// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4Trap.hh,v 1.19 2010-10-19 15:42:09 gcosmo Exp $ // GEANT4 tag $Name: not supported by cvs2svn $ // // // -------------------------------------------------------------------- // GEANT 4 class header file // // G4Trap // // Class description: // // A G4Trap is a general trapezoid: The faces perpendicular to the // z planes are trapezia, and their centres are not necessarily on // a line parallel to the z axis. // // Note that of the 11 parameters described below, only 9 are really // independent - a check for planarity is made in the calculation of the // equation for each plane. If the planes are not parallel, a call to // G4Exception is made. // // pDz Half-length along the z-axis // pTheta Polar angle of the line joining the centres of the faces // at -/+pDz // pPhi Azimuthal angle of the line joing the centre of the face at // -pDz to the centre of the face at +pDz // pDy1 Half-length along y of the face at -pDz // pDx1 Half-length along x of the side at y=-pDy1 of the face at -pDz // pDx2 Half-length along x of the side at y=+pDy1 of the face at -pDz // pAlp1 Angle with respect to the y axis from the centre of the side // at y=-pDy1 to the centre at y=+pDy1 of the face at -pDz // // pDy2 Half-length along y of the face at +pDz // pDx3 Half-length along x of the side at y=-pDy2 of the face at +pDz // pDx4 Half-length along x of the side at y=+pDy2 of the face at +pDz // pAlp2 Angle with respect to the y axis from the centre of the side // at y=-pDy2 to the centre at y=+pDy2 of the face at +pDz // // // Member Data: // // fDz Half-length along the z axis // fTthetaCphi = std::tan(pTheta)*std::cos(pPhi) // fTthetaSphi = std::tan(pTheta)*std::sin(pPhi) // These combinations are suitable for creation of the trapezoid corners // // fDy1 Half-length along y of the face at -fDz // fDx1 Half-length along x of the side at y=-fDy1 of the face at -fDz // fDx2 Half-length along x of the side at y=+fDy1 of the face at -fDz // fTalpha1 Tan of Angle with respect to the y axis from the centre of // the side at y=-fDy1 to the centre at y=+fDy1 of the face // at -fDz // // fDy2 Half-length along y of the face at +fDz // fDx3 Half-length along x of the side at y=-fDy2 of the face at +fDz // fDx4 Half-length along x of the side at y=+fDy2 of the face at +fDz // fTalpha2 Tan of Angle with respect to the y axis from the centre of // the side at y=-fDy2 to the centre at y=+fDy2 of the face // at +fDz // // TrapSidePlane fPlanes[4] Plane equations of the faces not at +/-fDz // NOTE: order is important !!! // History: // // 23.3.94 P.Kent: Old C++ code converted to tolerant geometry // 9.9.96 V.Grichine: Final modifications before to commit // 1.11.96 V.Grichine: Costructors for Right Angular Wedge from STEP, G4Trd/Para // 8.12.97 J.Allison: Added "nominal" contructor and method SetAllParameters. // -------------------------------------------------------------------- #ifndef G4Trap_HH #define G4Trap_HH #include "G4CSGSolid.hh" struct TrapSidePlane { G4double a,b,c,d; // Normal unit vector (a,b,c) and offset (d) // => Ax+By+Cz+D=0 }; class G4Trap : public G4CSGSolid { public: // with description G4Trap( const G4String& pName, G4double pDz, G4double pTheta, G4double pPhi, G4double pDy1, G4double pDx1, G4double pDx2, G4double pAlp1, G4double pDy2, G4double pDx3, G4double pDx4, G4double pAlp2 ); // // The most general constructor for G4Trap which prepares plane // equations and corner coordinates from parameters G4Trap( const G4String& pName, const G4ThreeVector pt[8] ) ; // // Prepares plane equations and parameters from corner coordinates G4Trap( const G4String& pName, G4double pZ, G4double pY, G4double pX, G4double pLTX ); // // Constructor for Right Angular Wedge from STEP (assumes pLTX<=pX) G4Trap( const G4String& pName, G4double pDx1, G4double pDx2, G4double pDy1, G4double pDy2, G4double pDz ); // // Constructor for G4Trd G4Trap(const G4String& pName, G4double pDx, G4double pDy, G4double pDz, G4double pAlpha, G4double pTheta, G4double pPhi ); // // Constructor for G4Para G4Trap( const G4String& pName ); // // Constructor for "nominal" G4Trap whose parameters are to be set // by a G4VPVParamaterisation later virtual ~G4Trap() ; // // Destructor // Accessors inline G4double GetZHalfLength() const; inline G4double GetYHalfLength1() const; inline G4double GetXHalfLength1() const; inline G4double GetXHalfLength2() const; inline G4double GetTanAlpha1() const; inline G4double GetYHalfLength2() const; inline G4double GetXHalfLength3() const; inline G4double GetXHalfLength4() const; inline G4double GetTanAlpha2() const; // // Returns coordinates of unit vector along straight // line joining centers of -/+fDz planes inline TrapSidePlane GetSidePlane( G4int n ) const; inline G4ThreeVector GetSymAxis() const; // Modifiers void SetAllParameters ( G4double pDz, G4double pTheta, G4double pPhi, G4double pDy1, G4double pDx1, G4double pDx2, G4double pAlp1, G4double pDy2, G4double pDx3, G4double pDx4, G4double pAlp2 ); // Methods for solid inline G4double GetCubicVolume(); inline G4double GetSurfaceArea(); void ComputeDimensions( G4VPVParameterisation* p, const G4int n, const G4VPhysicalVolume* pRep ); G4bool CalculateExtent( const EAxis pAxis, const G4VoxelLimits& pVoxelLimit, const G4AffineTransform& pTransform, G4double& pMin, G4double& pMax ) const; EInside Inside( const G4ThreeVector& p ) const; G4ThreeVector SurfaceNormal( const G4ThreeVector& p ) const; G4double DistanceToIn(const G4ThreeVector& p, const G4ThreeVector& v) const; G4double DistanceToIn( const G4ThreeVector& p ) const; G4double DistanceToOut(const G4ThreeVector& p, const G4ThreeVector& v, const G4bool calcNorm=false, G4bool *validNorm=0, G4ThreeVector *n=0) const; G4double DistanceToOut( const G4ThreeVector& p ) const; G4GeometryType GetEntityType() const; G4ThreeVector GetPointOnSurface() const; G4VSolid* Clone() const; std::ostream& StreamInfo( std::ostream& os ) const; // Visualisation functions void DescribeYourselfTo ( G4VGraphicsScene& scene ) const; G4Polyhedron* CreatePolyhedron () const; G4NURBS* CreateNURBS () const; public: // without description G4Trap(__void__&); // Fake default constructor for usage restricted to direct object // persistency for clients requiring preallocation of memory for // persistifiable objects. G4Trap(const G4Trap& rhs); G4Trap& operator=(const G4Trap& rhs); // Copy constructor and assignment operator. protected: // with description G4bool MakePlanes(); G4bool MakePlane( const G4ThreeVector& p1, const G4ThreeVector& p2, const G4ThreeVector& p3, const G4ThreeVector& p4, TrapSidePlane& plane ) ; G4ThreeVectorList* CreateRotatedVertices( const G4AffineTransform& pTransform ) const; // // Creates the List of transformed vertices in the format required // for G4CSGSolid:: ClipCrossSection and ClipBetweenSections private: G4ThreeVector ApproxSurfaceNormal( const G4ThreeVector& p ) const; // Algorithm for SurfaceNormal() following the original // specification for points not on the surface inline G4double GetFaceArea(const G4ThreeVector& p1, const G4ThreeVector& p2, const G4ThreeVector& p3, const G4ThreeVector& p4); // // Provided four corners of plane in clockwise fashion, // it returns the area of finite face G4ThreeVector GetPointOnPlane(G4ThreeVector p0, G4ThreeVector p1, G4ThreeVector p2, G4ThreeVector p3, G4double& area) const; // // Returns a random point on the surface of one of the faces private: G4double fDz,fTthetaCphi,fTthetaSphi; G4double fDy1,fDx1,fDx2,fTalpha1; G4double fDy2,fDx3,fDx4,fTalpha2; TrapSidePlane fPlanes[4]; }; #include "G4Trap.icc" #endif