// BLCMDhelicaldipole.cc /* This source file is part of G4beamline, http://g4beamline.muonsinc.com Copyright (C) 2003,2004,2005,2006 by Tom Roberts, all rights reserved. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. http://www.gnu.org/copyleft/gpl.html Original by Katsuya Yonehara, used with permission. */ // 7/16/04 --- Add ICOOL mode (model=3) ky // 9/14/04 --- Fix ICOOL FIELD ky // Compared field params in ICOOL and HelicalDipole modules. // Both numbers are same. // A small discrepancy (0.1%) is in gamma function. // 9/15/04 --- Add Base Electric field ez ky // 1/20/05 --- Add modulated bD and bQ (model 4) ky #define _USE_MATH_DEFINES #include <math.h> #include "G4VisAttributes.hh" #include "G4Tubs.hh" #include "G4LogicalVolume.hh" #include "G4VPhysicalVolume.hh" #include "G4PVPlacement.hh" #include "G4Color.hh" #include "G4UserLimits.hh" #include "G4Polymarker.hh" #include "G4VVisManager.hh" #include "BLElement.hh" #include "BLElementField.hh" #include "BLGlobalField.hh" #include "BLParam.hh" #include "BLManager.hh" #include "BLHelicalUtils.hh" #define MARKER_SIZE 5 /* pixels */ /* how cylindrical coordinates stored */ #define cylPHI 0 #define cylRHO 1 #define cylZ 2 /* how rectangular coordinates stored */ #define rectX 0 #define rectY 1 #define rectZ 2 /* small area to avoid singularities */ #define ESSENTIALLY_ZERO 1.E-33 const G4double PI=3.141592653589793238462643; /* pitch convention */ #define LEFT_HANDED_THREAD (-1) #define RIGHT_HANDED_THREAD (+1) #define MuonsInc_PITCH_CONVENTION RIGHT_HANDED_THREAD #define MuonsInc_Target_Radius_mm 159.15494 #define KBB_ENABLE 1 #define KBB_DISABLE 0 #define KBB_bugz KBB_DISABLE /** BLCMDhelicaldipole implements helical dipole magnet with a cylindrical * field volume. * * model 1 * The magnetic field is an ideal dipole that rotates helically along * z. This is a pure field -- there is no iron or physical volume. * model 2 * The field is determined from solutions of cylindrical Maxwellian. * RPJ and YSD designed this. (MuNote0284) * model 3 * The field is determined from solutions of cylindrical Maxwellian. * This time you take into account the boundary condition. * T. Tominaka et al designed this. (NIM A459:398) * model 4 * The field strength can be modulated as z. **/ class BLCMDhelicaldipole : public BLElement, public BLManager::RunAction { G4double radius; G4double length; G4double b; G4double bprime; G4double bpp; G4double rr; G4double lambda; G4double model; G4double psi0; G4double phi0; G4double Bsolenoid; G4double ez; BLCoordinateTransform global2local; G4Polymarker markers; friend class HelicalDipoleField; public: /// Default constructor. Defines the command, args, etc. BLCMDhelicaldipole(); /// Destructor. virtual ~BLCMDhelicaldipole() { } /// Copy constructor. BLCMDhelicaldipole(const BLCMDhelicaldipole& r); /// clone() BLElement *clone() { return new BLCMDhelicaldipole(*this); } /// commandName() returns "helicaldipole". G4String commandName() { return "helicaldipole"; } /// command() implements the helicaldipole command. int command(BLArgumentVector& argv, BLArgumentMap& namedArgs); /// defineNamedArgs() defines the named arguments for the command. void defineNamedArgs(); /// construct() - construct the helicaldipole magnet void construct(G4RotationMatrix *relativeRotation, G4ThreeVector relativePosition, G4LogicalVolume *parent, G4String parentName, G4RotationMatrix *parentRotation, G4ThreeVector parentPosition); /// getLength() returns the fieldLength of the hd G4double getLength() { return length; } /// getWidth() returns the outer radius of the hd G4double getWidth() { return radius*2.0; } /// getHeight() returns the outer radius of the hd G4double getHeight() { return radius*2.0; } /// isOK() returns true. G4bool isOK() { return true; } /// isOutside() from BLElement. bool isOutside(G4ThreeVector &local, G4double tolerance) { return true; } /// generatePoints() from BLElement. void generatePoints(int npoints, std::vector<G4ThreeVector> &v) { v.clear(); } /// BeginOfRunAction() from BLManager::RunAction. void BeginOfRunAction(const G4Run *run); /// EndOfRunAction() from BLManager::RunAction. void EndOfRunAction(const G4Run *run); }; BLCMDhelicaldipole defaultHelicalDipole; // default object /** HelicalDipoleField represents one placement of a helicaldipole magnet. * **/ class HelicalDipoleField : public BLElementField { G4double radius; G4double halflength; G4double b; G4double bprime; G4double bpp; G4double rr; G4double psi0; G4double lambda; G4double phi0; G4double Bsolenoid; G4double model; G4double ez; BLCoordinateTransform global2local; G4RotationMatrix rotation; public: /// constructor. HelicalDipoleField(BLCoordinateTransform& _global2local, BLCMDhelicaldipole *hd); /// addFieldValue() adds the field for this solenoid into field[]. /// point[] is in global coordinates. void addFieldValue(const G4double point[4], G4double field[6]) const; }; // Default constructor - be sure to use the default constructor BLElement() BLCMDhelicaldipole::BLCMDhelicaldipole() : BLElement(), BLManager::RunAction() { // register the commandName(), and its synopsis and description. registerCommand(BLCMDTYPE_ELEMENT); setSynopsis("construct a helicaldipole magnet."); setDescription( "The field region is a cylinder with a helical dipole\n" "field plus a solenoidial field. The simple model=1 \n" "provides just a sine and cosine transverse dependence,\n" "while the maxwellian model=2 has both dipole and quadrupole\n" "terms. Both the dipole scale bD [T] and quadrupole scale bQ [T/m]\n" "are now at rho=0; the user must determine the correct values externally.\n\n" "Note that this Element generates a magnetic field only,\n" "and only within the cylinder defined by length and radius.\n" "So it has no solid associated with it, and is invisible.\n"); // provide initial values for fields radius = 0.0; length = 0.0; b = 0.0; bprime = 0.0; bpp = 0.0; rr = 159.155; model = 3. ; lambda = 0.0; phi0 = 0.0; psi0 = 0.0; Bsolenoid = 0.0; ez = 0.0; } // Copy constructor - be sure to use the copy constructor BLElement(r) BLCMDhelicaldipole::BLCMDhelicaldipole(const BLCMDhelicaldipole& r) : BLElement(r), BLManager::RunAction(r) { // copy fields one at a time (transfers default values from the // default object to this new object). radius = r.radius; length = r.length; b = r.b; bprime = r.bprime; bpp = r.bpp; rr = r.rr; lambda = r.lambda; phi0 = r.phi0; model = r.model; Bsolenoid = r.Bsolenoid; ez = r.ez; psi0 = r.psi0; } int BLCMDhelicaldipole::command(BLArgumentVector& argv, BLArgumentMap& namedArgs) { const char *CoDE="BLCMDhelicaldipole::command"; if(argv.size() != 1) { printError("helicaldipole: Invalid command, must have name"); return -1; } if(argv[0] == "default") { return defaultHelicalDipole.handleNamedArgs(namedArgs); } BLCMDhelicaldipole *t = new BLCMDhelicaldipole(defaultHelicalDipole); t->setName(argv[0]); int retval = t->handleNamedArgs(namedArgs); t->print(argv[0]); return retval; } void BLCMDhelicaldipole::defineNamedArgs() { argDouble(radius,"radius","The radius of the field region (mm)",mm); argDouble(model,"model","The model of field calculated(simple=1, rpj and ysd model=2, ttominaka et al model=3), modulations in bd,bq,bz= 4"); argDouble(length,"length","The length of the field region (mm)",mm); argDouble(b,"bD","The dipole magnitude at rho=0 (Tesla).",tesla); argDouble(lambda,"lambda","Helix period along the Z axis (mm).",mm); argDouble(phi0,"phi0","The phase of the XY field at the entrance (deg).",deg); argDouble(Bsolenoid,"Bsolenoid","The value of Bsolenoid (Tesla).",tesla); argDouble(bprime,"bQ","The quadrupole magnitude at rho=0 (Tesla).",tesla/meter); argDouble(bpp,"bs","The sextupole magnitude at rho=0 (Tesla).",tesla/meter/meter); argDouble(rr,"rr","Reference radius (mm)",mm); argDouble(psi0,"psi0","The offset between the dipole term and the quadrupole term (Degrees).",deg); argDouble(ez,"ez","The base electric field inside the helix channel (GV/m).",1000*megavolt/meter); } void BLCMDhelicaldipole::construct(G4RotationMatrix *relativeRotation, G4ThreeVector relativePosition, G4LogicalVolume *parent, G4String parentName, G4RotationMatrix *parentRotation, G4ThreeVector parentPosition) { G4String thisname = parentName+getName(); // get globalRotation and globalPosition G4RotationMatrix *globalRotation = 0; if(relativeRotation && parentRotation) { globalRotation = new G4RotationMatrix(*parentRotation * *relativeRotation); } else if(relativeRotation) { globalRotation = relativeRotation; } else if(parentRotation) { globalRotation = parentRotation; } G4ThreeVector globalPosition(relativePosition + parentPosition); if(parentRotation) globalPosition = *parentRotation * relativePosition + parentPosition; global2local = BLCoordinateTransform(globalRotation,globalPosition); G4double zmin = globalPosition[2]-getLength()/2.0; G4double zmax = globalPosition[2]+getLength()/2.0; HelicalDipoleField *p = new HelicalDipoleField(global2local,this); BLGlobalField::getObject()->addElementField(p); printf("BLCMDhelicaldipole::Construct %s parent=%s relZ=%.1f globZ=%.1f\n" "\tzmin=%.1f zmax=%.1f\n", thisname.c_str(),parentName.c_str(),relativePosition[2], globalPosition[2], zmin,zmax); BLManager::getObject()->registerRunAction(this,false); } void BLCMDhelicaldipole::BeginOfRunAction(const G4Run *run) { markers.clear(); } void BLCMDhelicaldipole::EndOfRunAction(const G4Run *run) { G4VVisManager* pVVisManager = G4VVisManager::GetConcreteInstance(); if (!pVVisManager) return; #ifdef STUB // omit markers double dz = lambda/10.0; int n = (int)(length/dz) + 1; for(int i=0; i<n; ++i) { G4double local[4], global[4]; G4double phi = phi0 + i * dz * 2.0*pi/lambda; local[0] = radius/2.0*cos(phi); local[1] = radius/2.0*sin(phi); local[2] = -length/2.0 + i * dz; local[3] = 0.0; global2local.getGlobal(local,global); G4ThreeVector point(global[0],global[1],global[2]); markers.push_back(point); } markers.SetMarkerType(G4Polymarker::circles); markers.SetScreenSize(MARKER_SIZE); markers.SetFillStyle(G4VMarker::filled); G4VisAttributes va(G4Colour(1.,1.,1.)); // white markers.SetVisAttributes(&va); pVVisManager->Draw(markers); #endif // STUB } HelicalDipoleField::HelicalDipoleField(BLCoordinateTransform& _global2local, BLCMDhelicaldipole *hd) : BLElementField(), rotation() { radius = hd->radius; halflength = hd->length/2.0; b = hd->b; bprime = hd->bprime; bpp = hd->bpp; rr = hd->rr; model = hd->model; lambda = hd->lambda; phi0 = hd->phi0; psi0 = hd->psi0; Bsolenoid = hd->Bsolenoid; ez = hd->ez; global2local = _global2local; rotation = global2local.getRotation().inverse(); //printf("HelicalDipoleField: radius=%.1f mm, halflength=%.1f mm, b=%.4f T, bprime=%.4f T/m\n\tmodel=%.1f, lambda=%.1f mm, phi0=%.1f deg, psi0=%.1f deg, Bsolenoid=%.4f T\n",radius/mm,halflength/mm,b/tesla,bprime/(tesla/meter),model,lambda/mm,phi0/deg,psi0/deg,Bsolenoid/tesla); // set global bounding box G4double local[4], global[4]; local[3] = 0.0; for(int i=0; i<2; ++i) { local[0] = (i==0 ? -1.0 : 1.0) * radius; for(int j=0; j<2; ++j) { local[1] = (j==0 ? -1.0 : 1.0) * radius; for(int k=0; k<2; ++k) { local[2] = (k==0 ? -1.0 : 1.0) * halflength; global2local.getGlobal(local,global); setGlobalPoint(global); } } } } /* The following two routines were added from a public domain repository */ /* which were written in 1996 and allow double precision modified bessel */ /* to be used in the field map for the helical dipole magnet RPJ 24JAN04 */ /* (slightly modified KBB 15APR04) */ G4double modified_bessel0( G4double x ) { /* Returns the modified Bessel function I_0(x) for any real x */ /* modified bessel function of order 0 */ /* slightly modified DBESI0 for type double, KBB 4/04 */ double ax; double anser; double y; if ((ax=fabs(x)) < 3.75) { y = x/3.75; y*=y; anser = 1+y*(3.5156229+y*(3.0899424+y*(1.2067492 +y*(0.2659732+y*(0.360768e-1+y*0.45813e-2))))); } else { y=3.75/ax; anser = (exp(ax)/sqrt(ax))*(0.39894228+y*(0.1328592e-1 +y*(0.225319e-2+y*(-.157565e-2+y*(0.916281e-2 +y*(-0.2057706e-1+y*(0.2635537e-1+y*(-0.1647633e-1 +y*0.392377e-2)))))))); } return anser; } G4double modified_bessel1( G4double x ) { /* Returns the modified Bessel function I_1(x) for any real x */ /* modified bessel function of order 1 */ /* slightly modified DBESI1 for type double, KBB 4/04 */ double ax; double anser; double y; if ((ax=fabs(x)) < 3.75) { y = x/3.75; y*=y; anser = ax*(0.5+y*(0.87890594+y*(0.51498869+y*(0.15084934 +y*(0.2658733e-1+y*(0.301532e-2+y*0.32411e-3)))))); } else { y=3.75/ax; anser = 0.2282967e-1+y*(-0.2895312e-1+y*(0.1787654e-1 -y*0.420059e-2)); anser = 0.39894228+y*(-0.3988024e-1+y*(-0.362018e-2 +y*(0.163801e-2+y*(-0.1031555e-1+y*anser)))); anser *= (exp(ax)/sqrt(ax)); } return x < 0.0 ? -anser : anser; } G4double modified_besselN( int o, G4double x ) { const char *CoDE="modified_besselN"; int n; G4double modified_besselN_x( int n, G4double x ); /*prototype*/ G4double Io=0; n= o-1; if( o>1 ) Io= -2*n * modified_besselN_x(n,x) + modified_besselN(n-1,x); else if( o==1 ) Io= modified_bessel1(x); else if( o==0 ) Io= modified_bessel0(x); else printf("%s: bad order=%i\n", CoDE, n); return( Io ); } G4double modified_besselN_x( int n, G4double x ) { G4double In_t; int i; if( -ESSENTIALLY_ZERO<x && x<ESSENTIALLY_ZERO ) { for(In_t=1/2.,i=2; i<=n; ++i) In_t*= (x/2)/i; } else { In_t= modified_besselN(n,x)/x; } return( In_t ); } G4double derivative_modified_besselN( int n, G4double x ) { const char *CoDE="derivative_modified_besselN"; if( n<1 ) printf("%s: order#n < 1\n", CoDE); return( modified_besselN(n-1,x) - n * modified_besselN_x(n,x) ); } G4ThreeVector DIPOLEFIELD( G4double bd /* magnitude at zero radius [T] */, G4double k /* +|- pitch of magnet [radians/mm] */, G4double rho /* local angular position [mm] */, G4double psiangle /* net phase angle [radians] */ ) { const int PHI=cylPHI,RHO=cylRHO,Z=cylZ; G4double t,I0,I1_t,psi; G4ThreeVector Bcyl; t= k * rho; I0= modified_besselN(0,t); I1_t= modified_besselN_x(1,t); /* Helical Cooling Channel Simnulation Parameters and Fields */ /* 6D Cooling Note */ /* using cylindrical components - equation 1.2 */ Bcyl[PHI]= 2 * bd * I1_t * cos(psiangle); Bcyl[RHO]= 2 * bd * (I0-I1_t) * sin(psiangle); /* -2 * bd * I1(t) * cos(phiangle) <==> -t * Bcyl[PHI] */ Bcyl[Z]= - k * rho * Bcyl[PHI]; // printf("1; (%f, %f) %e %e %e \n",rho,psiangle,Bcyl[0],Bcyl[1],Bcyl[2]); return Bcyl; } G4ThreeVector QUADRUPOLEFIELD(G4double bprime /* gradient [T/m#] */, G4double k /* +|- pitch [radians/mm] */, G4double rho /* current radial position [mm] */, G4double psiangle /* local angular position [radians] */ ) { /* #note that the NUMERICAL value of bprime is NOT in [T/m]; one must convert bprime/(tesla/meter) to get units of [T/m], but [T=0.001] and [meter=1000]! corrected a mistake in the formula 4/27/04 KBB,RJ */ const char *CoDE="QUADRUPOLEFIELD"; const int PHI=cylPHI,RHO=cylRHO,Z=cylZ; static int messageCount=0; G4double t,I1,I2_t,Bprime; G4ThreeVector Bcyl; if( 0==messageCount++ ) printf("%s: version of 4/27/04\n", CoDE); // <----- T/m---------> <----- 1/1000 ---> <---- T/mm ------> Bprime= bprime/(tesla/meter) * (millimeter/meter) * (tesla/millimeter); t= 2 * k * rho; I2_t= modified_besselN_x(2,t); I1= modified_besselN(1,t); /* Helical Cooling Channel Simnulation Parameters and Fields */ /* 6D Cooling Note */ /* using cylindrical components - equation 1.7 */ /* BUT THERE IS A TYPO in equantion 1.7 - it should say */ /* 1/k NOT 1/2 in the 2nd line! */ /* I (2*k*rho)/(k*k*rho)=> I (2*k*rho)/(2*k*rho) * 2/k */ /* 2 2 */ Bcyl[PHI] = 2/k * Bprime * I2_t * cos(2*psiangle); Bcyl[RHO] = 1/k * Bprime * (I1 - 2*I2_t) * sin(2*psiangle); // <== fixed! Bcyl[Z] = - k * rho * Bcyl[PHI]; if( KBB_bugz && 0.95*MuonsInc_Target_Radius_mm<rho && rho<1.05*MuonsInc_Target_Radius_mm ) { printf("%s: bprime=%f[T/m] %f[native] t=%f I2_t=%f psiangle=%f ", CoDE, bprime/(tesla/meter), bprime, t, I2_t, psiangle ); printf("k=%f/mm rho=%fmm Bcyl=(%f,%f,%f)[native]=(%f,%f,%f)[T]\n", k*mm, rho/mm, Bcyl[PHI], Bcyl[RHO], Bcyl[Z], Bcyl[PHI]/tesla, Bcyl[RHO]/tesla, Bcyl[Z]/tesla); } // printf("2; (%f, %f) %e %e %e \n",rho,psiangle,Bcyl[0],Bcyl[1],Bcyl[2]); return Bcyl; } void HelicalDipoleField::addFieldValue(const G4double point[4], G4double field[6]) const { const char *CoDE="HelicalDipoleField::addFieldValue"; const int X=rectX,Y=rectY,Z=rectZ; const int PHI=cylPHI,RHO=cylRHO; /* notation */ const int node=0; int ini; G4ThreeVector B,BcylDipole,BcylQuad,BcylSext,BxyzDipole,BxyzQuad,BxyzSext; G4ThreeVector global(point[X],point[Y],point[Z]); G4ThreeVector local; G4double kz,phi,bd,rho,kH,Bprime,Bpp,pZ; G4double mul[3]; global2local.getLocal(local,global); /*fetch local location in mm*/ rho = sqrt( local[X]*local[X] + local[Y]*local[Y] ); /*mm*/ if( rho>radius || fabs(local[Z]) > halflength) return; for(ini=0;ini<=2;ini++){ BcylDipole[ini]=0.0; BxyzDipole[ini]=0.0; BcylQuad[ini]=0.0; BxyzQuad[ini]=0.0; BcylSext[ini]=0.0; BxyzSext[ini]=0.0; B[ini]=0.0; } /* the Muons,Inc. preferred convention -> lambda>0 == right handed screw */ kH= MuonsInc_PITCH_CONVENTION *2*PI/lambda; // kH= sqrt(4.0*PI*PI/lambda/lambda); // kz= kH * (local[Z]+halflength)*lambda/sqrt(lambda*lambda); kz= kH * (local[Z]+halflength); pZ = (local[Z]+halflength)*1e-3; phi= atan2( local[Y], local[X]); bd = b; /* the radial correction for bQ, bprime, will now be done externally by the user */ /* Simple SIN/COS Dipole Model */ if( int(model)==1 ) { B= SIMPLEFIELD(b,kz+phi0,Bsolenoid,model); } /* Dipole Maxwellian Model */ else if ( int(model)==2 ) { BcylDipole= DIPOLEFIELD( bd, kH, rho, phi-kz+phi0 ); BxyzDipole = CYLTOCARTESIAN(BcylDipole,phi); BcylQuad= QUADRUPOLEFIELD( bprime, kH, rho, phi-kz+phi0+psi0 ); BxyzQuad = CYLTOCARTESIAN(BcylQuad,phi); B[X]= BxyzDipole[X] + BxyzQuad[X]; B[Y]= BxyzDipole[Y] + BxyzQuad[Y]; B[Z]= BxyzDipole[Z] + BxyzQuad[Z] + Bsolenoid; if( KBB_bugz ) { printf( "%s: BcylDipole=(%f,%f,%f) BcylQuad=(%f,%f,%f)\n", CoDE, BcylDipole[PHI]/tesla, BcylDipole[RHO]/tesla, BcylDipole[Z]/tesla, BcylQuad[PHI]/tesla, BcylQuad[RHO]/tesla, BcylQuad[Z]/tesla ); printf( "%s: Bxyz=(%f+%f=%f, %f+%f=%f, %f+%f+%f=%f)\n", CoDE, BxyzDipole[X]/tesla, BxyzQuad[X]/tesla, B[X]/tesla, BxyzDipole[Y]/tesla, BxyzQuad[Y]/tesla, B[Y]/tesla, BxyzDipole[Z]/tesla, BxyzQuad[Z]/tesla, Bsolenoid, B[Z]/tesla ); } } // Extended Dipole Maxwellian (ICOOL) Model else if ( int(model)==3 ) { // TO DO: Extend to multiple components // Use more realistic formula BcylDipole = bd*ICOOLFIELD(1,rho/mm,phi-kz-phi0,kH/mm,rr/mm); BxyzDipole = CYLTOCARTESIAN(BcylDipole,phi); Bprime= bprime*1e3; BcylQuad = Bprime*ICOOLFIELD(2,rho/mm,phi-kz-phi0+psi0,kH/mm,rr/mm); BxyzQuad = CYLTOCARTESIAN(BcylQuad,phi); Bpp= bpp*1e6; BcylSext = Bpp*ICOOLFIELD(3,rho/mm,phi-kz-phi0+psi0,kH/mm,rr/mm); BxyzSext = CYLTOCARTESIAN(BcylSext,phi); B[PHI] =BcylDipole[PHI]+BcylQuad[PHI]+BcylSext[PHI]; B[RHO] =BcylDipole[RHO]+BcylQuad[RHO]+BcylSext[RHO]; B[Z] =BcylDipole[Z]+BcylQuad[Z]+BcylSext[Z]; B[X]= BxyzDipole[X] + BxyzQuad[X] + BxyzSext[X]; B[Y]= BxyzDipole[Y] + BxyzQuad[Y] + BxyzSext[Y]; B[Z]= BxyzDipole[Z] + BxyzQuad[Z] + BxyzSext[Z] + Bsolenoid; } // Field map calculation for MANX experiment else if ( int(model)==4 ) { // TO DO: Extend to multiple components // Use more realistic formula // Add new terms to modulate bd,bq,bz (1/20/05 KY) // mul[0]=bd, mul[1]=bq, mul[2]=bz // Original values //mul[0] = 3.24178-0.369821*pZ+1.24318e-3*pZ*pZ-1.91452e-3*pZ*pZ*pZ; //mul[1] = -0.616436+6.69245e-2*pZ-5.36372e-4*pZ*pZ+3.23624e-4*pZ*pZ*pZ; //mul[2] = -11.5474+1.27729*pZ-1.03380e-2*pZ*pZ+6.48178e-3*pZ*pZ*pZ; // Values for 300 MeV/c input mul[2] = -8.53621+1.33517*pZ+3.51035e-2*pZ*pZ+6.48178e-3*pZ*pZ*pZ; mul[0] = 2.34731-0.409774*pZ-9.50945e-3*pZ*pZ-1.85969e-3*pZ*pZ*pZ; mul[1] = -0.442645+8.65446e-2*pZ+6.15396e-4*pZ*pZ+2.78646e-4*pZ*pZ*pZ; mul[0]*= bd; BcylDipole = mul[0]*ICOOLFIELD(1,rho/mm,phi-kz-phi0,kH/mm,159.155/mm); BxyzDipole = CYLTOCARTESIAN(BcylDipole,phi); mul[1]*= 1e3*bprime; BcylQuad = mul[1]*ICOOLFIELD(2,rho/mm,phi-kz-phi0+psi0,kH/mm,159.155/mm); BxyzQuad = CYLTOCARTESIAN(BcylQuad,phi); //@@@ mul[3] is OUT OF BOUNDS! It is also UNINITIALIZED! //@@@ mul[3]*= bpp*1e6; //@@@ BcylSext = mul[3]*ICOOLFIELD(3,rho/mm,phi-kz-phi0+psi0,kH/mm,rr/mm); G4Exception("BLCMDhelicaldipole","Invalid model",FatalException, "Internal coding error"); //@@@ BxyzSext = CYLTOCARTESIAN(BcylSext,phi); mul[2]*= Bsolenoid; // printf("z=%e m1=%e m2=%e m3=%e\n",pZ,mul[0],mul[1],mul[2]); B[PHI] =BcylDipole[PHI]+BcylQuad[PHI]+BcylSext[PHI]; B[RHO] =BcylDipole[RHO]+BcylQuad[RHO]+BcylSext[RHO]; B[Z] =BcylDipole[Z]+BcylQuad[Z]+BcylSext[Z]; B[X]= BxyzDipole[X] + BxyzQuad[X] + BxyzSext[X]; B[Y]= BxyzDipole[Y] + BxyzQuad[Y] + BxyzSext[Y]; B[Z]= BxyzDipole[Z] + BxyzQuad[Z] + BxyzSext[Z] + mul[2]; } else { fprintf(stderr,"HelicalDipoleField::addFieldValue bad model#%d (1|2)\n", int(model) ); fflush(stderr); } /* Rotation if applicable */ if(global2local.isRotated()) B = rotation * B; field[0] += B[X]; /* update the field */ field[1] += B[Y]; field[2] += B[Z]; field[5] += ez; }