coil (see Current for more information).

ZExtentFactor double
Field map extends to length + ZExtentFactor*innerRadius in Write mode.
Takes default from datacard SolzMapExtendFactor (10.). Map size is chosen
dynamically in WriteDynamic mode.

RExtentFactor double
Field map extends to radius RExtentFactor*innerRadius in Write mode. Takes
default from datacard SolrMapExtendFactor (2.018...). Avoid allowing grid
nodes to fall on sheets.

NumberOfZCoords int Number of coordinates in z in field map grid in Write mode. Takes default
from datacard NumberNodesZGrid (500).

NumberOfRCoords int Number of coordintes in r in field map grid in Write mode. Takes default from
datacard NumberNodesRGrid (100).

NumberOfSheets int Number of sheets used to calculate the field. Takes default from datacard
DefaultNumberOfSheets (10).

FieldTolerance double
Mandatory when FieldMapMode is WriteDynamic. If field map mode is write
dynamic, this datacard controls the tolerance on errors in the field with which
the field grid and the grid extent will be chosen.

Interpolation
Algorithm string

Choose the interpolation algorithm. Options are BiLinear for a linear interpo-
lation in r and z, or LinearCubic for a linear interpolation in r and a cubic
spline in z. Default is LinearCubic.

IsAmalgamated bool Set to 1 to add the coil to CoilAmalgamtion parent field (see below).

9.0.4 FieldType FieldAmalgamation
During tracking, MAUS stores a list of fields and for each one MAUS checks to
see if tracking is performed through a particular field map’s bounding box. This
can be slow if a large number of fields are present. One way to speed this up is
to store contributions from many coils in a single CoilAmalgamation. A Coil-
Amalgamation searches through child modules for solenoids with PropertyBool

65

IsAmalgamated set to true. If it finds such a coil, it will add the field generated
by the solenoid to its own field map and disable the coil.

Property Type Description
Length double The Length of the field map generated by the CoilAmalgamation.
RMax double The maximum radius of the field map generated by the CoilAmalgamation.

Interpolation
Algorithm string

Choose the interpolation algorithm. Options are BiLinear for a linear interpo-
lation in r and z, or LinearCubic for a linear interpolation in r and a cubic
spline in z. Default is LinearCubic.

ZStep double
RStep double

Step size of the field map generated by the CoilAmalgamation.

9.0.5 FieldType DerivativesSolenoid
This is an alternative field model for solenoids that uses a power law expansion
of the on-axis magnetic field and its derivatives, and an exponential fall-off for
the fringe field. The fringe field is defined in the same way as other end fields,
but note that HardEdged end field type is not available for solenoids and will
result in an error.

Property Type Description
PeakField double Nominal peak field of the solenoid.

ZMax double Maximum z-half length of the solenoid bounding box in the local coordinate
system of the magnet.

RMax double Maximum radius of the solenoid bounding box in the local coordinate system
of the magnet.

MaxEndPole int Maximum derivative used in calculating the end field of the solenoid.

9.0.6 Phasing Models
MAUS has a number of models for phasing RF cavities.

When CavityMode is Unphased, MAUS attempts to phase the cavity itself.
When using CavityMode Unphased MAUS needs to know when particles enter,
cross the middle, and leave cavities. To phase a cavity, MAUS builds a virtual
detector in the centre of the cavity that is used for phasing and then fires a
reference particle through the system. Stochastic processes are always disabled
during this process, while mean energy loss can be disabled using the datacard
ReferenceEnergyLossModel. If a reference particle crosses a plane through the
centre of a cavity, it sets the phase of the cavity to the time at which the particle
crosses.

The field of the cavity during phasing is controlled by the property Field-
DuringPhasing. There are four modes:

• None: Cavity fields are disabled during phasing

• Electrostatic: An electrostatic field with no positional dependence given
by PeakEField*sin(ReferenceParticlePhase) is enabled during phasing.

• TimeVarying : A standard time varying field is applied during phasing,
initially with arbitrary phase relative to the reference particle. MAUS
uses a Newton-Raphson method to find the appropriate reference phase
iteratively, with tolerance set by the datacard PhaseTolerance.

66

• EnergyGainOptimised : A standard time varying field is applied during
phasing, initially with arbitrary phase and peak field relative to the ref-
erence particle. MAUS uses a 2D Newton-Raphson method to find the
appropriate reference phase and peak field iteratively, so that the ref-
erence particle crosses the cavity centre with phase given by property
ReferenceParticlePhase and gains energy over the whole cavity given by
property EnergyGain with tolerances set by the datacards PhaseTolerance
and RFDeltaEnergyTolerance.

9.0.7 Tracking Stability Around RF Cavities
Usually RF cavities have little or no fringe field, and this can lead to some
instability in the tracking algorithms. When MAUS makes a step into an RF
cavity volume, the tracking algorithms tend to smooth out a field in a non-
physical way. This can be prevented by either (i) making the step size rather
small in the RF cavity or (ii) forcing MAUS to stop tracking by adding a physical
volume at the entrance of the RF cavity (a window, typically made of vacuum).
Doing this should improve stability of tracking.

9.0.8 FieldType PillBox
Sets a PillBox field in a particular region. MAUS represents pillboxes using a
sinusoidally varying TM010 pill box field, with non-zero field vector elements
given by

Bφ = J1(krr) cos(ωt)

Ez = J0(krr) cos(ωt)

Here Jn are Bessel functions and kr is a constant. See, for example, SY Lee
VI.1. All other fields are 0.

Property Type Description
Length double Length of the region in which the field is present.
CavityMode string Phasing mode of the cavity - options are Phased, Unphased and Electrostatic.

FieldDuringPhasing string Controls the field during cavity phasing – options are None, Electrostatic,
TimeVarying and EnergyGainOptimised.

EnergyGain double WhenFieldDuringPhasing is set to EnergyGainOptimised, controls the peak
electric field.

Frequency double The cavity frequency.

PeakEField double The peak field of the cavity. Not used when the FieldDuringPhasing is Ener-
gyGainOptimised.

TimeDelay double In Phased mode the time delay (absolute time) of the cavity.
PhasingVolume string Set to SpecialVirtual to make the central volume a special virtual.
ReferenceParticle
Energy double

ReferenceParticle
Charge double

In Electrostatic mode, MAUS calculates the peak field and the field the refer-
ence particle sees using a combination of the reference particle energy, charge
and phase. Take defaults from datacards NominalKineticEnergy and Muon-
Charge

ReferenceParticle
Phase double

MAUS tries to phase the field so that the reference particle crosses the cavity
at ReferenceParticlePhase (units are angular). 0o corresponds to no energy
gain, 90o corresponds to operation on-crest. Default from datacard rfAcclera-
tionPhase.

67

Property Type Description

9.0.9 FieldType RFFieldMap
Sets a cavity with an RF field map in a particular region. RFFieldMap uses the
same phasing algorithm as described above.

Property Type Description
Length double Length of the region in which the field is present.

CavityMode string Phasing mode of the cavity - options are Phased and Unphased. RFFieldMaps
cannot operated in Electrostatic mode.

FieldDuringPhasing string Controls the field during cavity phasing – options are None, Electrostatic,
TimeVarying and EnergyGainOptimised.

EnergyGain double WhenFieldDuringPhasing is set to EnergyGainOptimised, controls the peak
electric field.

Frequency double The cavity frequency.

PeakEField double The peak field of the cavity. Not used when the FieldDuringPhasing is Ener-
gyGainOptimised.

TimeDelay double In Phased mode the time delay (absolute time) of the cavity.
PhasingVolume string Set to SpecialVirtual to make the central volume a special virtual.
ReferenceParticle
Energy double

ReferenceParticle
Charge double

In Electrostatic mode, MAUS calculates the peak. field and the field the refer-
ence particle sees using a combination of the reference particle energy, charge
and phase. Take defaults from datacards NominalKineticEnergy and Muon-
Charge

ReferenceParticle
Phase double

MAUS tries to phase the field so that the reference particle crosses the cavity
at ReferenceParticlePhase (units are angular). 0o corresponds to no energy
gain, 90o corresponds to operation on-crest. Default from datacard rfAcclera-
tionPhase.

FileName string The file name of the field map file.
FileType string The file type of the field map. Only supported option is SuperFishSF7.

9.0.10 FieldType Multipole
Creates a multipole of arbitrary order. Fields are generated using either a hard
edged model, with no fringe fields at all; or an Enge model similar to ZGoubi
and COSY. In the former case fields are calculated using a simple polynomial
expansion. In the latter case fields are calculated using the polynomial expansion
with an additional exponential drop off. Fields can be superimposed onto a bent
coordinate system to generate a sector multipole with arbitrary fixed radius of
curvature.

Unlike most other field models in MAUS, the zero position corresponds to
the center of the entrance of the multipole; and the multipole extends in the +z
direction.

The method to define end fields is described in the section EndFieldTypes
below

Property Type Description
Pole int The reference pole of the magnet. 1=dipole, 2=quadrupole, 3=sextupole etc.

FieldStrength double

Scale the field strength in the good field region. For dipoles, this sets the dipole
field; for quadrupoles this sets the field gradient. Note that for some end field
settings there can be no good field region (e.g. if the end length is >˜ centre
length).

68

Property Type Description
Height double Height of the field region.
Width double Width or delta radius of the field region.
Length double Length of the field along the bent trajectory.

EndFieldType string Set to HardEdged to disable fringe fields. Set to Enge or Tanh to use those
models, as described elsewhere. Default is HardEdged.

CurvatureModel string

Choose the model for curvature. Straight forces no curvature. Constant gives a
constant radius of curvature; StraightEnds gives a constant radius of curvature
along the length of the multipole with straight end fields beyond this length.
MomentumBased gives radius of curvature determined by a momentum and a
total bending angle.

ReferenceCurvature double Radius of curvature of the magnet in Constant or StraightEnds mode. Set to
0 for a straight magnet. Default is 0.

ReferenceMomentum double Reference momentum used to calculate the radius of curvature of a dipole in
MomentumBased mode. Default is 0.

BendingAngle double The angle used to calculate the radius of curvature of a dipole in Momentum-
Based mode. Note that this is mandatory in MomentumBased mode.

9.0.11 FieldType CombinedFunction
This creates superimposed dipole, quadrupole and sextupole fields with a com-
mon radius of curvature. The field is intended to mimic the first few terms in a
multipole expansion of a field like

B(y = 0) = B0

(
r

r0

)k
The field index is a user defined parameter, while the dipole field and radius
of curvature can either be defined directly by the user or defined in terms of a
reference momentum and total bending angle. Fields are calculated as in the
multipole field type defined above.

Property Type Description
Pole int The reference pole of the magnet. 1=dipole, 2=quadrupole, 3=sextupole etc.

BendingField double
The nominal dipole field B0. Note that this is mandatory in all cases except
where CurvatureModel is MomentumBased, when the BendingAngle and Ref-
erenceMomentum is used to calculate the dipole field instead.

FieldIndex double The field index k.
Height double Height of the field region.
Width double Width or delta radius of the field region.
Length double Length of the field along the bent trajectory.

EndFieldType string Set to HardEdged to disable fringe fields. Set to Enge or Tanh to use those
models, as described elsewhere. Default is HardEdged.

CurvatureModel string

Choose the model for curvature. Straight forces no curvature. Constant gives a
constant radius of curvature; StraightEnds gives a constant radius of curvature
along the length of the multipole with straight end fields beyond this length.
MomentumBased gives radius of curvature determined by a momentum and a
total bending angle.

ReferenceCurvature double Radius of curvature of the magnet in Constant or StraightEnds mode. Set to
0 for a straight magnet. Default is 0.

ReferenceMomentum double Reference momentum used to calculate the radius of curvature of a dipole in
MomentumBased mode. Default is 0.

BendingAngle double The angle used to calculate the radius of curvature of a dipole in Momentum-
Based mode. Note that this is mandatory in MomentumBased mode.

69

Property Type Description

9.0.12 EndFieldTypes
In the absence of current sources, the magnetic field can be calculated from a
scalar potential using the standard relation

~B = ∇Vn
The scalar magnetic potential of the nth-order multipole field is given by

Vn =

qm∑
q=0

n∑
m=0

n!2
G(2q)(s)(r2 + y2)q sin(mπ2)rn−mym

4qq!(n+ q)!m!(n−m)!

where G(s) is either the double Enge function,

G(s) = E[(x− x0)/λ] + E[(−x− x0)/λ]− 1

E(s) =
B0

Rn0

1

1 + exp(C1 + C2s+ C3s2 + ...)

or G(s) is the double tanh function,

G(s) = tanh[(x+ x0)/λ]/2 + tanh[(x− x0)/λ]/2

and (r, y, s) is the position vector in the rotating coordinate system. Note that
here s is the distance from the nominal end of the field map.

Property Type Description

EndFieldType string Set to HardEdged to disable fringe fields. Set to Enge or Tanh to use those
models, as described elsewhere. Default is HardEdged.

The following properties are used for EndFieldType Tanh
EndLength double Set the l parameter that defines the rapidity of the field fall off.
CentreLength double Set the x0 parameter that defines the length of the flat field region.

MaxEndPole int Set the maximum pole that will be calculated – should be larger than the
multipole pole.

The following properties are used for EndFieldType Enge
EndLength double Set the l parameter that defines the rapidity of the field fall off.
CentreLength double Set the x0 parameter that defines the length of the flat field region.

MaxEndPole int Set the maximum pole that will be calculated – should be larger than the
multipole pole.

Enge1 double
Enge2 double
... double
EngeN double

Set the parameters Ci as defined in the Enge function above.

9.0.13 FieldType MagneticFieldMap
Reads or writes a magnetic field map in a particular region. Two sorts of field
maps are supported; either a 2d field map, in which cylindrical symmetry is
assumed, or a 3d field map.

For 2d field maps, MAUS reads or writes a file that contains informa-
tion about the radial and longitudinal field components. This is intended for
solenoidal field maps where only radial and longitudinal field components are
present. Note that in write mode, MAUS assumes cylindrical symmetry of the
fields. In this case, MAUS writes the x and z components of the magnetic field

70

at points on a grid in x and z. Fields with an electric component are excluded
from this summation.

For 3d field maps, MAUS reads a file that contains the position and field in
cartesian coordinates and performs a linear interpolation. This requires quite
large field map files; the file size can be slightly reduced by using certain sym-
metries, as described below. It is currently not possible to write 3d field maps.

Property Type Description
FieldMapMode string Set to Read to read a field map; and Write to write a field map.
FileName string The file name that is used for reading or writing.

FileType string
The file format. Supported options in Read mode are MAUStext, MAUSbinary,
g4beamline, icool, g4bl3dGrid. Only MAUStext is supported in Write mode.
Default is MAUStext.

Symmetry string

Symmetry option for g4bl3dGrid file type. Options are None, Dipole or
Quadrupole. None uses the field map as is, while Dipole and Quadrupole reflect
the octant between the positive x, y and z axes to give an appropriate field for
a dipole or quadrupole.

ZStep double
RStep double

Step size in z and r. Mandatory in Write mode but not used in Read mode
(where step size comes from the map file).

ZMin double
ZMax double
RMin double
RMax double

Upper and lower bounds in z and r. Mandatory in Write mode but not used in
Read mode (where boundaries come from the map file).

Some file formats are described below. I am working towards making the file for-
mat more generic and hence possibly easier to use, but backwards compatibility
will hopefully be maintained.

MAUStext Field Map Format

The native field map format used by MAUS in text mode is described below.
GridType = Uniform N = number_rows
Z1 = z_start Z2 = z_end dZ = z_step
R1 = r_start R2 = r_end dR = r_step
Bz_Values Br_Values
... ...
<Repeat as necessary>
In this mode, field maps are represented by field values on a regular 2d grid

that is assumed to have solenoidal symmetry, i.e. cylindrical symmetry with no
tangential component.

Name Type Description
number_rows double Number of rows in the field map file.
z_start double Position of the grid start along the z axis.
z_end double Position of the grid end along the z axis.
z_step double Step size in z.
r_start double Position of the grid start along the r axis.
r_end double Position of the grid end along the r axis.
r_step double Step size in r.
Bz_Values double Bz field value.
Br_Values double Br field value.

71

g4bl3dGrid Field Map Format

The file format for 3d field maps is a slightly massaged version of a file format
used by another code, g4beamline. In this mode, field maps are represented by
field values on a regular cartesian 3d grid.

number_x_points number_y_points number_z_points global_scale
1 X [x_scale]
2 Y [y_scale]
3 Z [z_scale]
4 BX [bx_scale]
5 BY [by_scale]
6 BZ [bz_scale]
0
X_Values Y_Values Z_Values Bx_values By_values Bz_values
...
<Repeat as necessary>
where text in bold indicates a value described in the following table

Name Type Description
number_x_points double Number of points along x axis.
number_y_points double Number of points along y axis.
number_z_points double Number of points along z axis.
global_scale double Global scale factor applied to all x, y, z and Bx, By, Bz values.
x_scale double Scale factor applied to all x values.
y_scale double Scale factor applied to all y values.
z_scale double Scale factor applied to all z values.
bx_scale double Scale factor applied to all Bx values.
by_scale double Scale factor applied to all By values.
bz_scale double Scale factor applied to all Bz values.
X_Values double List (column) of each x value.
Y_Values double List (column) of each y value.
Z_Values double List (column) of each z value.
Bx_Values double List (column) of each Bx value.
By_Values double List (column) of each By value.
Bz_Values double List (column) of each Bz value.

72

Chapter 10

TOF Detector

This chapter describes the time-of-flight (TOF) simulation and reconstruction
software. The simulation is designed to produce digits similar to “real data” and
the reconstruction is agnostic about whether the digits are from simulation or
data acquisition.

10.1 Simulation
• Geometry

For the most upstream TOF – TOF0 – to be simulated, it is essential that
the z where the beam starts be upstream of the detector.

In the standard Step VI geometry as described in Stage6.dat, this is at
-14200 mm and for the Step IV geometry described in Stage4.dat it is at
2773 mm

The internal geometry of the TOF detector and the positioning of the slabs
are defined in the MiceModules represenation . The numbering convention
is the same as that for the DAQ and is described in MICE-Notes 251 and
286. It is worth keeping in mind the plane numbering convention since
the current naming scheme is suboptimal:

◦ station refers to the TOF station – TOF0, TOF1, TOF2

◦ plane refers to the horizontal/vertical planes within a station

◦ plane 0 means horizontal slabs – slabs are oriented horizontally.
They measure y

◦ plane 1 means vertical slabs – slabs are oriented vertically. They
measure x

The z locations of TOF0 and TOF1 are specified in the Beamline.dat file
and the z of TOF2 is specified in the main geometry description file, for
e.g. Stage6.dat

• Hits
GEANT hits are generated for all tracks which pass through a TOF slab.
“True” TOF hits are described by the MAUS::Hit class and contain the
GEANT4 information prior to digitization. The members of the class are
listed below.

73

Table 10.1: True TOF hit class members.
The GEANT TOF hits are encoded with the following information.
Name Meaning
channel_id Class TOFChannelId* contains station,plane,slab
energy_deposited double – energy deposited by track in the slab
position ThreeVector – x, y, z of hit at the slab
momentum ThreeVector – px, py, pz of particle at slab
time double – hit time
charge double – PDG charge of particle that produced this

hit
track_id G4Track – ID of the GEANT track that produced this

hit
particle_id ThreeVector – PDG code of the particle that produced

this hit

10.1.1 Digitization
Each GEANT hit in the TOF is associated with a slab based on the geometry
described in the TOF MiceModules. If a hit’s position does not correspond to a
physical slab (for instance if the hit is outside the fiducial volume) the hit is not
digitized. The energy deposited in the slab and the hit time are then digitized
as described below.

• Charge digitization The energy deposited by a hit in a slab is first
converted to units of photoelectrons. The photoelectron yield from a hit
is attenuated by the distance from the hit to the PMT, then smeared by
the photoelectron resolution. The yields from all hits in a given slab are
then added and the summed photoelectron yield is converted to ADC (In
principle, this should be done not on an event-by-event basis but rather
on a trigger-basis. In the absence of a real trigger, all hits in a slab are
now merged)

• Time digitization The hit time is propogated to the PMTs at either
end of the slab. The speed of light in the scintillator, based on earlier
calibration, is controlled by the TOFscintLightSpeed data card. The
time is then smeared by the PMT time resolution and converted to TDC.

After converting the energy deposit to ADC and the time to TDC, the TDC val-
ues are “uncalibrated” so that at the reconstruction stage they can be corrected
just as is done with real data.

The data cards that control the digitization are listed in Table 9.2.
NOTE: Do not modify the default values.

10.2 Reconstruction
The reconstruction software treats both data and Monte Carlo the same way.
In the case of real data, the input to the reconstruction chain is TOF Digits
(MapCppTOFDigit) and in the case of Monte Carlo it is the digitized information
from MapCppTOFMCDigitizer.

• Digits (MapCppTOFDigit,MapCppTOFMCDigitizer) Digits are formed from
the V1724 ADCs and V1290 TDCs.

74

Table 10.2: Data cards for TOF digitization.
Name Meaning Default
TOFconversionFactor conversion 0.005 MeV
TOFpmtTimeResolution resolution for smear-

ing the PMT time
0.1 ns

TOFattenuationLength light attenuation in
slabs

1400 mm

TOFadcConversionFactor conversion from
charge to ADC

0.125

TOFtdcConversionFactor conversion from time
to TDC

0.025

TOFpmtQuantumEfficiency PMT collection effi-
ciency

0.25

TOFscintLightSpeed propogation speed in
slab

170 mm/ns

• Slab Hits (MapCppTOFSlabHits) The SlabHits routine takes individual
PMT digits and associates them to reconstruct the hit in the slab. All
PMT digits are considered. If there are multiple hits associated with a
PMT, the hit which is earliest in time is taken to be the real hit. Then, if
both PMTs on a slab have hits, the SlabHit is formed. The TDC values
are converted to time (ToftdcConversionFactor) and the hit time and
charge associated with the slab hit are taken to be the average of the two
PMT times and charges respectively. In addition, the charge product of
the PMT charges is also formed.

• Space Points (MapCppTOFSpacePoints) A space point pixel in the TOF
is a combination of x and y slab hits. All combinations of x and y slab
hits in a given station are considered. If the station is a trigger station, an
attempt is made to find the “trigger pixel” – i.e. the x, y combination that
triggered this event. This is done by applying calibration corrections to
the slab hits, and then asking if the average time in this pixel is consistent
with the trigger within some tolerance. In other words, if tx and ty are the
times corresponding to the x and y slab hits, is tx,calib+ty,calib

2 < ttriggercut?
If no x, y combination produces a trigger pixel, the space point reconstruc-
tion stops and no space points are formed. This is because to apply the
calibration corrections to the slab hit times, it is essential know the trigger
pixel.
Once a trigger pixel is found, all x, y slab hit combinations are again
treated as space point candidates. The calibration corrections are applied
to these hit times. If | tx − ty | is consistent with the resolution of the
detector, the combination is said to be a space point. The space point
thus formed contains the following information

This is used by the reconstuction of the TOF detectors| #TOF_cabling_file = "/files/cabling/TOFChannelMap.txt"
#TOF_TW_calibration_file = "/files/calibration/tofcalibTW_dec2011.txt"
#TOF_T0_calibration_file = "/files/calibration/tofcalibT0_trTOF1_dec2011.txt"
#TOF_T0_calibration_file = "/files/calibration/tofcalibT0_trTOF0.txt"
#TOF_Trigger_calibration_file = "/files/calibration/tofcalibTrigger_trTOF1_dec2011.txt"
#TOF_Trigger_calibration_file = "/files/calibration/tofcalibTrigger_trTOF0.txt"
the date for which we want the cabling and calibration # date can be ’current’ or a date in YYYY-MM-DD hh:mm:ss format
#TOF_calib_date_from = ’current’ TOF_calib_date_from = ’2010-08-10 00:00:00’

75

Table 10.3: TOFSpacePoint class members.
Name Meaning
pixel_key string encoded with the TOF station,plane,slab
slabY int encoded with the TOF station,plane,slab
slabX int encoded with the TOF station,plane,slab
time double – calibrated space point time
charge int – average of the charges of the constitutent slabs
charge_product int – average of charge products of the constitutent slabs
dt double – time difference between the x and y slabs =

resolution

Table 10.4: Data cards for TOF reconstruction.
Name Meaning Default
TOF_trigger_station conversion 0.005 MeV
TOF_findTriggerPixelCut resolution for

smearing the
PMT time

0.1 ns

TOF_makeSpacePiontCut PMT collection
efficiency

0.25

Enable_t0_correction light attenuation
in slabs

1400 mm

Enable_triggerDelay_correction conversion from
charge to ADC

0.125

Enable_timeWalk_correction conversion from
time to TDC

0.025

76

Table 10.5: Data cards for accessing calibrations from CDB.
Name Meaning Default
TOF_calib_date_from conversion ’2010-08-10 00:00:00’|
TOF_cabling_date_from conversion current

TOF_cabling_date_from = ’current’ Enable_timeWalk_correction = True
Enable_triggerDelay_correction = True Enable_t0_correction = True

10.3 Database
• Constants in the CDB

• Datacards

• Routines to access

77

Chapter 11

The Trackers

11.1 Introduction

11.1.1 Overview
This chapter describes the software used to simulate and reconstruct the MICE
scintillating fibre trackers. Section 11.2, 11.3 and 11.4 are reference sections pro-
viding descriptions of the official definitions, reference surfaces and coordinate
systems, and reconstruction algorithms respectively. The later sections provide
descriptions of the code as implemented in MAUS. A quick start guide regular
users appears in below in section 11.1.2.

11.1.2 Quick start guide
Example scripts and datacards for the tracker reconstruction can be found in the
bin/user/scifi directory. A typical top level python file to run a simulation
with tracker reconstruction is shown below.

import i o # gene r i c python l i b r a r y f o r I /O
import gz ip # For compressed output # py l i n t : d i s ab l e=W0611
import MAUS

def run () :
This input gene ra t e s empty s p i l l s ,
to be f i l l e d by the beam maker l a t e r
my_input = MAUS. InputPySpi l lGenerator ()

The mappers f o r to s e t up the s imu la t i on
my_map = MAUS.MapPyGroup ()
my_map. append (MAUS.MapPyBeamMaker ()) # beam cons t ru c t i on
my_map. append (MAUS. MapCppSimulation ()) # geant4 sim

The mappers f o r t r a cke r MC d i g i t i s a t i o n and recon
my_map. append (MAUS. MapCppTrackerMCDigitization ())
my_map. append (MAUS. MapCppTrackerRecon ())

Spec i f y c on f i g parameters v ia a datacard
datacards = io . Str ingIO (u"")

The Pattern Recogni t ion reducer to d i sp l ay t ra ck s
reducer = MAUS. ReduceCppPatternRecognition ()

Output to ROOT f i l e

78

my_output = MAUS. OutputCppRoot ()

The Go() d r i v e s a l l the components you pass in
MAUS.Go(my_input , my_map, reducer , my_output , datacards)

i f __name__ == ’__main__’ :
run ()

Listing 11.1: Example SciFi python script

Some important datacard parameters to consider when using the tracker soft-
ware are:

• SciFiPRHelicalOn - set to True or False for helical pattern recognition

• SciFiPRStraightOn - set to True or False for straight pattern recognition

• SciFiKalmanOn - set to True or False for running the final track fit

11.2 Definitions

11.2.1 Labelling of upstream and downstream trackers
The official labels for the two trackers are:

Upstream tracker → Tracker#1

Downstream tracker → Tracker#2

The internals of the code however will frequently refer to the upstream tracker
as 0, and the downstream tracker as 1. In this document, we will use the official
convention.

11.2.2 Station numbering
The tracker reference document defines the station “labelling” of the stations
in relation to the focus-coil module that is immediately downstream of tracker
1 or, equivalently, immediately upstream of tracker 2. The station closest to
the focus-coil module in question is labelled “1”. The label then increases such
that station 5 is the station closest to the optical patch panel. The scheme is
summarised in table 11.1 and figure 11.1.

Table 11.1: Station numbering scheme. The “label” of the stations that make
up a MICE tracker runs from 1 to 5. The location of the station in relation to
the patch panel and the absorber is reported in the column labelled “Location”.
Location Label
Closest to absorber (furthest from patch panel) 1

2
3
4

Furthest from absorber (closest to patch panel) 5

79

Figure 11.1: Schematic diagram of the MICE tracker. The five stations are
shown supported by the carbon-fibre space frame, with fibres omitted for clarity.
The station numbering scheme is indicated together with the direction in which
the clear-fibre light-guides leave the tracking volume.

11.2.3 Doublet layer
Each station consists of three “doublet layers” of 350µm scintillating fibres glued
onto a carbon-fibre station body. The doublet layers are labelled u (sometimes
refered to also as x), w and v. The layers are arranged such that the fibres in
one layer run at an angle of 120◦ to the fibres in each of the other layers as
shown in figure 11.2a. The arrangement of the fibres within a doublet layer is
shown in figure 11.2b. The configuration of the seven fibres ganged for readout
via a single clear-fibre light-guide is also indicated.

Doublet-layer numbering

The order in which the doublet layers were glued onto the station body is shown
in figure 11.3. The u layer was glued to the station body first. The doublet layer
was glued such that the “fibre side” of the doublet layer was glued to the station
body; i.e. the mylar sheet faces away from the station body. The w layer was
then glued onto the outer surface of the u layer. The fibre side of the w layer
was glued to the mylar sheet of the u layer such that the mylar sheet of the w
layer also faces away from the station body. Finally, the v layer was glued onto
the assembly. The gluing arrangement was the same as for the u and w layers,
i.e. the mylar sheet of the v layer also faces away from the station body.

11.2.4 Fibre-channel numbering
The numbering of the groups of seven fibres ganged for readout is shown in
figure 11.4. With the mylar surface facing up, and with the tails leading out to
the station connectors taken to be at the bottom of the figure, the fibre-channel
increases from left to right. The coordinate measured by the doublet layer (u,
v or w) is taken to increase in the same direction as the channel number. The
origin of the measured coordinate is taken to be at the position of the central
fibre.

80

u

(a)
w

v

213.5
627.3

277.3
350(b)

Mylar

Figure 11.2: (a) Arrangement of the doublet layers in the scintillating-fibre
stations. The outer circle shows the solenoid bore while the inner circle shows the
limit of the active area of the tracker. The grey, blue, and green regions indicate
the direction that the individual 350µm fibres run (moving outward from the
centre) in the u, v, and w planes respectively. (b) Detail of the arrangement of
the scintillating fibres in a doublet layer. The fibre spacing and the fibre pitch
are indicated on the right-hand end of the figure in µm. The pattern of seven
fibres ganged for readout in a single clear-fibre light-guide is shown in red. The
sheet of Mylar glued to the doublet layer is indicated.

r

zuwv
Figure 11.3: The order in which the doublet layers were glued onto the station
body.The station body is indicated by the solid black lines. The u layer (shown
as the grey line was glued to the station body first. The w (indicated by the
green line) was then glued onto the outer surface of the u layer. The outer
doublet layer, the v layer (shown as the blue line) was then glued onto the
assembly. The station reference surface and the direction of increasing z are
shown as the thin black lines.

81

Doublet layer
(mylar side up)

Central Fibre

Channel 1 Channel 212
or 214

Fibre run to the station optical connnectors taken to be towards the bottom of the figure

Figure 11.4: The order in which fibre channels (groups of seven fibres) are
numbered. The sensitive surface of the doublet layer is indicated by the solid
circle. The direction in which the fibres run is indicated by the vertical lines.
The station optical connectors are taken to be at the bottom of the figure as
indicated. With the mylar sheet taken to be facing up, fibre-channel number 1
is to the left of the central fibre. The fibre-channel number increases from left
to right. The “zero” of the coordinate (u, v or w increases) measured by the
doublet layer is taken to be the position of the central fibre. The direction in
which the coordinate measured by the double layer increases is indicated by the
red arrow.

82

α

z
d

a) b)

[Station optical connectors.]

α

β

Figure 11.5: Reference surfaces and coordinate-system definitions for the dou-
ble layer and station. a) The fibres in the doublet layer are shown as the shaded
circles, the central channel being shaded pink. The mylar layer is indicated
by the solid black corrugated line. The doublet-layer reference surface is indi-
cated by the vertical straight line, the arrow labelled α indicates the direction
in which the coordinate measured by the doublet layer (u, v or w) increases.
The direction of the zd axis is indicated. b) View of doublet layer looking down
on the mylar layer with the optical connectors at the bottom of the figure. The
coordinate measured by the doublet layer (u, v or w) is indicated by the axis
labelled α. The orthogonal axis, i.e. the direction in which the fibres run, is
labelled β. The origin of the (α, β) coordinate system is taken to be at the
centre of the circular active area.

11.3 Reference surfaces and coordinate systems

11.3.1 Doublet layer
The doublet-layer reference surface is defined to be the flat plane that is tan-
gential to the outer surface of the mylar plane as shown in Figure 11.5a. The
measured coordinate, α ∈ u, v, w, is defined to lie in this plane and the α axis
is perpendicular to the direction in which the fibres run. The doublet-layer
zd axis is defined to to be perpendicular to the doublet-layer reference surface
increasing in the direction indicated in the figure. The direction in which the
measured coordinate, α increases is indicated in figure 11.5b. The orthogonal
coordinate in the doublet-layer reference surface that with α and zd completes a
right handed coordinate system is referred to as β. The β axis is also indicated
in figure 11.5b.

11.3.2 Station
The station reference surface is defined to coincide with the reference surface of
the v doublet layer (see figure 11.6). The station coordinate system is defined
such that the ys axis is coincident with v axis, the zs axis is coincident with
the zd axis of the v layer and the xs axis completes a right-handed coordinate
system.

83

u

v
w

zs

ys

Figure 11.6: The carbon-fibre station body is indicated by the heavy solid black
lines. The three doublet layers are indicated by the solid grey (u), green (w)
and blue (v) lines. The station reference surface is shown by the solid vertical
line coincident with the reference surface of the doublet layer labelled v. The
direction ys axis, defined to be coincident with the v axis and the zs axes
are shown as the solid, black arrows. The xs axis completes a right-handed
coordinate system and therefore points into the page.

11.3.3 Tracker
The tracker reference surface is defined to coincide with the reference surface
of station 1. The tracker coordinate system is defined such that the zt axis
coincides with the nominal axis of cylindrical symmetry of the tracker as shown
in figure 11.7. The tracker zt coordinate increases from station 1 to station 5.
The tracker yt axis is defined to coincide with the ys axis of station 1 and the
tracker xt axis completes a right-handed coordinate system.

11.3.4 Coordinate transformations
Doublet-layer to station

The transformation from doublet-layer to station coordinates is achieved using
the rotation R

SD
defined by:

rs =

(
xs
ys

)
= R

SD
m =

(
cos θD − sin θD
sin θD cos θD

)(
α
β

)
; (11.1)

where θD is the angle which the fibres that make up the doublet-layer make to
the xs axis in the station coordinate system.

11.4 Reconstruction Algorithms

11.4.1 Hits and clusters
A track passing through a particular doublet layer produces scintillation light
in one or at most two fibre channels. For each channel “hit”, the tracker data ac-
quisition system records the channel number, n, and the pulse height. After cal-
ibration, the pulse height is recorded in terms of the number of photo-electrons
(npe) generated in the Visible Light Photon Counter (VLPC) illuminated by

84

xtyt

zt

Figure 11.7: The outline of the components that make up the MICE tracker
are shown in the line drawing. The tracker reference surface coincides with the
reference surface of station 1. The tracker coordinate system is indicated by the
solid lines. The yt axis is defined to be coincident with the ys axis in the station
coordinate system. The zt axis runs along the nominar axis of the tracker. The
xt axis completes a right-handed coordinate system.

the hit channel. Occasionally, showers of particles or noise can cause three or
more neighbouring channels to be hit. The term “clusters” is used to refer to an
isolated hit or a doublet cluster.

The position of a hit in the doublet-layer coordinate system may be deter-
mined from the channel number. For isolated hits, the measured coordinate
α ∈ u, v, w is given by:

α = cp(n− n0) ; (11.2)

where n0 is the channel number of the central fibre and cp is the channel pitch
given by:

cp = 3.5fp (11.3)

where fd is the fibre diameter (fd = 350µm) and fp = is the fibre pitch (fp =
427µm see figure 11.2). For clusters in which two channels are hit (“doublet
clusters”, see figure 11.8), the measured coordinate is given by:

α = cp

[
(n1 + n2)

2
− n0

]
; (11.4)

where n1 and n2 are the channel numbers of the two hit fibres.

α = cp

[∑
i npeini∑
i npei

]
; (11.5)

where the subscript i indicates the ith channel. The pulse-height for doublet
clusters is determined by summing the pulse height of the hits that make up
the cluster.

The “measurement vector”, m is defined as:

m =

(
α
β

)
; (11.6)

where α is given above and, in the absence of additional information, β = 0.
The corresponding covariance matrix is given by:

Vm =

(
σ2
α 0
0 σ2

β

)
; (11.7)

85

MAUS

Reality

Figure 11.8: Channel overlap as simulated in MAUS; fine-tuning reduces the
error associated to doublet clusters.

where σ2
α and σ2

β are the variance of α and β respectively. The variance on α
for a single-hit cluster is given by:

σ2
m =

c2p
12
. (11.8)

For a doublet-cluster, the variance is given by:

σ2
m =

∆2
α

12
; (11.9)

where ∆α =? is the length of the overlap region between neighbouring fibre
channels (see figure 11.8).

The variance of the perpendicular coordinate, β, depends on the effective
length, leff of the fibre (see figure ?? and Appendix ??) and is given by:

σ2
β =

l2eff

12
; (11.10)

where:

leff =?? . (11.11)

11.4.2 Space-point reconstruction
This section describes the space-point reconstruction, the algebra by which the
cluster positions are translated in to tracker coordinates and, to some extent,
the algorithm.

Selection of clusters that form the space-point

For each particle event, the clusters found within each doublet layer are ordered
by fibre-channel number. Taking each station in turn, an attempt is made to
generate a space point using all possible combinations of clusters. The three
clusters, one each from views u, v and w, that make up a space point satisfy:

nu + nv + nw = nu0 + nv0 + nw0 ; (11.12)

where nu, nv and nw are the fibre numbers of the clusters in the u, v and w
views respectively and nu0 , nv0 and nw0 are the respective central-fibre numbers
(see Appendix 16.1).

86

A triplet space point is selected if:

|(nu + nv + nw)− (nu0 + nv0 + nw0)| < K . (11.13)

Once all triplet space-points have been found, doublet space-points are created
from pairs of clusters from different views.

Crossing-position calculation

Doublet space-points The position of the doublet space-point in station
coordinates, rs, is given by:

rs =

(
xs
ys

)
(11.14)

= R
SD1

m1 (11.15)
= R

SD2
m2 ; (11.16)

where the measurement vector corresponding to the ith cluster:

mi =

(
αi
βi

)
; (11.17)

and the rotation matrix R
SDi

are defined in section 11.4.1. The simultaneous
equations 11.15 and 11.16 contain two unknowns, β1 and β2. Equations 11.15
and 11.16 may be rewritten:

m1 = R−1

SD1
R
SD2

m2 . (11.18)

Defining:

S = R−1

SD1
R
SD2

(11.19)

=

(
s11 s12

s21 s22

)
; (11.20)

Equations 11.15 and 11.16 may be solved to yield:

β2 =
α1 − s11α2

s12
(11.21)

β1 = s21α2 + s22β2 . (11.22)

The position of the space-point may now be obtained from equation 11.15 or
11.16.

Triplet space-points As shown in figure 11.9, the fibres layout is of one of
two types. In one case (right panel of figure 11.9), the centre of the channels,
one in each of the three views, cross intersect at a single point. In this case, the
position of the crossing can be calculated as described in section 11.4.2. When
the area of overlap of the three channels forms a triangle (figure 11.9 left panel),
the centre of area of overlap is given by:

x̄ =
2

3
cp ; and (11.23)

ȳ = 0 . (11.24)

87

Figure 11.9: Right panel: Fibre arrangement in station 5 of tracker 1. Left
panel: Fibre arrangement in the rest of the stations. The shaded region shows
the intersection of the three channels is triangle for every station other than
station 5, where itwill be an hexagon.

11.4.3 Pattern recognition
Straight-line pattern recognition

In the absence of a magnetic field, the tracks passing through the tracker may
be described using a straight line in three dimensions. Taking the z coordinate
as the independent parameter, the track parameters may be taken to be:

vsl =

x0

y0

tx
ty

 ; (11.25)

where, x0 and y0 are the position at which the track crosses the tracker reference
surface, tx = dx

dz and ty = dy
dz . The track model may then be written:

x = x0 + ztx; and (11.26)
y = y0 + zty . (11.27)

Pattern recognition then proceeds as follows. A space-point is chosen in each
of two stations, i and j where i and j label two different stations and j > i.
Ideally, i = 1 and j = 5. However, a search of all combinations of pairs for which
j− i > 1 is made, taking the pairs in the order of decreasing separation in z; i.e.
in order of decreasing ∆zji = zj − zi. Initial values for the track parameters,

vsl
Init =

xInit

0

yInit
0

tInit
x

tInit
y

 , (11.28)

are then calculated as follows:

tInit
x =

xj − xi
zj − zi

; (11.29)

xInit
0 = xi − zitInit

x ; (11.30)

tInit
y =

yj − yi
zj − zi

; and (11.31)

yInit
0 = yi − zitInit

y ; (11.32)

where (xi, yi, zi) are the coordinates of space-point i, etc. A search is then
made for space-points in each of the stations, k, between station i and station

88

j. The distance between the x and y coordinates of the space-points in the
stations k; j < k < i and the line defined by the initial track parameters is then
calculated at the reference surface of station k as follows:

δxk = xk − (xInit
0 + zkt

Init
x) and (11.33)

δyk = yk − (yInit
0 + zkt

Init
y) . (11.34)

Points are accepted as part of a “trial” track if:

|δxk| < ∆x and (11.35)
|δyk| < ∆y . (11.36)

If at least one space-point satisfies this selection, a “trial track” is formed con-
sisting of the space-points selected in stations i, k, ... and j. For each “trial
track”, a straight-line fit is performed to calculate the fit χ2:

χ2 = χ2
x + χ2

y . (11.37)

If the fit χ2 satisfies:

χ2

N − 2
< χ2

cut , (11.38)

then the trial track is accepted.

Helix pattern recognition

Helix parameters In the presence of a magnetic field, the tracks passing
through the tracker may be described using a helix. In tracker coordinates, the
tracks form circles in the (x, y) plane. Defining s to be the length of the arc
swept out by the track in the (x, y) plane, a track may be described using a
straight line in the (s, z) plane. Taking the z coordinate as the independent
parameter, the track parameters may be taken to be:

vhlx =

x0

y0

ψ0

ts
ρ

 ; (11.39)

where, x0 and y0 are the position at which the track crosses the tracker reference
surface, ψ0 is the azimuthal angle of the line tangent to the track in the (x, y)
plane, ts = ds

dz and ρ is the radius of curvature. The angle ψ0 is chosen such
that:

ψ̂0 = k̂× r̂ ; (11.40)

where r̂ is the unit vector in the direction (x0, y0) and k̂ is the unit vector parallel
to the z axis. ψ̂0 is the unit vector tangent to the track and in the direction
is defined by ψ0. With this definition, the projection on the (x, y) plane of a
positive track propagating in the positive z direction sweeps anticlockwise.

89

Track model for pattern recognition To build up the track model, con-
sider a track-based coordinate system which has its origin at the point (x0, y0)
and in which the x′ axis is parallel to the line joining (x0, y0) to the centre of
the circle described by the track, the y′ axis is parallel to ψ̂0 and the z′ axis is
parallel to k̂ (see figure 11.10).

A point, i, on the track at (xi, yi) (tracker coordinates) at which the track
direction is ψi may be used to write down the track model as:

x′i = ρ[cosφ′i − 1] and (11.41)
y′i = ρ sinφ′i ; (11.42)

where:

tan
φ′i
2

=

√
(xi − x0)2 + (yi − y0)2

2ρ
. (11.43)

The z coordinate is taken as a parameter since the construction of the trackers
ensures that each reference surface (tracker, station or doublet layer) is at a well
defined z. The distance travelled in the (x, y) plane to reach the ith point, si,
is related to the z coordinate of the ith point by:

si = tszi ; (11.44)

since the track is refered to the tracker reference surface. The transformation
from the primed to tracker coordinates is achieved with a rotation, R′, through
an angle −β and a translation, T ′ from (x0, y0) to (0, 0):(

x
y

)
= T ′ +R′

(
x′

y′

)
. (11.45)

These transformations are given by:

R′ =

(
cosβ − sinβ
sinβ cosβ

)
; and (11.46)

T ′ =

(
−x0

−y0

)
; (11.47)

(11.48)

where:

β = ψ0 −
π

2
. (11.49)

Collecting space-points in the (x, y) plane Helix pattern recognition fol-
lows the same conceptual steps as the straight-line pattern recognition described
in section 11.4.3 A space-point is chosen in each of three stations, i, j and k
where k > j > i. Ideally, i = 1, j = 3 and k = 5. However, a search of all
combinations of three space-points for which k − j > 0 and j − i > 0 is made,
taking the combinations in the order of decreasing separation in z; i.e. in order
of decreasing ∆zkj = zk − zj and ∆zji = zj − zi.

A circle in the (x, y) plane may be written (see Appendix 16.3):

α(x2 + y2) + βx+ γy + κ = 0 ; (11.50)

where:

90

Figure 11.10: Schematic diagram of track in (x, y) plane.

X0 =
−β
2α

; (11.51)

Y0 =
−γ
2α

; (11.52)

ρ =

√
β2 + γ2

4α2
− κ

α
; (11.53)

and (X0, Y0) are the coordinates of the centre of the circle. Initial values for α,
β, γ and κ are obtained as described in Appendix 16.3. The distance between
the x and y coordinates of the space-points in the stations l; l 6= i, j, k and the
circle defined by equation 11.50 is given by:

δ =
√

(xl −X0)2 + (yl − Y0)2 − ρ . (11.54)

In terms of the parameters α, β, γ and κ, δ may be written:

δ =

√
(x2
l + y2

l) +
β2 + γ2

4α2
+
βxl + γyl

α
−
√
β2 + γ2

4α2
− κ

α
. (11.55)

Points are accepted as part of a “trial” track if:

|δ| < ∆C . (11.56)

If at least one space-point satisfies this selection, a “trial track” is formed con-
sisting of the space-points selected in stations i, j, k, ... and l.

91

For each “trial track”, a circle fit is performed to calculate the fit χ2
C . If χ

2
C

satisfies:

χ2

N − 3
< χ2

C cut , (11.57)

then the trial track is accepted.

Collecting space-points in the (s, z) plane The set of space points which
make up the trial track provide a set of (s, z) coordinates which should lie on a
straight line. Equation 11.44 implies:

si = ρ(φ′i − φ′0) = tszi . (11.58)

The angles turned through as the track propagates from station i to station j
(∆Φji), from station j to station k (∆Φkj) and from station i to station k are
then given by:

∆Φji = φ′j − φ′i ; (11.59)
∆Φkj = φ′k − φ′j ; and (11.60)
∆Φki = φ′k − φ′i . (11.61)

The definition of the tracker coordinate system ensures that:

∆Φji + 2nπ

∆zji
=

∆Φkj + 2mπ

∆zkj
=

∆Φki + 2(n+m)π

∆zki
. (11.62)

Defining:

ηji =
∆Φji
∆zji

; (11.63)

ηkj =
∆Φkj
∆zkj

; and (11.64)

ηki =
∆Φki
∆zki

; (11.65)

Equations 11.62 may be inverted to yield:

m =
∆zkj
2π

[ηji − ηkj] +
∆zkj
∆zji

n . (11.66)

The correct values for n and m may now be obtained by calculating:

Λ = ηji − ηkj ; and (11.67)

Γ =
2π

∆zji

[
m− ∆zki

∆zji
n

]
. (11.68)

The most likely values of n and m for the cases of interest are n = 0 and m = 0.
Therefore, searching for values of n and m for which:

|Λ− Γ| < ∆sz ; (11.69)

will yield the change in φ′ that corresponds to a step in z.

92

The final step in gathering the points in (s, z) is to perform a straight line fit
to the set of points corrected for multiple turns between stations. If the track
fit χ2

sz satisfies:

χ2
sz < χ2

szC ; (11.70)

then an attempt is made to fit a helix to the set of space points that make up
the track.

Helix fit At present, pattern recognition does not employ a full 3D helix fit,
due to the complexity of performing a non-linear least squares fit. The following
is for reference only.

The construction of the tracker allows the helical locus of the points on the
track to be parmeterised as a function of z. The step from station i to station
j, a change in the z position of the track of ∆zji = zj − zi, results in a change
in φ′, and therefore s, where:

∆Φji =
ts∆zji
ρ

; and (11.71)

∆sji = ρ∆Φji = ρ(ψj − ψi) . (11.72)

The coordinates of the track at the ith station may now be written:

vhlx
i = vhlx + ∆vhlx

i ; (11.73)

where:

∆vhlx
i =

∆xi0
∆yi0
∆Ψi0

0
0

 . (11.74)

∆Ψi0 = ψi − ψ0 and ∆xi0 and ∆yi0 are obtained by evaluating:

∆xi0 = xi − x0 ; and (11.75)
∆yi0 = yi − y0 (11.76)

where:

hhlx
i =

(
xi
yi

)
= T ′ +R′

(
x′i
y′i

)
; (11.77)

and:

φ′i = φ0 + ∆Ψi0 . (11.78)

The helix fit described in Appendix 16.4 proceeds by minimizing:

χ2
hlx =

N∑
i

{[
msp

i − hhlx
i

]T [
V sp

i

]−1 [
msp

i − hhlx
i

]}
. (11.79)

If the helix fit χ2
hlx satisfies:

χ2
hlx

2N − 5
< χ2

hlxC ; (11.80)

then the trial track is accepted.

93

11.4.4 Track fit

11.5 Data structure
The tracker data structure, a subset of the general MAUS data structure, is
shown in figure 11.11. The basic unit of the MAUS data structure is the spill,
representing the data produced by a single actuation of the MICE target. All
MAUS modules (mappers, reducers, etc.) act on one spill at a time. The spill is
then split into two sides, Monte Carlo data and reconstructed data. A key rule
is that MC data must never be stored on the reconstruction side. Each side has
its own event class, representing data corresponding to a single MICE particle
trigger event. The relationship between the spill and the MC and recon event
objects is one-to-many.

Within an MC event the only data object pertaining to the tracker is the
SciFiHit, implemented as template class of the generic Hit class. This class
stores the MC data used by the reconstruction to form SciFiDigits (via the
map MapCppTrackerMCDigitisation). The relationship between MC events
and SciFiHits is one-to-many.

On the real data side each recon event holds a single SciFiEvent (a one-to-
one relationship). The SciFiEvent then holds a collection (implemented as C++
standard vectors of pointers) for each data type used in the reconstruction pro-
cess: SciFiDigits, SciFiClusters, SciFiSpacePoints, SciFiStraightPRTracks, Sci-
FiHelicalPRTracks, SciFiStraightKalmanTracks, and SciFiTracks. Additionally
SciFiTrackPoints are held by each SciFiTrack instance.

11.6 Code Design

11.6.1 General Code Structure
The main body of the tracker code is implemented as three distinct MAUS map
modules and, at present, one reducer module. There also exist various helpful
top-level user tools, and the tracker geometry, calibration and configuration
files. A diagram showing the tracker software data flow with the corresponding
modules is shown in figure 11.12, with the following sections expanding on each
area.

MapCppTrackerDigits

This map is used to digitise real data. It calls on additional functionality from
the RealDataDigitisation class, which is stored in src/common_cpp/Recon/SciFi.

MapCppTrackerMCDigitisation

This map is used to digitise Monte Carlo data.

MapCppTrackerRecon

This map performs the main reconstruction work, moving from digits to clus-
ter to spacepoints to pattern recognition tracks, and finally full Kalman tracks.
Most work is farmed out to backend C++ classes. The following are the top level
classes for each stage of the reconstruction, and are stored in src/common_cpp/Recon/SciFi:

• SciFiClusterRecon - cluster reconstruction from digits

• SciFiSpacepointRecon - spacepoint reconstruction from cluster

94

Recon Event

SF Digit

MC Event

Spill

MAUS

Tracker

SF Helical
PR Track

n_points
tracker number
type
spacepoints*

SF Straight
PR Track

n_points
tracker number
type
spacepoints*

SF Cluster

used
spill number
event number
tracker number
station number
plane number
plane ID number
number of PE
digits*
direction (ThreeVec)
position (ThreeVec)

SF
SpacePoint

used
spill number
event number
tracker number
station number
number of PE
type
clusters*
position (ThreeVec)

used
spill number
event number
tracker number
station number
number of PE
channel number

SF Event

digits*
clusters*
spacepoints*
straight PR tracks*
helical PR tracks*
straight Kalman tracks*
helical Kalman tracks*

SF Hit

track ID
particle ID
energy
energy deposited
charge
time
position (ThreeVec)
momn (ThreeVec)
used
tracker number
station number
plane number
fibre number

SF Track

tracker number
P value
charge
algorithm used
trackpoints*

SF
TrackPoint

tracker number
station number
plane number
channel number
x, y
px, py, pz
covariance
pull
residual
smoothed residual

Figure 11.11: The tracker data structure and its position within the general
MAUS data structure. An asterisk indicates a vector of pointers. The dotted
lines indicate cross links realised as vectors of pointers.

95

S
ci

F
i

H
it

R
a
w

 D
a
ta

 (
b

in
)

U
n

p
a
ck

er

C
lu

st
er

 R
ec

o
n

S
p

a
ce

 P
o
in

t
R

ec
o
n

P
a
tt

er
n

R
ec

o
g
n

it
io

n

T
ra

ck
 F

it
ti

n
g

M
C

 R
ec

o
n

S
ci

F
i

D
ig

it

R
a
w

 D
a
ta

 (
js

o
n

)

M
a
p

p
in

g
 +

 C
a
li

b
ra

ti
o
n

S
ci

F
i

C
lu

st
er

S
ci

F
i

S
p

a
ce

 P
t

S
ci

F
i

P
R

 T
ra

ck

S
ci

F
i

T
ra

ck

M
ap

C
p
p
T

ra
ck

er
M

C
D

ig
it

is
at

io
n

M
ap

C
p
p
T

ra
ck

er
D

ig
it

s

M
ap

C
p
p
T

ra
ck

er
R

ec
o
n

R
ea

l
D

at
a

M
o
n
te

 C
ar

lo

R
ec

o
n
st

ru
ct

io
n

M
C

 S
ci

F
i

N
o
is

e

M
C

 P
a
rt

ic
le

M
ap

C
p
p
S

im
u
la

ti
o
n

M
ap

P
y
B

ea
m

M
ak

er

In
p
u
tC

p
p
D

A
Q

O
ff

li
n
eD

at
a

Figure 11.12: Schematic of the tracker software data showing MC and Real data
input, and subsequent reconstruction. MAUS modules corresponding to given
process are indicated (MapCppTrackerRecon encompasses all of the reconstruc-
tion, shown in blue). Once digits have been formed, reconstruction is agnostic
as to whether the MC or Real path was followed.

96

• PatternRecognition - association of spacepoints to tracks, and crude initial
track fit

The backend classes for the final track fit are stored under src/common_cpp/Recon/Kalman
and src/common_cpp/Recon/Bayes, the top level class being KalmanTrackFit.
Other classes used include:

• KalmanFilter

• KalmanHelicalPropagator

• KalmanStraightPropagator

• KalmanState

• KalmanSeed

ReduceCppPatternRecognition

This reducer displays spacepoints and pattern recognition tracks by tracker, in
the x− y, x− z and y − z projections, an example being shown in figure 11.13.
It also creates an InfoBox, which displays various information for the spill and
run, such as the number of clusters, spacepoints, etc. The plots are made using
ROOT TGraphs, and the InfoBox with a TPaveText.

x(mm)
-10 0 10 20 30 40 50

y(
m

m
)

-40

-20

0

20

40

60

Tracker 2 X-Y Projection

z(mm)
0 200 400 600 800 1000 1200

x(
m

m
)

-10

0

10

20

30

40

50

Tracker 2 Z-X Projection

z(mm)
0 200 400 600 800 1000 1200

y(
m

m
)

-40

-20

0

20

40

60

Tracker 2 Z-Y Projection

Figure 11.13: Output from the pattern recognition reducer showing the real
space projections of a three event spill in tracker 2.

Reducer Backend

The backend classes for the reducers are held in src/common_cpp/Plotting/SciFi.
They consist of a reduced tracker data container class, TrackerData, a series of
plotting class based on ROOT, and a manager class TrackerDataManager, used
to populate the TrackerData and call the various plotters. The plotters them-
selves inherit from a base class, TrackerDataPlotterBase. Each daughter class
overloads the bracket operator, taking in arguments of two TrackerData objects,
one per tracker, and a ROOT TCanvas, to plot on. The current types available
are:

• Info Box: displays various information on the spill and run in text

• Spacepoints: displays spacepoint positions in x− y, x− z, and y − z

• Tracks: displays pattern recognition tracks in x− y, x− z, and y − z

97

• XYZ: calls Tracks and Spacepoints to display them both together

• SZ: displays pattern recognition tracks in s−z (s being the distance swept
out by a particle in the x− y plane)

98

11.6.2 Tracker configuration variables
Variable Default Description
SciFiMUXNum 7
SciFiFiberDecayConst 2.7
SciFiFiberConvFactor 3047.1
SciFiFiberTrappingEff 0.056
SciFiFiberMirrorEff 0.6
SciFiFiberTransmissionEff 0.8
SciFiMUXTransmissionEff 1.0
SciFivlpcQE 0.8
SciFivlpcEnergyRes 4.0 VLPC energy resolution (MeV)
SciFivlpcTimeRes 0.2 VLPC time resolution (ns)
SciFiadcFactor 6.0
SciFitdcBits 16
SciFitdcFactor 1.0
SciFinPlanes 3
SciFinStations 5
SciFinTrackers 2
SciFiNPECut 2.0
SciFiClustExcept 100
SciFi_sigma_tracker0_station5 0.4298 Tracker 1 station 5 resolution (mm)
SciFi_sigma_triplet 0.3844 Spacepoint triplet resolution (mm)
SciFi_sigma_z 0.081 (mm)
SciFi_sigma_duplet 0.6197 (mm)
SciFiPRHelicalOn True Helical pattern recognition flag
SciFiPRStraightOn True Straight pattern recognition flag
SciFiRadiusResCut 150.0 Helix radius cut (mm)
SciFiNTurnsCut 0.75 Cut checking turns between stations is correct
SciFiMaxPt 180.0 Transverse momn. upper limit cut used in pat rec
SciFiMinPz 180.0 Longitudinal momn. lower limit cut used in pat rec
SciFiPerChanFlag 0
SciFiNoiseFlag 1.5
SciFiCrossTalkSigma 50.0
SciFiCrossTalkAmplitude 1.5
SciFiDarkCountProababilty 0.017 Probability of dark count due to thermal electrons
SciFiChannelCalibList Channel calibration data location
SciFiParams_Z 5.61291
SciFiParams_Plane_Width 0.6523
SciFiParams_Radiation_Legth 424.0
SciFiParams_Density 1.06
SciFiParams_Mean_Excitation_Energy 68.7
SciFiParams_A 104.15
SciFiParams_Pitch 1.4945
SciFiParams_Station_Radius 160.
SciFiParams_RMS 370.
SciFiSeedCovariance 1000 Error estimate for seed values of the Kalman fit
SciFiKalman_use_MCS True Flag to add multiple scattering to the Kalman fit
SciFiKalman_use_Eloss True Flag to add energy loss to the Kalman fit
SciFiUpdateMisalignments False Do a misalignment search and update
SciFiKalmanVerbose False Dump information per fitted track

99

11.7 The Monte Carlo
The tracker Monte Carlo can be run using the script at the beginning of the
tracker section. In addition to the basic Monte Carlo noise from dark count in
the VLPCs can be simulated by including the mapper MapCppTrackerMCNoise,
which should be run before MapCppTrackerMCDigitization. Reconstruction
after digitization is agnostic to source by design decision.

11.7.1 Station Geometry
The tracker geometry is built in Geant4 on a fibre-by-fibre basis. The size of
the active tracker plane and the fibre diameter is defined in the mice modules.
The fibre offset and translation are determined in code, the length of the fibres
are then determined by its position within the plane. Fibre placement is then
iterated over from one end of the plane to the other filling in all gaps within the
area.

Each of the three scintillating fibre planes is built up this way. In addition
to these the Monte Carlo also includes a thin layer of mylar sandwiched between
these planes. The relative position of the three tracking planes and the three
mylar layers within the station are defined in the mice modules.

11.7.2 MC VLPC Dark Count
When the mapper MapCppTrackerMCNoise is included in the MC each channel
is tested for the presence of an integer number of PE randomly appearing in the
data. The chance of this per channel noise is defined by the parameter SciFi-
DarkCountProbabilty within the data cards, while the number of PE generated
is given by a Poisson distribution. If a noise hit is produced it is recorded to be
passed to digitization later.

11.7.3 Building Digits
When a particle crosses a scintillating fibre in the MC it may deposits some
amount of energy in passing determined by Geant4. The digitization process
takes this deposited energy and transforms it into a number of PE as follows:

NPE = Energy∗SciF iF iberConvFactor∗SciF iF iberTrappingEff∗(1.0+SciF iF iberMirrorEff)∗SciF iF iberTransmissionEff∗SciF iMUXTransmissionEff∗SciF ivlpcQE;
(11.81)

Where the value of each of these variable other than the deposited energy is
given in the data cards.

Hits in the same tracker, station, and plane are collected together to form
a single digit. The grouping of digits are merged with any noise effects and a
Gaussian smearing is applied to the total NPE to finish the digitization pro-
cess.

100

Chapter 12

Global Track Matching

12.1 Introduction

12.2 Purpose
The purpose of Track Matching is to assembly hits and tracks in the various
detectors into global tracks, (upstream, downstream, and through-going) by de-
termining which hits belong together and creating new tracks containing them.
PID (see next section) can then be performed on the resulting tracks.

12.3 Process
Track Matching is performed in several steps. First, tracks for the upstream and
downstream sections of the beamline are assembled by matching hits and tracks
from the various other detectors to tracks produced by the trackers (if no tracker
track exists, no matching is performed). Then, upstream and downstream tracks
from the event are matched together.

As particle masses and charges are required for propagation (see section
12.3.1), multiple tracks are created for the various PID hypotheses. If the tracker
can produce a charge hypothesis due to the direction of the helical track, three
tracks are created (in case of pion, muon, or electron of the corresponding
charge), otherwise six.

Note that in the default setting, the upstream and downstream tracks are
only created by explicit matching if one of the detectors has more than one hit
(or track), otherwise all it is simply assumed that the hits come from the same
particle and tracks are assembled accordingly.

12.3.1 4th Order Runge-Kutta Propagation
Matching to the various detectors (see below) is generally done using a 4th order
Runge-Kutta propagation routine (implemented as a wrapper for the GSL RK4
Integration). A trackpoint from the outermost tracker station (most upstream
for the upstream beamline, most downstream for the downstream beamline)
provides the input which is then propagated backwards / forwards to the other
detectors. A maximum allowed disagreement between x and y position of prop-
agated vs. reconstructed hits (detector resolution plus an additional allowance
for multiple scattering) is typically used as matching criterion (see below).

Energy loss is included in the propagation and implemented as follows:
After every step, the midpoint between previous and current position is

calculated and the material at that point obtained from the geometry. This,

101

together with PID, energy, and distance between previous and current positions
is used to calculate energy loss (or energy gain for backwards-propagation) via
the Bethe-Bloch formula. Furthermore, at every step, the distance to the near-
est material boundary is determined, and if lower than the step size, the step
size is reduced significantly, both to minimize inaccuracies arising from an un-
derestimated straight-line step distance in materials with high stopping power
(Material layers in the beamline are all relatively thin, so in such materials the
nearest boundary will always be close) and to ensure that the material during
a step is uniform.

12.3.2 TOF1, TOF2, KL
For TOF1, TOF2, and the KL, the matching tolerance is a fixed value that can
be configured for each detector in the datacards (see section 12.5).

12.3.3 TOF0
The beamline optics between TOF1 and TOF0 make propagation-based match-
ing to TOF0 unfeasible (typical position and momentum errors in the tracker
are vastly magnified once propagation has reached TOF0), so a slightly different
method is used: First, propagation is performed to the upstream end of TOF1.
Then, based on the momentum components at this point, the travel distance
from TOF0 is estimated and used to calculate an approximate energy loss over
that distance. By applying half of this as an energy-gain to the particle on the
upstream edge of TOF1, we obtain an approximate (as we do not account for
fringe-field effects from Q7-9) average energy for the travel between the TOFs.
From this, we can obtain an expected ∆t between TOF0 and TOF1, which is
then compared to the reconstructed ∆t. The maximum allowed discrepancy
between the two can be configured in the datacards.

Note that TOF0 matching can only be performed if TOF1 matching was
successful.

12.3.4 Cherenkov Detectors
As the Cherenkov detectors don’t have the time resolution to resolve multiple
particles within a trigger window, Cherenkov hits are added to the track without
any checks.

12.3.5 EMR
Matching to the EMR (specifically to the most upstream trackpoint of an EMR
track) works similar to matching to TOF1, TOF2, and KL, but rather than
using a fixed distance as a matching tolerance, the tolernace is scaled by the
position error reported by the EMR. A scaling coefficient can be configured in
the datacards.

12.3.6 Upstream-Downstream Matching
For Upstream-Downstream matching, a cut is imposed on the maximum and
minimum average βz (where β = v

c , not the beta function) between TOF1 and
TOF2. The maximum and minimum can be configured in the datacards.

102

12.4 Usage
To use Track Matching in a MAUS module chain, simply include the mappers
MapCppGlobalReconImport (which imports all locally reconstructed data into a
global event) and MapCppGlobalTrackMatching in your mapper chain just after
all local reconstruction mappers (or as the first mappers if you are working with
data that is already unpacked).

12.5 Configuration
track_matching_pid_hypothesis If the PID hypotheses used for track

matching should be limited to a single PID, change to either one (never
several) of "kEPlus", "kEMinus", "kMuPlus", "kMuMinus", "kPiPlus",
"kPiMinus".

track_matching_tolerances Global Track Matching tolerances for the var-
ious subdetectors

TOF0t Tolerance in ns for matching to TOF0.

TOF1x, TOF1y, TOF2x, TOF2y, KLy Tolerance in mm. For the
KL, only the y coordinate is used, as the KL does not resolve the
x-position.

EMRx, EMRy Multiplier for the standard tolerance for the EMR which
is the reconstructed error ×

√
12

TOF12maxSpeed, TOF12minSpeed Maximum and minimum aver-
age speed of the particle between TOF1 and TOF2 as a fraction of c
in order to match an upstream and a downstream track.

track_matching_energy_loss Whether to use energy calculations for Global
Track Matching. If for a given run there are no fields between TOF1 and
EMR, this can be set to False for a slight speed-up, though the TOF0
tolerance would have to be increased. Safer to leave on.

track_matching_no_single_event Whether propagation matching (for in-
dividual detectors, this does not affect the Upstream-Downstream Match-
ing (see section 12.3.6) should not be performed if each detector has no
more than one hit (significantly increases execution speed).

track_matching_charge_thresholds If track_matching_no_single_event
is activated, this will cause propagation matching to still occur if one of
the hits has a charge deposit below the threshold (i.e. is likely noise).
NOT CURRENTLY IMPLEMENTED

103

Chapter 13

Global PID

13.1 Introduction
The global PID framework is designed to use sets of PID variables to 1) use MC
data to create PDFs of these variables for a range of particle hypotheses, and
2) to use the PDFs as part of a log-likelihood method to determine the PID of
reconstructed global tracks from data. The framework is designed such that new
PID variables can be added as they are developed. Section 1 of this document
will explain how to use the PID to produce PDFs, and how to perform PID on
spill data contained within a Json document. Section 2 will detail how these
two actions are performed within the code, and in Section 3 the PID variables,
their structure, how new ones can be added to the framework, and details of
those already in place, will be discussed. This document will be updated as the
PID framework and variables continue to be developed.

13.1.1 Using the PID scripts

13.1.2 Producing PDFs
Whilst the PID framework will eventually come with PDFs provided (for the
standard MICE beam settings) in PIDhists.root, it is possible for a user to
produce PDFs for hypotheses not included within this file. Due to current MC
availability, users currently need to produce their own PDFs. The following
describes how this should be done.

• Simulation: Production of MC data for a given beam setting. Ideally
G4Beamline input would be used, however input from spill generation in
MAUS can be usedm but in the simulation datacards n_particles_per_spill
should be set to 1, as global track matching cannot process multiple par-
ticles per spill until there exists an MC trigger.

• Global Track Reconstruction: The MC data should then be passed through
the global track reconstruction, performed by MapCppGlobalReconIm-
port and MapCppGlobalTrackMatching, which import the detector in-
formation into the global event and then construct the global tracks re-
quired for the calculation of PID variables. During the TrackMatch-
ing stage, it will have been possible for the user to choose to produce
tracks for a single pid hypothesis or for several- for the purposes of PDF
production a single hypothesis should be chosen, otherwise tracks will
be duplicated. The choice of hypothesis doesn’t matter as long as the
track_matching_tolerances are set to large values (i.e. 10 x larger than
those in ConfigurationDefaults.py). This is permissable as long as there

104

Simulation

Global

Reconstruction

PDF

Production

Figure 13.1: Steps invloved in producing a PDF from MC data

is a single particle per spill in the simulation, as mentioned previously,
because there will not be extra particles to be mis-matched to, and before
the PDFs are populated the MC pid of the track is checked.

• PDF Production: To produce the PDFs from the reconstructed MC data,
pid_pdf_production.py in ${MAUS_ROOT_DIR}\bin\Global is then
used. This script calls the reducer ReduceCppGlobalPID. With this script,
a datacard, such as that shown given in listing 13.1, that includes the
datacards required to be set by the reducer, is used by entering at the
command line:

> ${MAUS_ROOT_DIR}/bin/Global/pid_pdf_generator.py \
--configuration_file pdf_example_datacard.py

This will create a directory within ${MAUS_ROOT_DIR}\files\PID cor-
responding to the beam setting and identifier given by the datacard, which
will then contain files for each PID variable, each of which will contain the
PDF for each possible particle type. These can be combined into a single
root file using the hadd command (see man pages for command usage).

import os
import datetime

Use the current time and date as a unique
identifier when creating files to contain PDFs.
A unique_identifier is required by the reducer ,
and PDF production will fail without one.
now = datetime.datetime.now()
unique_identifier =

now.strftime("%Y_%m_%dT%H_%M_%S_%f")

105

A root file containing global tracks from MC
data
input_json_file_name =

"global_track_input.root"

PID MICE configuration , ’step_4 ’ for Step IV running ,
’commissioning ’ for field free commissioning data
(straight tracks). Default is step_4
pid_config = "step_4"

Tag used by both MapCppGlobalPID and
ReduceCppGlobalPID , determines which PDFs to
perform PID against/which PDFs to produce (in this
case , set based upon input MC beam). A typical tag
here would be the emittance and momentum , e.g.
3-140, 6-200, etc. Alternatively , users may choose to
enter the run number they are simulating for here.
The tag used for the PDFs must match the tag you
use when doing PID
pid_beam_setting = "6-200"

Polarity of running mode , value can be "positive"
or "negative ".
pid_beamline_polarity = "positive"

Listing 13.1: An example datacard (pdf_example_datacard.py) for use with
pid_pdf_generator.py

Performing PID with pre-existing hypotheses

To perform PID on data, the steps shown figure 13.2 should be followed.

• Data: This can be experimental or MC data.

• Global Reconstruction: In the same way as described above for PDF gen-
eration, the data should then be passed through the global reconstruction.

• Global PID: To perform the PID on the reconstructed data, GlobalPID.py
in ${MAUS_ROOT_DIR}\bin\Global is then used. This script calls
the MapCppGlobalPID mapper. With this script, a datacard, such as
that shown given in listing 13.2, that includes the input and output root
filenames, is used, by entering the following at the command line:

> ${MAUS_ROOT_DIR}/bin/Global/GlobalPID.py \
--configuration_file example_pid_datacard.py

import os

A root document containing global tracks
input_root_file_name =

"global_recon_output.root"

Output root file with track pid info included

106

Data

Global

Reconstruction

Global PID

Figure 13.2: Steps invloved in performing the PID for a data sample

output_root_file_name =
"output_Global_PID.root"

Path to PDFs file. Users should enter the path
to their own PDFs file here
PID_PDFs_file = " "

PID MICE configuration , ’step_4 ’ for StepIV running ,
’commissioning ’ for field free commissioning data
(straight tracks). Default is step_4
pid_config = "step_4"

PID running mode - selects which PID variables are
used. ’online ’ corresponds to less beam (momentum)
dependent variables , ’offline ’ uses all variables
and requires that specific PDFs already exist for
the beam.
pid_mode = "offline"

Tag used by both MapCppGlobalPID and
ReduceCppGlobalPID , determines which PDFs to
perform PID against/which PDFs to produce (in this
case , set based upon input MC beam). A typical tag
here would be the emittance and momentum , e.g.
3-140, 6-200, etc. Alternatively , users may choose
to enter the run number they are simulating for
here. The tag used for the PDFs must match the tag
you use when doing PID
pid_beam_setting = "6-200"

Polarity of running mode , value can be "positive"
or "negative ".

107

pid_beamline_polarity = "positive"

PID confidence level = set the margin (in percent)
between the confidence levels of competing pid
hypotheses before they are selected as the correct
hypothesis
pid_confidence_level = 10

PID track selection - selects which tracks from
TrackMatching to perform PID on. Can be set to
"all", or all downstream tracks "DS", all upstream
"US", through tracks "Through", or the US or DS
components of the through tracks "Through_US"
or "Through_DS ". Or a combination of can be
entered as a space separated list ,
e.g "Through Through_US"
pid_track_selection = "Through"

Listing 13.2: An example datacard (example_pid_datacard.py) for use with
GlobalPID.py

As the framework currently stands, the output file would now contain the
global tracks with the PID set (where it has been possible to do so) to whichever
particle hypothesis had the highest confidence (if it passes the confidence level
cut), and the mapper name of the track will have been set to MapCppGlobalPID-
<pid_track_selection>, e.g. if the datacard setting was pid_track_selection
= "Through", the mapper name would be MapCppGlobalPID-Through.

13.2 MapCppGlobalPID and ReduceCppGlobalPID

13.2.1 MapCppGlobaPID
The steps taken in MapCppGlobalPID for a single track are shown in figure
13.3. To express this more fully, the data, having passed through the global
reconstruction, is then passed to the PID. For each track, the values of each
PID variable are calculated. Each of these values is then compared to the
corresponding PDFs for all particle hypotheses, the number of entries in the
corresponding bin providing the probability from which the log-likelihood is
calculated. For each particle hypothesis, the log-likelihoods of all of the PID
variables are summed to give a log-likelihood for that hypothesis. The PID of
the track is then obtained by comparing the log-likelihoods of the hypotheses.

13.3 ReduceCppGlobalPID
The steps taken in ReduceCppGlobalPID are shown in figure 13.4. MC data
for a given particle hypothesis, having passed through the global reconstruction,
is then passed to the PID. For each track, the values of each PID variable are
calculated. A histogram is filled with these values. If the behaviour has been
turned on in the PID variable class, then a single event is spread over all bins in
the histogram, to ensure that when the PDF is used by the PID, there will no
empty bins, thus avoiding cases where the log-likelihood takes the log of zero.
The histogram is then normalised to create the PDF, which is then written and
saved to file. If a MC track returns a variable value outside of the allowed range
of the histogram (as defined within the variable class) then the value for that
track is not included.

108

Loop through PID variables

Calculate PID variable for global track

Open corresponding PDFs and find number

of entries (likelihood) for variable,

for all particle hypotheses

Calculate log-likelihood for variable

For each hypothesis, sum log-likelihoods

from PID variables

Get track from global reconstruction

Pass reconstructed track to PID

Compare summed log-likelihoods for each

hypothesis to determine PID

Figure 13.3: Flow chart detailing steps taken in MapCppGlobaPID

13.4 PID Variables
Information from the MICE detectors are incorporated into a set of PID vari-
ables that can be used to distinguish between particle hypotheses. The Global
PID framework has been written such that any number of PID variables can be
developed and added as necessary, all represented by their own class, derived
from a base class.

13.4.1 PID Base Class
The base PID class (PIDBase.hh and .cc) contains the functions to:

• Create the PDFs (and the files that contain them)

• Use the PDFs with globally reconstructed tracks

• Populate the PDFs with variable values (after checking that value is valid)

• Perform the log-likelihood for an incoming globally reconstructed track
(after checking that value of variable for track falls within range of PDF).

• Calculate the value of the PID variable (this is a virtual function to be
defined in the derived classes)

109

Loop through tracks

Loop through PID variables

For PID variable, calculate

value for track

Create/open corresponding

histogram, and fill with variable value

If required, ensure non-zero bin

entries and normalise

Write to and save file

Pass globally reconstructed

MC tracks to PID

Figure 13.4: Flow chart detailing steps taken in ReduceCppGlobaPID

There are separate base classes for single value variables (PIDBase1D) and
dual value variables (PIDBase2D).

13.4.2 PID Variable Classes
Each PID variable will be implemented in a derived class of the appropriate
base PID class. Because of how the framework is designed, new variables can
be added as they are developed. There are currently two sets of variables, those
to be used when there is no field in the spectrometer solenoids (commissioning
variables, ComPIDVars) and those to be used during Step IV running (PID-
Vars).

110

ComPIDVars

PID class Variable name Definition
ComPIDVarA diffTOF2TOF1 Uses the time of flight between

TOF1 and TOF2. Beam depen-
dent.

ComPIDVarB KLChargeProdvsDiffTOF1TOF2 Uses the KL ADC charge prod-
uct, and the time of flight be-
tween TOF1 and TOF2.

ComPIDVarC CommissioningKLADCChargeProduct Uses the KL ADC charge prod-
uct . Beam dependent.

ComPIDVarD CommissioningEMRrange Uses the range of the particle as
measured in the EMR. Beam de-
pendent.

ComPIDVarE CommissioningEMRrangevsDiffTOF1TOF2 Uses the range of the particle as
measured in the EMR, and the
time of flight between TOF1 and
TOF2.

ComPIDVarF CommissioningEMRPlaneDensity Uses the plane hit density in the
EMR. Beam dependent.

ComPIDVarG CommissioningEMRPlaneDensityvsDiffTOF1TOF2 Uses the plane hit density in the
EMR, and the time of flight be-
tween TOF1 and TOF2.

ComPIDVarH CkovAvsDiffTOF1TOF2 Uses the number of photoelec-
trons in Cherenkov A, and the
time of flight between TOF1 and
TOF2.

ComPIDVarI CkovBvsDiffTOF1TOF2 Uses the number of photoelec-
trons in Cherenkov B, and the
time of flight between TOF1 and
TOF2.

111

PIDVars

PID class Variable name Definition
PIDVarA diffTOF1TOF0 Uses the upstream time of flight,

between TOF0 and TOF1. This
variable is beam dependent and
so is best used during offline data
analysis where PDFs can be pro-
duced for specific beam settings.

PIDVarB diffTOF0TOF1vsTrackerMom Uses upstream time of flight, and
momentum as measured in the
upstream Tracker.

PIDVarC KLChargeProdvsDSTrackerMom Uses the KL ADC charge
product and the momentum
measured in the downstream
Tracker.

PIDVarD KLADCChargeProduct Uses the KL ADC charge prod-
uct. This variable is beam de-
pendent, and so is best used dur-
ing offline data analysis.

PIDVarE EMRRange Uses the range of the particle as
measured in the EMR. This vari-
able is beam dependent, and so
is best used during offline data
analysis.

PIDVarF EMRRangevsDSTrackerMom Uses the range of the particle
as measured in the EMR, and
the momentum measured in the
downstream Tracker.

PIDVarG EMRPlaneDensity Uses the plane hit density in the
EMR. This variable is beam de-
pendent, and so is best used dur-
ing offline data analysis.

PIDVarH EMRPlaneDensityvsDSTrackerMom Uses the plane hit density in
the EMR, and the momentum
measured in the downstream
Tracker.

PIDVarI CkovAvsUSTrackerMom Uses the number of photoelec-
trons in Cherenkov A, and the
momentum measured in the up-
stream Tracker.

PIDVarJ CkovBvsUSTrackerMom Uses the number of photoelec-
trons in Cherenkov B, and the
momentum measured in the up-
stream Tracker.

Adding PID Variables

In each derived variable class, the following should be included:

• The variable name should be set

• The function to calculate the PID variable should be defined.

• If a valid value of a variable is not returned by the function, for instance

112

due to missing measurements, then the value should be set to -1 so that
it falls outside of the range of any PDFs.

• The minimum, maximum, and number of bins for PDFs created using the
variable should be set. The values of the minimum and maximum define
the allowed range of values that the PID variable can take.

• In some cases it may be necessary to ensure that all bins in a PDF return
non zero entries, and so by setting the variable _nonZeroHistEntries to
true, a single event spread accross all bins will be added

Placing cuts on PIDVar value ranges

A further option for users when performing PID against the PDFs, is to cut on
what range of values within the PDFs to perform PID within. This may allow
for greater purity (potentially at the expense of efficiency) depending on the
variable. For instance, one could choose to cut harshly on the time of flight in
PIDVarA, to reduce the chances of mis-identifying pions as muons. These cuts
can be selected through setting the appropriate pid_bounds datacards found in
ConfigurationDefaults.py.

113

Chapter 14

The Envelope Tool

The MAUS envelope tool is intended as a tool to support lattice development
and enable visualisation of the MICE accelerator for online use. The tool fa-
cilitates the visualisation of field elements, propagation of particles and beams
ellipses through those elements.

The envelope tool is intended for use with mostly straight beamlines.

14.1 Example Usage
To call the envelope tool with some example data, source the MAUS environ-
ment and then do

$ python ${MAUS_ROOT_DIR}/bin/utilities/envelope_tool/envelope_tool.py \
--configuration_file ${MAUS_ROOT_DIR}/bin/utilities/envelope_tool/share/pseudobeamline.py

14.2 Envelope Tool main window
The Main Window enables the user to view the selected lattice parameters, and
provides buttons to update the beam, lattice and plot parameters.

• Beam Setup: setup a beam

• Magnet Setup: setup fields

• Plot Setup: setup the plot

• Exit: exit the GUI

14.3 Beam Setup
The Beam Setup window enables the user to set beam parameters. The top few
cells set initial position, momentum and particle type of the beam centroid, also
referred to as the ‘reference particle’ or ‘reference trajectory’. The bottom few
cells set beam ellipse parameters.

Helper windows can be accessed to parameterise the beam ellipse using either
a Penn parameterisation or a Twiss parameterisation.

• x, y, z: initial position of the beam particle

• px, py, pz: initial momentum of the beam particle

114

Figure 14.1: The Envelope Tool used to plot a reference trajectory through a
few magnets.

• pid: PDG ID of the beam particle. This is an integer; see Tab. ?? for
some common particle ids.

• ellipse elements: set the elements of the beam ellipse.The matrix must be
symmetric and positive definite or an error will be returned when Okay is
pressed.

• Twiss: setup the beam using a Twiss parameterisation - beam asymmetric
in x and y with no coupling

• Penn: setup the beam using a Penn parameterisation - beam cylindrically
symmetric in x and y with angular momentum

• Okay: click okay to return to the main window, updating the beam ellipse

• Cancel: click cancel to return to the main window, losing changes

14.4 Magnet Setup
The user can manipulate magnet parameters in this window. When the window
is opened, MiceModules which have the following required parameters are added
to the window.

115

• FieldType (string)

• FieldName (string)

• Position (hep three vector)

• Rotation (hep three vector)

• ScaleFactor (double)

• NominalAperture (hep three vector)

• NominalOuter (hep three vector)

Other MiceModules will be ignored.
Each magnet is labelled with the magnet FieldName and a text entry is

available to set the scale factor (proportional to field).

• <field entries>: Enter a float to set the scale factor.

• Okay: Update the fields in the lattice

• Cancel: Cancel changes

14.5 Plot Setup
The Plot Setup window enables the user to select the desired plot parameters.

• Plot Type: Select the type of variable to plot.

• Plot Variable: Select the variable to plot.

• Plot Apertures: tick to plot physical apertures. If the plot type is mean
or envelope and plot variable is x or y the apertures will be plotted as a
2D projection of the physical apertures in the appropriate plane, with the
beam reference trajectory or beam envelope superimposed. Note that the
rotations applied here are rather simplistic, assuming a 2D geometry in x
or y plane (but not both) Otherwise nominal apertures will be scaled to
fit in the upper portion of the plotting window.

• Okay: Update the plot in the main window with the new selection.

• Cancel: Cancel changes

116

Chapter 15

G4beamline-MAUS
Integration

This chapter describes how to run G4beamline as a third-party app with MAUS.
G4beamline is used to model the MICE beam line from the target to a point up-
stream of the second quad triplet (upstream of Q4). It provides a realistic beam
desciption which can be used to seed downstream simulations in MAUS. To gen-
erate MAUS primaries with G4beamline the script simulate_mice_G4BL.py
is used instead of the usual simulate_mice.py script. The beam line settings
can be controlled with the dictionary g4bl (table 15.1) in the MAUS datacard.

The default configuration variables simulate a 6π 200 MeV/c positive beam
using a point 1 m downstream of D2 as the interface point. This can be used
as input for the MAUS Step IV geometry provided by the Geometry group.
To generate MAUS primaries for beams of different momenta or at difference
interfaces (i.e. for different MAUS geometries) these variables must be changed
accordingly.

The output of this mapper is a json document of MAUS primaries. This is
passed directly to MapCppSimulation and so simulatations of the entire MICE
beam line from end-to-end can be run. However given the requisite time re-
quired to complete such a simulation this is not recommended. Large scale
production jobs will be run on the Grid using this mapper to create beam
libraries. These are publically available from http://www.ppe.gla.ac.uk/
~jnugent/Grid_Files/. Download the relevant beam file which will contain
a list of Grid addresses for files stored on a Grid storage element (SE). You will
be required to either run a Grid job to access these files or pull them from the
SE to your local area to work on them. For information on working with the
Grid see https://www.gridpp.ac.uk/php/support/otherscihelp.php#3.

The output json document from this mapper is called G4BLoutput.json and
is written in whichever directory simulate_mice_G4BL.py was run. To run
MAUS using this file as input the script simulate_beam.py can be used. The
path to G4BLoutput.json must be set in the MAUS datacard using the variable
input_json_file_name.

117

http://www.ppe.gla.ac.uk/~jnugent/Grid_Files/
http://www.ppe.gla.ac.uk/~jnugent/Grid_Files/
https://www.gridpp.ac.uk/php/support/otherscihelp.php#3

Table 15.1: G4BL parameters
MAUS will write the following variables to the G4BL configuration file
q_1, q_2, q_3, d_1, d_s, d_2 Field gradient of magnet
particles_per_spill No. of particles to take out of buffer for each spill, if set to zero

then all particles are taken from buffer for first spill
run_number When retrieving magnet currents and proton absorber thickness

from CDB set to the run number of interest
rotation_angle Rotation of MAUS co-ordinate system clockwise around the y-axis

with respect to G4BL co-ordinate system
translation_z The distance between the MAUS centre and the G4BL centre. It

assumes the G4BL centre is in front of the MAUS centre
proton_abserober_thickness Thickness of the proton absorber
proton_number No. of protons on target in G4BL
proton_weight Scales the number of protons generated, with default setting pro-

tons are NOT generated
particle_charge Refers to the charge of the simulated particles. Can be set to,

positive-only, negative-only or all
file_path Path to G4BL input
get_magnet_currents_pa_cdb If set to True all magnet currents and proton absorber thickness

will be retrieved from the CDB and written to the G4BL config-
uration file for the run number given in this dictionary

random_seed Sets the random seed for G4beamline

118

Chapter 16

Appendix C: Tracker
Appendices

16.1 Kuno’s Conjecture
For a given triplet space-point, the sum of the channel number of each cluster
will be a constant.

To see how this comes about, consider the coordinate system defined by the
u, v and w axes in the station reference frame shown in figure 16.1. The u,
v and w coordinates my be written in terms of the polar coordinates (r, φ) as
follows:

u = r cos[φ] (16.1)

v = r cos

[
2π

3
− φ

]
(16.2)

w = r cos

[
4π

3
− φ

]
(16.3)

The sum u+ v + w may now be written:

u+ v + w = r

{
cosφ+ cos

[
2π

3
− φ

]
+ cos

[
4π

3
− φ

]}
(16.4)

= r

{
cosφ+

[
cos

(
2π

3

)
cosφ+ sin

(
2π

3

)
sinφ+

]
+ (16.5)[

cos

(
−2π

3

)
cosφ+ sin

(
−2π

3

)
sinφ+

]}
(16.6)

= r

{
cosφ+ 2 cos

(
2π

3

)
cosφ

}
(16.7)

= r {cosφ+ [− cosφ]} (16.8)
= 0 (16.9)

If the sum is performed using the fibre numbers for the channels hit, the
sum of the the three views will equal the sum of the central-fibre numbers, i.e.
if the central fibre numbers of each of the u, v and w doublet-layers is 106.5,
then the sum of channel numbers will be 106.5 + 106.5 + 105.5 = 318.5.

119

v

u

w

Figure 16.1: Schematic representation of a point and the three plane orienta-
tions.

16.2 Space-point variance
Figure 11.9 shows the arrangement of the fibre channels in the tracker. The
regions in which a space point will be reconstructed are shown by the shaded
areas. The area of the triangular intersection is given by:

A = 4
1

2

cp√
3

cp
2

(16.10)

=
c2p√

3
; (16.11)

where cp is the channel pitch. Therefore, for the triangular intersection, the
mean values of x and y are given by:

x̄ =
1

A

∫ ∫
xdxdy (16.12)

=
1

A

∫ cp

0

xdx

∫ x√
3

− x√
3

dy (16.13)

=
1

A

2√
3

∫ cp

0

x2dx (16.14)

=
1

A

2√
3

c3p
3

(16.15)

=

√
3

c2p

2√
3

c3p
3

(16.16)

=
2

3
cp ; and (16.17)

120

ȳ =
1

A

∫ ∫
ydxdy (16.18)

=
1

A

∫ cp

0

dx

∫ x√
3

− x√
3

ydy (16.19)

=
1

A

∫ cp

0

[
y2

2

] x√
3

− x√
3

dx (16.20)

= 0 . (16.21)

The variance of the x and y coodinates are then given by:

Vx = σ2
x =

1

A

∫ ∫
(x− x̄)2dxdy (16.22)

=
1

A

∫ cp

0

dx

∫ x√
3

− x√
3

(x− x̄)2dy (16.23)

=
1

A

2√
3

∫ cp

0

x(x− x̄)2 (16.24)

=
1

A

2√
3

∫ cp

0

(x3 − 2x2x̄+ x̄2x)dx (16.25)

=
1

A

2√
3

∫ cp

0

(x3 − 4

3
cpx

2 +
4

9
c2px)dx (16.26)

=
1

A

2√
3

[
x4

4
− 4

9
cpx

3 +
2

9
c2px

2

]cp
0

(16.27)

=
c4p
A

2√
3

[
1

4
− 4

9
+

2

9

]
(16.28)

=
c4p
A

2√
3

[
1

4
− 2

9

]
(16.29)

= c4p

√
3

c2p

2√
3

1

36
(16.30)

=
1

18
c2p (16.31)

Vx = σ2
x =

(
cp

3
√

2

)2

; (16.32)

121

Vy = σ2
y =

1

A

∫ cp

0

dx

∫ x√
3

− x√
3

(y − ȳ)2dy (16.33)

=
1

A

∫ cp

0

[
y3

3

] x√
3

− x√
3

dy (16.34)

=
1

A

2

3
√

3

∫ cp

0

x3dx

=
1

A

2

9
√

3

[
x4

4

]cp
0

(16.35)

=
1

A

2

9
√

3

c4p
4

(16.36)

=

√
3

c2p

2

9
√

3

c4p
4

(16.37)

=
1

9

c2p
2

(16.38)

=
1

18
c2p (16.39)

Vy = σ2
y =

(
c2p

3
√

2

)2

. (16.40)

The covariance is given by:

Vxy =
1

A

∫ ∫
(x− x̄)(y − ȳ)dxdy (16.41)

=
1

A

∫ cp

0

(x− x̄)dx

∫ x√
3

− x√
3

(y − ȳ)dy (16.42)

=
1

A

∫ cp

0

(x− x̄)

[
1

2
y2 − yȳ

] x√
3

− x√
3

(16.43)

= 0 . (16.44)

Therefore:
σx = σy =

cp

3
√

2
= 384.4µm . (16.45)

For the hexagonal case, the area of the overlapping region (shaded zone in the
right panel of figure 11.9) is givn by:

A = 6
1

2

cp√
3

cp
2

(16.46)

=

√
3

2
c2p . (16.47)

122

By symmetry, x̄ = ȳ = 0. The variance of the x and y coordinates are given by:

Vx = σ2
x = σ2

y = =
1

A

∫ ∫
(x− x̄)2dxdy (16.48)

=
1

A

∫ ∫
x2dxdy (16.49)

=
2

A

∫ 0

− cp
2

x2dx

∫ x√
3

+
cp√
3

− x√
3
− cp√

3

dy

=
2

A

∫ 0

− cp
2

x2

[
2

(
x√
3

+
cp√

3

)]
dx (16.50)

=
2

A

2√
3

∫ 0

− cp
2

(
x3 + x2cp

)
dx

=
2

A

2√
3

[
1

4
x4 +

1

3
x3cp

]0

− cp
2

(16.51)

=
2

A

2√
3

[
−1

4

c4p
16

+
1

3

c4p
8

]
(16.52)

=
2

A

2√
3

[
1

8

(
1

3
− 1

8

)
c4p

]
(16.53)

=
2

A

2√
3

1

8

5

24
c4p =

1

A

5

48
√

3
c4p (16.54)

=
2√
3c2p

5

48
√

3
c4p =

2√
3

5

48
√

3
c2p (16.55)

=

(√
5

2

cp
6

)2

. (16.56)

As before, the covariance is given by:

Vxy =
1

A

∫ ∫
(x− x̄)(y − ȳ)dxdy (16.57)

=
2

A

∫ 0

− cp
2

xdx

∫ x√
3

+
cp√
3

− x√
3
− cp√

3

ydy

=
2

A

∫ 0

− cp
2

xdx

[
1

2
y2

] x√
3

+
cp√
3

− x√
3
− cp√

3

= 0 . (16.58)

Therefore:

σx = σy =

√
5

2

cp
6

= 429.8µm . (16.59)

16.3 Circle parameters from three points
A circle in the plane z = 0 may be parameterised as:

(x−X0)2 + (y − Y0)2 = ρ2 ; (16.60)

where (X0, Y0) is the position of the centre of the circle and ρ is its radius.
Expanding:

(x2 + y2)− 2X0x− 2Y0y = ρ2 − (X2
0 + Y 2

0) ; (16.61)

123

which implies:

(x2 + y2)

ρ2 − (X2
0 + Y 2

0)
− 2X0x

ρ2 − (X2
0 + Y 2

0)
− 2Y0y

ρ2 − (X2
0 + Y 2

0)
= 1 . (16.62)

The circle may be parameterised:

α(x2 + y2) + βx+ γy + κ = 0 ; (16.63)

where:

α =
1

ρ2 − (X2
0 + Y 2

0)
; (16.64)

β = −2X0α ; (16.65)
γ = −2Y0α ; (16.66)
κ = −1 . (16.67)

These equations are readily inverted to yield:

X0 =
−β
2α

; (16.68)

Y0 =
−γ
2α

; (16.69)

ρ =

√
β2 + γ2

4α2
− κ

α
. (16.70)

The equation of a circle passing through three points (xi, yi), where i = 1, 2, 3
can be found from: ∣∣∣∣∣∣∣∣

x2 + y2 x y 1
x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y3
3 x3 y3 1

∣∣∣∣∣∣∣∣ = 0 ; (16.71)

which can be re-written as:

(x2+y2)

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣−x
∣∣∣∣∣∣
x2

1 + y2
1 y1 1

x2
2 + y2

2 y2 1
x2

3 + y3
3 y3 1

∣∣∣∣∣∣+y
∣∣∣∣∣∣
x2

1 + y2
1 x1 1

x2
2 + y2

2 x2 1
x2

3 + y3
3 x3 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
x2

1 + y2
1 x1 y1

x2
2 + y2

2 x2 y2

x2
3 + y3

3 x3 y3

∣∣∣∣∣∣ = 0 .

(16.72)
Comparing this relation with equation 16.63:

α =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ (16.73)

β = −

∣∣∣∣∣∣
x2

1 + y2
1 y1 1

x2
2 + y2

2 y2 1
x2

3 + y3
3 y3 1

∣∣∣∣∣∣ (16.74)

γ =

∣∣∣∣∣∣
x2

1 + y2
1 x1 1

x2
2 + y2

2 x2 1
x2

3 + y3
3 x3 1

∣∣∣∣∣∣ (16.75)

κ = −

∣∣∣∣∣∣
x2

1 + y2
1 x1 y1

x2
2 + y2

2 x2 y2

x2
3 + y3

3 x3 y3

∣∣∣∣∣∣ . (16.76)

Noting that:

(x+
β

2α
)2 + (y +

γ

2α
)2 =

(√
β2 + γ2

4α2
− κ

α

)2

. (16.77)

the position of the centre of the circle, (X0, Y0) and its radius, ρ, are given by
equations 16.68 to 16.70.

124

16.4 Helical Track Pattern Recognition
The equation of motion of a charged particle in an external magnetic field can
be written as

d2x

ds2
=
q

p
(
d~x

ds
)× ~B(s) (16.78)

If we assume that the magnetic filed lies along the z axis ~B = (0, 0, B) , then
the three scaler components of it can be wirttien as

d2x

ds2
=

q

P
(
dy

ds
)B

d2y

ds2
= − q

P
(
dx

ds
)B

d2z

ds2
= 0

(16.79)

we also note that P is the total momentum and the transverse momenumte
pt = P cosλ = qBRH can be written as

px = pt cosφ

px = −pt sinφ
(16.80)

the solution of the above equations will be a helix

x(s) = x1 +R

[
cos

(
Φ0 +

hs cosλ

R

)
− cos Φ0

]
y(s) = y1 +R

[
cos

(
Φ0 +

hs cosλ

R

)
− sin Φ0

]
z(s) = z1 + s sinλ

(16.81)

where x1, y1 and z1 is the starting point. R is the radius of the helix. h = ±1
is the sense of the rotation in x− y plane. We note that

ds2 = dx2 + dy2 + dz2

ds/dz = (1 + x́2 + ý2)1/2

(
dx

ds
)2 + (

dy

ds
)2 + (

dz

ds
)2 = 1

(16.82)

On the other hand, the equation of a circle passing through three space
points (xi, yi) , where i = 1, 2, 3 can be found from the following determinant.∣∣∣∣∣∣∣∣

x2 + y2 x y 1
x2

1 + y2
1 x1 y1 1

x2
2 + y2

2 x2 y2 1
x2

3 + y3
3 x3 y3 1

∣∣∣∣∣∣∣∣ = 0 (16.83)

which can be re-written as

(x2+y2)

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣−x
∣∣∣∣∣∣
x2

1 + y2
1 y1 1

x2
2 + y2

2 y2 1
x2

3 + y3
3 y3 1

∣∣∣∣∣∣+y
∣∣∣∣∣∣
x2

1 + y2
1 x1 1

x2
2 + y2

2 x2 1
x2

3 + y3
3 x3 1

∣∣∣∣∣∣−
∣∣∣∣∣∣
x2

1 + y2
1 x1 y1

x2
2 + y2

2 x2 y2

x2
3 + y3

3 x3 y3

∣∣∣∣∣∣ = 0

(16.84)

125

comparing the above relation with the conventional circle equation

a(x2 + y2) + dx+ ey + f = 0 (16.85)

or

(x+
d

2a
)2 + (y +

e

2a
)2 =

(√
d2 + e2

4a2
− f

a

)2

(16.86)

we find that

a =

∣∣∣∣∣∣
x1 y1 1
x2 y2 1
x3 y3 1

∣∣∣∣∣∣ (16.87)

d = −

∣∣∣∣∣∣
x2

1 + y2
1 y1 1

x2
2 + y2

2 y2 1
x2

3 + y3
3 y3 1

∣∣∣∣∣∣ (16.88)

e =

∣∣∣∣∣∣
x2

1 + y2
1 x1 1

x2
2 + y2

2 x2 1
x2

3 + y3
3 x3 1

∣∣∣∣∣∣ (16.89)

f = −

∣∣∣∣∣∣
x2

1 + y2
1 x1 y1

x2
2 + y2

2 x2 y2

x2
3 + y3

3 x3 y3

∣∣∣∣∣∣ (16.90)

and also the centre and the radius of the circle will be

x0 = − d

2a

y0 = − e

2a

R =

√
d2 + e2

4a2
− f

a

(16.91)

126

	What Who and How?
	Who Should Use MAUS
	Getting the Code and Installing MAUS
	Citing MAUS
	Running MAUS
	Run Control
	Other Applications
	Choosing the Unpacker Version

	Accessing Data
	Loading ROOT Files in Python Using PyROOT
	Loading ROOT Files in C++ Compiled Analysis Code
	Loading ROOT Files on the ROOT Command Line

	Using and Modifying the Data Structure
	Metadata
	The Spill Datastructure
	Image Datastructure
	Accessing ROOT files
	Conversion to, and Working With, JSON
	Extending the Data Structure
	Pointer Handling

	Introduction to the MAUS API
	Motivation
	Everything starts with a `Module'
	Inheritance
	Data Mangling
	Module Initialisation and Destruction
	Global Objects - Objects for Many Modules
	Global Object Initialisation

	Internal Classes
	Abstraction Layers
	C++ Python Wrapper
	Data Mangling

	Utilities
	Logging

	Running the Monte Carlo
	Beam Generation
	Beam Polarisation
	Amplitude Momentum Correlation

	Getting the Right Answer
	Geometry
	Tracking
	Energy Deposition and Showering

	GEANT4 Bindings

	Geometry
	Geometry Access Scripts
	Using the Geometry Download Executables
	A Little GDML
	Define
	Materials
	Solids
	Structure
	Additional Features and Sensitive Detectors

	Creation of New Geometries in MAUS

	How to Define a Geometry
	Configuration File
	Module Files
	Volume and Dimensions
	Properties
	Child Modules
	Module Hierarchy and GEANT4 Physical Volumes
	A Sample Configuration File
	A Sample Child Module File

	Geometry and Tracking MiceModule Properties
	General Properties
	Sensitive Detectors
	Scintillating Fibre Detector (SciFi)
	Cerenkov Detector (CKOV)
	Time Of Flight Counter (TOF)
	Special Virtual Detectors
	Virtual Detectors
	Envelope Detectors

	Unconventional Volumes
	Trapezoid Volume
	Volume Wedge
	Volume Polycone
	Volume Quadrupole
	Volume Multipole
	Volume Boolean
	Volume Sphere

	Repeating Modules
	Beam Definition and Beam Envelopes
	Optimiser

	Field Properties
	FieldType CylindricalField
	FieldType RectangularField
	FieldType Solenoid
	FieldType FieldAmalgamation
	FieldType DerivativesSolenoid
	Phasing Models
	Tracking Stability Around RF Cavities
	FieldType PillBox
	FieldType RFFieldMap
	FieldType Multipole
	FieldType CombinedFunction
	EndFieldTypes
	FieldType MagneticFieldMap

	TOF Detector
	Simulation
	Digitization

	Reconstruction
	Database

	The Trackers
	Introduction
	Overview
	Quick start guide

	Definitions
	Labelling of upstream and downstream trackers
	Station numbering
	Doublet layer
	Fibre-channel numbering

	Reference surfaces and coordinate systems
	Doublet layer
	Station
	Tracker
	Coordinate transformations

	Reconstruction Algorithms
	Hits and clusters
	Space-point reconstruction
	Pattern recognition
	Track fit

	Data structure
	Code Design
	General Code Structure
	Tracker configuration variables

	The Monte Carlo
	Station Geometry
	MC VLPC Dark Count
	Building Digits

	Global Track Matching
	Introduction
	Purpose
	Process
	4th Order Runge-Kutta Propagation
	TOF1, TOF2, KL
	TOF0
	Cherenkov Detectors
	EMR
	Upstream-Downstream Matching

	Usage
	Configuration

	Global PID
	Introduction
	Using the PID scripts
	Producing PDFs

	MapCppGlobalPID and ReduceCppGlobalPID
	MapCppGlobaPID

	ReduceCppGlobalPID
	PID Variables
	PID Base Class
	PID Variable Classes

	The Envelope Tool
	Example Usage
	Envelope Tool main window
	Beam Setup
	Magnet Setup
	Plot Setup

	G4beamline-MAUS Integration
	Appendix C: Tracker Appendices
	Kuno's Conjecture
	Space-point variance
	Circle parameters from three points
	Helical Track Pattern Recognition

