/* This file is part of MAUS: http:// micewww.pp.rl.ac.uk:8080/projects/maus * * MAUS is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * MAUS is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MAUS. If not, see . */ /* Author: Peter Lane */ #include "src/common_cpp/Optics/CovarianceMatrix.hh" #include #include #include #include #include #include "CLHEP/Matrix/SymMatrix.h" #include "CLHEP/Units/PhysicalConstants.h" #include "TMatrixDSym.h" #include "Utils/Exception.hh" #include "Maths/Matrix.hh" #include "Maths/SymmetricMatrix.hh" namespace MAUS { using MAUS::Matrix; using ::CLHEP::c_light; // ############################ // Free Functions // ############################ // **************************** // Conversion Functions // **************************** CovarianceMatrix rotate(const CovarianceMatrix& covariances, const double angle) { double fcos = ::cos(angle); double fsin = ::sin(angle); double rotation_array[36] = { 1., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., fcos, 0., fsin, 0., 0., 0., 0., fcos, 0., fsin, 0., 0., -fsin, 0., fcos, 0., 0., 0., 0., -fsin, 0., fcos }; const Matrix rotation(6, 6, rotation_array); const Matrix rotation_transpose = transpose(rotation); // the orthogonal similarity transform of a symmetric matrix is also symmetric CovarianceMatrix rotated_covariances( rotation * covariances * rotation_transpose); return rotated_covariances; } // ############################ // CovarianceMatrix // ############################ // **************************** // Constructors // **************************** CovarianceMatrix::CovarianceMatrix() : SymmetricMatrix(6) { } CovarianceMatrix::CovarianceMatrix(const CovarianceMatrix& original_instance) : SymmetricMatrix((SymmetricMatrix) original_instance) { } CovarianceMatrix::CovarianceMatrix(const Matrix& matrix) : SymmetricMatrix() { if ( (matrix.number_of_rows() < 6) || (matrix.number_of_columns() < 6)) { throw(Exceptions::Exception(Exceptions::recoverable, "Attempted to construct with a Matrix containing " "fewer than six rows and/or columns", "CovarianceMatrix::CovarianceMatrix(Matrix)")); } build_matrix(6); for (size_t row = 1; row <= 6; ++row) { for (size_t column = 1; column <= row; ++column) { set(row, column, matrix(row, column)); } } } CovarianceMatrix::CovarianceMatrix(const SymmetricMatrix& symmetric_matrix) : SymmetricMatrix() { if ( (symmetric_matrix.number_of_rows() < 6) || (symmetric_matrix.number_of_columns() < 6)) { throw(Exceptions::Exception(Exceptions::recoverable, "Attempted to construct with a SymmetricMatrix containing " "fewer than six rows/columns", "CovarianceMatrix::CovarianceMatrix(SymmetricMatrix)")); } build_matrix(6); for (size_t row = 1; row <= 6; ++row) { for (size_t column = 1; column <= row; ++column) { set(row, column, symmetric_matrix(row, column)); } } } CovarianceMatrix::CovarianceMatrix(const ::CLHEP::HepSymMatrix& hep_sym_matrix) : SymmetricMatrix() { if ( (hep_sym_matrix.num_row() < 6) || (hep_sym_matrix.num_col() < 6)) { throw(Exceptions::Exception(Exceptions::recoverable, "Attempted to construct with a HepSymMatrix containing fewer " "than six rows/columns", "CovarianceMatrix::CovarianceMatrix(CLHEP::HepSymMatrix)")); } build_matrix(6); double element; for (size_t row = 1; row <= 6; ++row) { for (size_t column = 1; column <= row; ++column) { element = hep_sym_matrix(row, column); Matrix::operator()(row, column) = element; Matrix::operator()(column, row) = element; } } } CovarianceMatrix::CovarianceMatrix(const TMatrixDSym& root_sym_matrix) : SymmetricMatrix(root_sym_matrix) { if ( (root_sym_matrix.GetNrows() < 6) || (root_sym_matrix.GetNcols() < 6)) { throw(Exceptions::Exception(Exceptions::recoverable, "Attempted to construct with a TMatrixDSym containing fewer " "than six rows/columns", "CovarianceMatrix::CovarianceMatrix(TMatrixDSym)")); } const double * data = root_sym_matrix.GetMatrixArray(); build_matrix(6, data); } CovarianceMatrix::CovarianceMatrix(double const * const array_matrix) : SymmetricMatrix(6, array_matrix) { } /* xboa uses an equation for calculating canonical angular momentum that is * different from the standard. This in turn affects Ltwiddle_t. Furthermore, * xboa uses a different definition of kappa and sigma_y_Px than G. Penn's * paper (this might be an error). It also appears that xboa uses total * momentum instead of longitudinal momentum in calculations of the covariances. */ const CovarianceMatrix CovarianceMatrix::CreateFromPennParameters( double mass, double momentum, double charge, double Bz, double Ltwiddle_t, double emittance_t, double beta_t, double alpha_t, double emittance_l, double beta_l, double alpha_l, double dispersion_x, double dispersion_prime_x, double dispersion_y, double dispersion_prime_y) { // *** calculate some intermediate values *** double energy = ::sqrt(momentum * momentum + mass * mass); // this differs from G. Penn's paper double kappa = c_light * Bz / (2. * momentum); double gamma_t = (1 + alpha_t*alpha_t + (beta_t*kappa - Ltwiddle_t)*(beta_t*kappa-Ltwiddle_t)) / beta_t; double gamma_l = (1+alpha_l*alpha_l+beta_l*beta_l*kappa*kappa)/beta_l; // *** calculate the lower triangle covariances = sigma_A_B *** double sigma_t_t = emittance_l * mass * beta_l / momentum; double sigma_E_t = -emittance_l * mass * alpha_l; double sigma_E_E = emittance_l * mass * gamma_l * momentum; double sigma_x_t = 0.; double sigma_x_E = dispersion_x * sigma_E_E / energy; double sigma_x_x = emittance_t * beta_t * mass / momentum; double sigma_Px_t = 0.; double sigma_Px_E = dispersion_prime_x * sigma_E_E / energy; double sigma_Px_x = -mass * emittance_t * alpha_t; double sigma_Px_Px= mass * momentum * emittance_t * gamma_t; double sigma_y_t = 0.; double sigma_y_E = dispersion_y * sigma_E_E / energy; double sigma_y_x = 0.; // this differes from G. Penn's paper double sigma_y_Px = mass * emittance_t * (beta_t*kappa - Ltwiddle_t) * charge; double sigma_y_y = emittance_t * beta_t * mass / momentum; double sigma_Py_t = 0.; double sigma_Py_E = dispersion_prime_y * sigma_E_E / energy; double sigma_Py_x = -sigma_y_Px; double sigma_Py_Px= 0.; double sigma_Py_y = sigma_Px_x; double sigma_Py_Py= sigma_Px_Px; double covariances[36] = { sigma_t_t, 0., 0., 0., 0., 0., sigma_E_t, sigma_E_E, 0., 0., 0., 0., sigma_x_t, sigma_x_E, sigma_x_x, 0., 0., 0., sigma_Px_t, sigma_Px_E, sigma_Px_x, sigma_Px_Px, 0., 0., sigma_y_t, sigma_y_E, sigma_y_x, sigma_y_Px, sigma_y_y, 0., sigma_Py_t, sigma_Py_E, sigma_Py_x, sigma_Py_Px, sigma_Py_y, sigma_Py_Py }; return CovarianceMatrix(covariances); } const CovarianceMatrix CovarianceMatrix::CreateFromTwissParameters( double mass, double momentum, double emittance_x, double beta_x, double alpha_x, double emittance_y, double beta_y, double alpha_y, double emittance_l, double beta_l, double alpha_l, double dispersion_x, double dispersion_prime_x, double dispersion_y, double dispersion_prime_y) { // *** calculate some intermediate values *** double energy = ::sqrt(momentum * momentum + mass * mass); double gamma_x = (1+alpha_x*alpha_x)/beta_x; double gamma_y = (1+alpha_y*alpha_y)/beta_y; double gamma_l = (1+alpha_l*alpha_l)/beta_l; // *** calculate the lower triangle covariances = sigma_A_B *** double sigma_t_t = emittance_l * mass * beta_l / momentum; double sigma_E_t = -emittance_l * mass * alpha_l; double sigma_E_E = emittance_l * mass * gamma_l * momentum; double sigma_x_t = 0.; double sigma_x_E = dispersion_x * sigma_E_E / energy; // FIXME(plane1@hawk.iit.edu) Shouldn't this be just beta_x emittance_x? double sigma_x_x = emittance_x * mass * beta_x / momentum; double sigma_Px_t = 0.; double sigma_Px_E = dispersion_prime_x * sigma_E_E / energy; // FIXME(plane1@hawk.iit.edu) Shouldn't this be just -alpha_x emittance_x ? double sigma_Px_x = -emittance_x * mass * alpha_x; // FIXME(plane1@hawk.iit.edu) Shouldn't this be just gamma_x emittance_x ? double sigma_Px_Px= emittance_x * mass * momentum * gamma_x; double sigma_y_t = 0.; double sigma_y_E = dispersion_y * sigma_E_E / energy; double sigma_y_x = 0.; double sigma_y_Px = 0.; // FIXME(plane1@hawk.iit.edu) Shouldn't this be just beta_y emittance_y? double sigma_y_y = emittance_y * mass * beta_y / momentum; double sigma_Py_t = 0.; double sigma_Py_E = dispersion_prime_y * sigma_E_E / energy; double sigma_Py_x = 0.; double sigma_Py_Px= 0.; // FIXME(plane1@hawk.iit.edu) Shouldn't this be just -alpha_y emittance_y ? double sigma_Py_y = -emittance_y * mass * alpha_y; // FIXME(plane1@hawk.iit.edu) Shouldn't this be just gamma_y emittance_y ? double sigma_Py_Py= emittance_y * mass * momentum * gamma_y; double covariances[36] = { sigma_t_t, 0., 0., 0., 0., 0., sigma_E_t, sigma_E_E, 0., 0., 0., 0., sigma_x_t, sigma_x_E, sigma_x_x, 0., 0., 0., sigma_Px_t, sigma_Px_E, sigma_Px_x, sigma_Px_Px, 0., 0., sigma_y_t, sigma_y_E, sigma_y_x, sigma_y_Px, sigma_y_y, 0., sigma_Py_t, sigma_Py_E, sigma_Py_x, sigma_Py_Px, sigma_Py_y, sigma_Py_Py }; return CovarianceMatrix(covariances); } bool CovarianceMatrix::IsPositiveDefinite() const { size_t min_row = 1; size_t min_column = 1; size_t rows = size(); for (size_t length = 1; length <= rows; length++) { // Sylvester Criterion - all the leading principle minors must be positive if (determinant(submatrix(min_row, length, min_column, length)) <= 0) { return false; } } return true; } } // namespace MAUS