// // ******************************************************************** // * License and Disclaimer * // * * // * The Geant4 software is copyright of the Copyright Holders of * // * the Geant4 Collaboration. It is provided under the terms and * // * conditions of the Geant4 Software License, included in the file * // * LICENSE and available at http://cern.ch/geant4/license . These * // * include a list of copyright holders. * // * * // * Neither the authors of this software system, nor their employing * // * institutes,nor the agencies providing financial support for this * // * work make any representation or warranty, express or implied, * // * regarding this software system or assume any liability for its * // * use. Please see the license in the file LICENSE and URL above * // * for the full disclaimer and the limitation of liability. * // * * // * This code implementation is the result of the scientific and * // * technical work of the GEANT4 collaboration. * // * By using, copying, modifying or distributing the software (or * // * any work based on the software) you agree to acknowledge its * // * use in resulting scientific publications, and indicate your * // * acceptance of all terms of the Geant4 Software license. * // ******************************************************************** // // // $Id: G4VCSGface.hh,v 1.9 2008-05-15 11:41:59 gcosmo Exp $ // GEANT4 tag $Name: not supported by cvs2svn $ // // // -------------------------------------------------------------------- // GEANT 4 class header file // // // G4VCSGface // // Class description: // // Definition of the virtual base class G4VCSGface, one side (or face) // of a CSG-like solid. It should be possible to build a CSG entirely out of // connecting CSG faces. // // Each face has an inside and outside surface, the former represents // the inside of the volume, the latter, the outside. // // Virtual members: // // ------------------------------------------------------------------- // Intersect( const G4ThreeVector &p, const G4ThreeVector &v, // G4bool outGoing, G4double surfTolerance, // G4double &distance, G4double &distFromSurface, // G4ThreeVector &normal, G4bool &allBehind ); // // p - (in) position // v - (in) direction (assumed to be a unit vector) // outgoing - (in) true, to consider only inside surfaces // false, to consider only outside surfaces // distance - (out) distance to intersection // distFromSurface - (out) distance from surface (along surface normal), // < 0 if the point is in front of the surface // normal - (out) normal of surface at intersection point // allBehind - (out) true, if entire surface is behind normal // // return value = true if there is an intersection, // false if there is no intersection // (all output arguments undefined) // // Determine the distance along a line to the face. // // ------------------------------------------------------------------- // Distance( const G4ThreeVector &p, const G4bool outgoing ); // // p - (in) position // outgoing - (in) true, to consider only inside surfaces // false, to consider only outside surfaces // // return value = distance to closest surface satisifying requirements // or kInfinity if no such surface exists // // Determine the distance of a point from either the inside or outside // surfaces of the face. // // ------------------------------------------------------------------- // Inside( const G4ThreeVector &p, const G4double tolerance, // G4double *bestDistance ); // // p - (in) position // tolerance - (in) tolerance defining the bounds of the "kSurface", // nominally equal to kCarTolerance/2 // bestDistance - (out) distance to closest surface (in or out) // // return value = kInside if the point is closest to the inside surface // kOutside if the point is closest to the outside surface // kSurface if the point is withing tolerance of the surface // // Determine whether a point is inside, outside, or on the surface of // the face. // // ------------------------------------------------------------------- // Normal( const G4ThreeVector &p, G4double *bestDistance ); // // p - (in) position // bestDistance - (out) distance to closest surface (in or out) // // return value = the normal of the surface nearest the point // // Return normal of surface closest to the point. // // ------------------------------------------------------------------- // Extent( const G4ThreeVector axis ); // // axis - (in) unit vector defining direction // // return value = the largest point along the given axis of the // the face's extent. // // ------------------------------------------------------------------- // CalculateExtent( const EAxis pAxis, // const G4VoxelLimit &pVoxelLimit, // const G4AffineTransform &pTransform, // G4double &min, G4double &max ) // // pAxis - (in) The x,y, or z axis in which to check // the shapes 3D extent against // pVoxelLimit - (in) Limits along x, y, and/or z axes // pTransform - (in) A coordinate transformation on which // to apply to the shape before testing // min - (out) If the face has any point on its // surface after tranformation and limits // along pAxis that is smaller than the value // of min, than it is used to replace min. // Undefined if the return value is false. // max - (out) Same as min, except for the largest // point. // Undefined if the return value is false. // // return value = true if anything remains of the face // // Calculate the extent of the face for the voxel navigator. // In analogy with CalculateExtent for G4VCSGfaceted, this is // done in the following steps: // // 1. Transform the face using pTranform, an arbitrary 3D // rotation/offset/reflection // 2. Clip the face to those boundaries as specified in // pVoxelLimit. This may include limits in any number // of x, y, or z axes. // 3. For each part of the face that remains (there could // be many separate pieces in general): // 4. Check to see if the piece overlaps the currently // existing limits along axis pAxis. For // pVoxelLimit.IsLimited(pAxis) = false, there are // no limits. // 5. For a piece that does overlap, update min/max // accordingly (within confines of pre-existing // limits) along the direction pAxis. // 6. If min/max were updated, return true // // ------------------------------------------------------------------- // G3VCSGface *Clone() // // This method is invoked by G4CSGfaceted during the copy constructor // or the assignment operator. Its purpose is to return a pointer // (of type G4VCSGface) to a duplicate copy of the face. // The implementation is straight forward for inherited classes. Example: // // G4VCSGface G4PolySideFace::Clone() { return new G4PolySideFace(*this); } // // Of course, this assumes the copy constructor of G4PolySideFace is // correctly implemented. // // Implementation notes: // * distance. // The meaning of distance includes the boundaries of the face. // For example, for a rectangular, planer face: // // A | B | C // | | // -------+--------------+----- // D | I | E // | | // -------+--------------+----- // F | G | H // | | // // A, C, F, and H: closest distance is the distance to // the adjacent corner. // // B, D, E, and G: closest distance is the distance to // the adjacent line. // // I: normal distance to plane // // For non-planer faces, one can use the normal to decide when // a point falls off the edge and then act accordingly. // // // Usage: // // A CSG shape can be defined by putting together any number of generic // faces, as long as the faces cover the entire surface of the shape // without overlapping. // // G4VSolid::CalculateExtent // // Define unit vectors along the specified transform axis. // Use the inverse of the specified coordinate transformation to rotate // these unit vectors. Loop over each face, call face->Extent, and save // the maximum value. // // G4VSolid::Inside // // To decide if a point is inside, outside, or on the surface of the shape, // loop through all faces, and find the answer from face->Inside which gives // a value of "bestDistance" smaller than any other. While looping, if any // face->Inside returns kSurface, this value can be returned immediately. // // EInside answer; // G4VCSGface *face = faces; // G4double best = kInfinity; // do { // G4double distance; // EInside result = (*face)->Inside( p, kCarTolerance/2, distance ); // if (result == kSurface) return kSurface; // if (distance < best) { // best = distance; // answer = result; // } // } while( ++face < faces + numFaces ); // // return(answer); // // G4VSolid::SurfaceNormal // // Loop over all faces, call face->Normal, and return the normal to the face // that is closest to the point. // // G4VSolid::DistanceToIn(p) // // Loop over all faces, invoking face->Distance with outgoing = false, // and save the answer that is smallest. // // G4VSolid::DistanceToIn(p,v) // // Loop over all faces, invoking face->Intersect with outgoing = false, // and save the answer that is smallest. // // G4VSolid::DistanceToOut(p) // // Loop over all faces, invoking face->Distance with outgoing = true, // and save the answer that is smallest. // // G4VSolid::DistanceToOut(p,v) // // Loop over all faces, invoking face->Intersect with outgoing = true, // and save the answer that is smallest. If there is more than one answer, // or if allBehind is false for the one answer, return validNorm as false. // Author: // David C. Williams (davidw@scipp.ucsc.edu) // -------------------------------------------------------------------- #ifndef G4VCSGface_hh #define G4VCSGface_hh #include "G4Types.hh" #include "G4ThreeVector.hh" #include "geomdefs.hh" #include "G4VSolid.hh" class G4VoxelLimits; class G4AffineTransform; class G4SolidExtentList; class G4VCSGface { public: // with description G4VCSGface() {} virtual ~G4VCSGface() {} virtual G4bool Intersect( const G4ThreeVector &p, const G4ThreeVector &v, G4bool outgoing, G4double surfTolerance, G4double &distance, G4double &distFromSurface, G4ThreeVector &normal, G4bool &allBehind ) = 0; virtual G4double Distance( const G4ThreeVector &p, G4bool outgoing ) = 0; virtual EInside Inside( const G4ThreeVector &p, G4double tolerance, G4double *bestDistance ) = 0; virtual G4ThreeVector Normal( const G4ThreeVector &p, G4double *bestDistance ) = 0; virtual G4double Extent( const G4ThreeVector axis ) = 0; virtual void CalculateExtent( const EAxis axis, const G4VoxelLimits &voxelLimit, const G4AffineTransform &tranform, G4SolidExtentList &extentList ) = 0; virtual G4VCSGface* Clone() = 0; virtual G4double SurfaceArea( ) = 0; virtual G4ThreeVector GetPointOnFace() = 0; }; #endif